Advertisement

ICTMI 2017 pp 215-224 | Cite as

Challenges in the Diagnosis of Retinopathy of Prematurity—An Imaging and Instrumentation Perspective

  • J. Mary Annie Sujitha
  • Priya Rani
  • E. R. Rajkumar
  • P. ArulmozhivarmanEmail author
Conference paper

Abstract

Among the prime causes of blindness, Retinopathy of Prematurity (ROP) tops the chart. Technical advancements in nurturing the neonates have been witnessing tremendous positivity in the diagnosis and treatment of neonates. Ophthalmologic diagnosis points to binocular indirect ophthalmoscope (BIO) since the beginning, but newbie technologies of wide-field digital imaging have been showing promising results to switch over from traditional diagnostic methods. In this paper, we review the technological evolution of diagnosis of Retinopathy of Prematurity, interesting findings of cohort studies carried out across the globe and the areas where limelight has to be thrown for a commoner to understand the aspects of both medical and engineering domains and the corresponding studies going on behind the screen of biomedical engineering and instrumentation.

Keywords

Retinopathy of Prematurity Binocular indirect ophthalmoscopy RetCam Vessel segmentation Tortuosity 

References

  1. 1.
    Charan R, Dogra MR, Gupta A, Narang A (1995) The incidence of retinopathy of prematurity in a neonatal care unit. Indian J Ophthalmol 43:123–126Google Scholar
  2. 2.
    Gole GA, Ells AL, Katz X, Holmstrom G, Fielder AR, Capone A Jr, Palmer EA (2005) The international classification of retinopathy of prematurity revisited. JAMA Ophthalmol 123:991–999Google Scholar
  3. 3.
    Richter GM, Williams SL, Starren J, Flynn JT, Chiang MF (2009) Telemedicine for retinopathy of prematurity diagnosis: evaluation and challenges. Surv Ophthalmol 54:671–685CrossRefGoogle Scholar
  4. 4.
    Hartnett C, O’Keefe M (2011) Screening for retinopathy of prematurity. In: Graschew G, Rakowsky S (eds) Telemedicine techniques and applications. INTECH. ISBN: 978-953-307-354-5.  https://doi.org/10.5772/18424Google Scholar
  5. 5.
    Screening examination of premature infants for retinopathy of prematurity Section on Ophthalmology (2006) American Academy of Ophthalmology, American Association for Pediatric Ophthalmology and Strabismus. Pediatrics 117:572–576.  https://doi.org/10.1542/peds.2005-2749
  6. 6.
    Vinekar A, Jayadev C, Dogra M, Shetty B (2016) Improving follow-up of infants during Retinopathy of Prematurity screening in rural areas. Indian Pediatr 53:S151–S154Google Scholar
  7. 7.
    Slevin M, Murphy JFA, Daly L, O’Keefe M (1997) Retinopathy of prematurity screening, stress related responses, the role of nesting. Br J Ophthalmol 81:762–764CrossRefGoogle Scholar
  8. 8.
    Wu C, Petersen RA, VanderVeen DK (2006) RetCam imaging for retinopathy of prematurity screening. J Am Assoc Pediatr Ophthalmol Strabismus 10:107–111CrossRefGoogle Scholar
  9. 9.
    Yen KG, Hess D, Burke B, Johnson RA, Feuer WJ, Flynn JT (2002) Telephotoscreening to detect retinopathy of prematurity: preliminary study of the optimum time to employ digital fundus camera imaging to detect ROP. J Am Assoc Pediatr Ophthalmol Strabismus 6:64–70CrossRefGoogle Scholar
  10. 10.
    Adams GGW, Clark BJ, Fang S, Hill M (2004) Retinal haemorrhages in an infant following RetCam screening for retinopathy of prematurity. Eye 18:652–653CrossRefGoogle Scholar
  11. 11.
    Saeed MU, Oleszczuk JD (2016) Advances in retinal imaging modalities: challenges and opportunities. World J Ophthalmol 6:10–19CrossRefGoogle Scholar
  12. 12.
    Wittenberg LA, Jonsson NJ, Chan RVP, Chiang MF (2012) Computer—based image analysis for plus disease diagnosis in retinopathy of prematurity. J Pediatr Ophthalmol Strabismus 49:11–20CrossRefGoogle Scholar
  13. 13.
    Campbell JP, Ryan MC, Lore E et al (2016) Diagnostic discrepancies in retinopathy of prematurity classification. Ophthalmology 123:1795–1801CrossRefGoogle Scholar
  14. 14.
    Jefferies AL (2016) Retinopathy of prematurity: an update on screening and management. Paediatr Child Health 21:101–104CrossRefGoogle Scholar
  15. 15.
    Wade KC, Pistilli M, Baumritter A et al (2015) Safety of retinopathy of prematurity examination and imaging in premature infants. J Pediatr 167:994–1000CrossRefGoogle Scholar
  16. 16.
    Shah PK, Narendran V, Saravanan VR, Raghuram A, Chattopadhyay A, Kashyap M (2006) Screening for retinopathy of prematurity—a comparison between binocular indirect ophthalmoscopy and RetCam 120. Indian J Ophthalmol 54:35–38CrossRefGoogle Scholar
  17. 17.
    Chiang MF (2012) Image analysis for retinopathy of prematurity: where are we headed? J AAPOS 16:411–412CrossRefGoogle Scholar
  18. 18.
    Kemp PS, VanderVeen DK (2016) Computer-assisted digital image analysis of plus disease in retinopathy of prematurity. Semin Ophthalmol 31:159–162CrossRefGoogle Scholar
  19. 19.
    Grisan E, Foracchia M, Ruggeri A (2008) A novel method for the automatic grading of retinal vessel tortuosity. IEEE Trans Med Imaging 27:310–319CrossRefGoogle Scholar
  20. 20.
    Perez MME, Hughes AD, Thom SA, Bharath AA, Parker KH (2007) Segmentation of blood vessels from red-free and fluorescein retinal images. Med Image Anal 11:47–61CrossRefGoogle Scholar
  21. 21.
    You S, Bas E, Erdogmus D, Cramer JK (2011) Principal curve based retinal vessel segmentation towards diagnosis of retinal diseases. In: IEEE international conference on healthcare informatics, imaging and systems biology, pp 331–337.  https://doi.org/10.1109/hisb.2011.39
  22. 22.
    Poletti E, Fiorin D, Grisan E, Ruggeri A (2011) Automatic vessel segmentation in wide field retina images of infants with retinopathy of prematurity. In: Conference proceedings IEEE engineering in medicine and biology society, vol 2011, pp 3954–3957Google Scholar
  23. 23.
    Poletti E, Ruggeri A (2012) Segmentation of vessels through supervised classification in wide-field retina images of infants with retinopathy of prematurity. In: International symposium on computer-based medical systems, pp 1–6.  https://doi.org/10.1109/cbms.2012.6266343
  24. 24.
    Prabakar S, Porkumaran K, Shah PK, Narendran V (2011) Optimized imaging techniques to detect and screen the stages of retinopathy of prematurity. In: Solari F (ed) Human centric machine vision. IN TECH, pp 59–80. ISBN: 978-953-51-0563-3Google Scholar
  25. 25.
    Oloumi F, Rangayyan RM, Ells AL (2014) Measurement of vessel width in retinal fundus images of preterm infants with plus disease. In: IEEE international symposium on medical measurements and applications (MeMeA), pp 1–5.  https://doi.org/10.1109/memea.2014.6860082
  26. 26.
    Oloumi F, Rangayyan RM, Ells AL (2015) Computer-aided diagnosis of plus disease in retinal fundus images of preterm infants via measurement of vessel tortuosity. In: IEEE engineering in medicine and biology society, pp 4338–4342.  https://doi.org/10.1109/embc.2015.7319355
  27. 27.
    Canedo BV, Cansizoglu AE, Erdogmus D, Cramer KJ, Chiang MF (2015) A GMM-based feature extraction technique for the automated diagnosis of retinopathy of prematurity. In: Biomedical imaging, pp 1498–1501.  https://doi.org/10.1109/isbi.2015.7164161
  28. 28.
    Rollins R, Marshall AH, McLoone E, Chamney S (2015) Discrete conditional phase-type model utilising a multiclass support vector machine for the prediction of retinopathy of prematurity. In: Computer-based medical systems, pp 250–255.  https://doi.org/10.1109/cbms.2015.78
  29. 29.
    Sinthanayothin C, Panitsuk P, Uyyanonvara B (2010) Automatic retinal vessel tortuosity measurement. In: Electrical engineering/electronics computer telecommunications and information technology, pp 505–507Google Scholar
  30. 30.
    Heneghan C, Flynn J, O’Keefe M, Cahill M (2002) Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis. Med Image Anal 6:407–429CrossRefGoogle Scholar
  31. 31.
    Bontala A, Sivaswamy J, Pappuru RR (2012) Image mosaicing of low quality neonatal retinal images. In: Biomedical imaging (ISBI), pp 720–723Google Scholar
  32. 32.
    Bharadwaj MS, Chandrasekhar C, Suma HN, Abhishek AM, Vinekar AS (2015) Evaluating pseudo 3D reconstruction of retinal images as a tool for retinopathy of prematurity screening. In: Advance computing conference IEEE International, pp 978–982.  https://doi.org/10.1109/iadcc.2015.7154850
  33. 33.
    Richter GM, Sun G, Lee TC et al (2009) Speed of telemedicine vs. ophthalmoscopy for retinopathy of prematurity diagnosis. Am J Ophthalmol 148:136–142CrossRefGoogle Scholar
  34. 34.
    Chiang MF, Boland MV, Margolis JW et al (2008) Adoption and perceptions of electronic health record systems by ophthalmologists: an American Academy of Ophthalmology survey. Ophthalmology 115:1591–1597 CrossRefGoogle Scholar
  35. 35.
    Dobke MK, Bhavsar D, Gosman A et al (2008) Pilot trial of telemedicine as a decision aid for patients with chronic wounds. Telemed J E Health 14:245–249CrossRefGoogle Scholar
  36. 36.
    Kollmann A, Hayn D, Garcia J et al (2006) Initial experiences with a telemedicine framework for remote pacemaker follow-up. In: Conference proceedings IEEE engineering in medicine and biology society, vol 1, pp 5218–5221Google Scholar
  37. 37.
    Shashidhar VM, Brauchli K, Oberholzer M et al (2003) Pacific telepathology service at Fiji School of Medicine. Pac Health Dialog 10:178–181Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • J. Mary Annie Sujitha
    • 1
  • Priya Rani
    • 2
  • E. R. Rajkumar
    • 3
  • P. Arulmozhivarman
    • 1
    Email author
  1. 1.School of Electronics EngineeringVIT UniversityVelloreIndia
  2. 2.School of Electrical and Computer EngineeringRMIT UniversityMelbourneAustralia
  3. 3.Robert BoschBangloreIndia

Personalised recommendations