Skip to main content

Stem Cell-Based Therapy for Ischemic Stroke

  • Chapter
  • First Online:
Advancement in the Pathophysiology of Cerebral Stroke

Abstract

Stroke is still a leading cause of death and physical disability among adults. For stroke patients, there is a need for improved and effective therapy. Tissue plasminogen activator is a single FDA-approved drug available for treatment with short window of opportunity (it must be applied within 4.5 h of symptom onset). Over the years, several clinical trials of potential drugs have failed to show positive results. Stem cell therapy currently holds great promise as a neuroregenerative medical strategy for stroke by replenishing the lost brain functions. In the clinical arena of stroke therapy, animal studies revealed that the therapeutic efficacy of stem cells, including mesenchymal stem cells, neural stem cells, embryonic stem cells, and inducible pluripotent stem cells, may be due to angiogenesis, endogenous neurogenesis, neurorestoration, neuroprotection, and modulation of inflammation and immune responses. In this chapter, the current status, therapeutic potential, and the detailed factors of stem cell-based therapy for ischemic stroke are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stemer, A., & Lyden, P. (2010, January 1). Evolution of the thrombolytic treatment window for acute ischemic stroke. Current Neurology and Neuroscience Reports, 10(1), 29–33.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998, November 1). Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11).

    Google Scholar 

  3. Curtis, M. A., Kam, M., Nannmark, U., Anderson, M. F., Axell, M. Z., Wikkelso, C., Holtås, S., van Roon-Mom, W. M., Björk-Eriksson, T., Nordborg, C., & Frisén, J. (2007, March 2). Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science, 315(5816), 1243–1249.

    Article  CAS  PubMed  Google Scholar 

  4. Shyu, W. C., Lin, S. Z., Yang, H. I., Tzeng, Y. S., Pang, C. Y., Yen, P. S., & Li, H. (2004, September 28). Functional recovery of stroke rats induced by granulocyte colony-stimulating factor–stimulated stem cells. Circulation, 110(13), 1847–1854.

    Article  CAS  PubMed  Google Scholar 

  5. Jin, K., Wang, X., Xie, L., Mao, X. O., Zhu, W., Wang, Y., Shen, J., Mao, Y., Banwait, S., & Greenberg, D. A. (2006, August 29). Evidence for stroke-induced neurogenesis in the human brain. Proceedings of the National Academy of Sciences, 103(35), 13198–13202.

    Article  CAS  Google Scholar 

  6. Talwar, T., & Srivastava, M. V. (2014, January). Role of vascular endothelial growth factor and other growth factors in post-stroke recovery. Annals of Indian Academy of Neurology, 17(1), 1.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shin, Y. K., & Cho, S. R. (2016, March 30). Exploring erythropoietin and G-CSF combination therapy in chronic stroke patients. International Journal of Molecular Sciences, 17(4), 463.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Banerjee, S., Williamson, D., Habib, N., Gordon, M., & Chataway, J. (2010, November 10). Human stem cell therapy in ischaemic stroke: A review. Age and Ageing, 40(1), 7–13.

    Article  PubMed  Google Scholar 

  9. Martino, G., & Pluchino, S. (2006, May 1). The therapeutic potential of neural stem cells. Nature Reviews Neuroscience, 7(5), 395.

    Article  CAS  PubMed  Google Scholar 

  10. Palmer, T. D., Markakis, E. A., Willhoite, A. R., Safar, F., & Gage, F. H. (1999, October 1). Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. The Journal of Neuroscience, 19(19), 8487–8497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Palmer, T. D., Ray, J., & Gage, F. H. (1995, October 31). FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Molecular and Cellular Neurosciences, 6(5), 474–486.

    Article  CAS  PubMed  Google Scholar 

  12. Doetsch, F., Caille, I., Lim, D. A., García-Verdugo, J. M., & Alvarez-Buylla, A. (1999, June 11). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97(6), 703–716.

    Article  CAS  PubMed  Google Scholar 

  13. Alvarez-Buylla, A., Seri, B., & Doetsch, F. (2002, April 30). Identification of neural stem cells in the adult vertebrate brain. Brain Research Bulletin, 57(6), 751–758.

    Article  PubMed  Google Scholar 

  14. Andres, R. H., Choi, R., Steinberg, G. K., & Guzman, R. (2008, November). Potential of adult neural stem cells in stroke therapy. Regenerative Medicine, 3(6), 893–905.

    Article  PubMed  Google Scholar 

  15. Garzón-Muvdi, T., & Quiñones-Hinojosa, A. (2010, January 1). Neural stem cell niches and homing: Recruitment and integration into functional tissues. ILAR Journal, 51(1), 3–23.

    Article  Google Scholar 

  16. Keyoung, H. M., Roy, N. S., Benraiss, A., Louissaint, A., Suzuki, A., Hashimoto, M., Rashbaum, W. K., Okano, H., & Goldman, S. A. (2001, September 1). High-yield selection and extraction of two promoter-defined phenotypes of neural stem cells from the fetal human brain. Nature Biotechnology, 19(9), 843–850.

    Article  CAS  PubMed  Google Scholar 

  17. Hao, L., Zou, Z., Tian, H., Zhang, Y., Zhou, H., & Liu, L. (2014, February). Stem cell-based therapies for ischemic stroke. BioMed Research International, 26, 2014.

    Google Scholar 

  18. Lindvall, O., & Kokaia, Z. (2011). Stem cell research in stroke. Stroke, 142(8), 2369–2375.

    Article  Google Scholar 

  19. Hori, J., Ng, T. F., Shatos, M., Klassen, H., Streilein, J. W., & Young, M. J. (2003, July 1). Neural progenitor cells lack immunogenicity and resist destruction as allografts. Stem Cells, 21(4), 405–416.

    Article  PubMed  Google Scholar 

  20. Grompe, M. (2002, September 1). Adult versus embryonic stem cells: It’s still a tie. Molecular Therapy, 6(3), 303–305.

    Article  CAS  PubMed  Google Scholar 

  21. Seminatore, C., Polentes, J., Ellman, D., Kozubenko, N., Itier, V., Tine, S., Tritschler, L., Brenot, M., Guidou, E., Blondeau, J., & Lhuillier, M. (2010, January 1). The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors. Stroke, 41(1), 153–159.

    Article  PubMed  Google Scholar 

  22. Kim, J. Y., Kawabori, M., & Yenari, M. A. (2014, June 1). Innate inflammatory responses in stroke: Mechanisms and potential therapeutic targets. Current Medicinal Chemistry, 21(18), 2076–2097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pluchino, S., & Cossetti, C. (2013, September 1). How stem cells speak with host immune cells in inflammatory brain diseases. Glia, 61(9), 1379–1401.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Toda, H., Takahashi, J., Iwakami, N., Kimura, T., Hoki, S., Mozumi-Kitamura, K., Ono, S., & Hashimoto, N. (2001, December 4). Grafting neural stem cells improved the impaired spatial recognition in ischemic rats. Neuroscience Letters, 316(1), 9–12.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang, Q., Zhang, Z. G., Ding, G. L., Zhang, L., Ewing, J. R., Wang, L., Zhang, R., Li, L., Lu, M., Meng, H., & Arbab, A. S. (2005, November 15). Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI. NeuroImage, 28(3), 698–707.

    Article  PubMed  Google Scholar 

  26. Magnitsky, S., Walton, R. M., Wolfe, J. H., & Poptani, H. (2008, October 31). Magnetic resonance imaging detects differences in migration between primary and immortalized neural stem cells. Academic Radiology, 15(10), 1269–1281.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guzman, R., Choi, R., Gera, A., De Los Angeles, A., Andres, R. H., & Steinberg, G. K. (2008, March 14). Intravascular cell replacement therapy for stroke. Neurosurgical Focus, 24(3–4), E15.

    Article  PubMed  Google Scholar 

  28. Wei, L., Cui, L., Snider, B. J., Rivkin, M., Steven, S. Y., Lee, C. S., Adams, L. D., Gottlieb, D. I., Johnson, E. M., Yu, S. P., & Choi, D. W. (2005, July 31). Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiology of Disease, 19(1), 183–193.

    Article  CAS  PubMed  Google Scholar 

  29. Chau, M., Zhang, J., Wei, L., & Yu, S. P. (2016, April 1). Regeneration after stroke: Stem cell transplantation and trophic factors. Brain Circulation, 2(2), 86.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bühnemann, C., Scholz, A., Bernreuther, C., Malik, C. Y., Braun, H., Schachner, M., Reymann, K. G., & Dihné, M. (2006, October 3). Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain, 129(12), 3238–3248.

    Article  PubMed  Google Scholar 

  31. Keirstead, H. S., Nistor, G., Bernal, G., Totoiu, M., Cloutier, F., Sharp, K., & Steward, O. (2005, May 11). Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. The Journal of Neuroscience, 25(19), 4694–4705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Erdö, F., Bührle, C., Blunk, J., Hoehn, M., Xia, Y., Fleischmann, B., Föcking, M., Küstermann, E., Kolossov, E., Hescheler, J., & Hossmann, K. A. (2003, July). Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. Journal of Cerebral Blood Flow and Metabolism, 23(7), 780–785.

    Article  PubMed  Google Scholar 

  33. Barkho BZ, & Zhao, X. (2011, December 1). Adult neural stem cells: Response to stroke injury and potential for therapeutic applications. Current Stem Cell Research & Therapy, 6(4), 327–338.

    Article  Google Scholar 

  34. Wei, X., Yang, X., Han, Z. P., Qu, F. F., Shao, L., & Shi, Y. F. (2013, June). Mesenchymal stem cells: A new trend for cell therapy. Acta Pharmacologica Sinica, 34(6), 747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P., & Hedrick, M. H. (2001, April 1). Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Engineering, 7(2), 211–228.

    Article  CAS  PubMed  Google Scholar 

  36. Dominici, M. L., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., Deans, R. J., Keating, A., Prockop, D. J., & Horwitz, E. M. (2006, December 31). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    Article  CAS  PubMed  Google Scholar 

  37. Linero, I., & Chaparro, O. (2014, September 8). Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS One, 9(9), e107001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Kopen, G. C., Prockop, D. J., & Phinney, D. G. (1999, September 14). Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proceedings of the National Academy of Sciences, 96(19), 10711–10716.

    Article  CAS  Google Scholar 

  39. Zhao, L. R., Duan, W. M., Reyes, M., Keene, C. D., Verfaillie, C. M., & Low, W. C. (2002, March 31). Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Experimental Neurology, 174(1), 11–20.

    Article  PubMed  Google Scholar 

  40. Shen, L. H., Li, Y., Chen, J., Zhang, J., Vanguri, P., Borneman, J., & Chopp, M. (2006, December 31). Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience, 137(2), 393–399.

    Article  CAS  PubMed  Google Scholar 

  41. Delcroix, G. J., Schiller, P. C., Benoit, J. P., & Montero-Menei, C. N. (2010, March 31). Adult cell therapy for brain neuronal damages and the role of tissue engineering. Biomaterials, 31(8), 2105–2120.

    Article  CAS  PubMed  Google Scholar 

  42. Fiedler, J., Leucht, F., Waltenberger, J., Dehio, C., & Brenner, R. E. (2005, August 26). VEGF-A and PlGF-1 stimulate chemotactic migration of human mesenchymal progenitor cells. Biochemical and Biophysical Research Communications, 334(2), 561–568.

    Article  CAS  PubMed  Google Scholar 

  43. Shen, L. H., Li, Y., Chen, J., Cui, Y., Zhang, C., Kapke, A., Lu, M., Savant-Bhonsale, S., & Chopp, M. (2007, July 1). One-year follow-up after bone marrow stromal cell treatment in middle-aged female rats with stroke. Stroke, 38(7), 2150–2156.

    Article  PubMed  Google Scholar 

  44. Du, S., Guan, J., Mao, G., Liu, Y., Ma, S., Bao, X., Gao, J., Feng, M., Li, G., Ma, W., & Yang, Y. (2014, December 31). Intra-arterial delivery of human bone marrow mesenchymal stem cells is a safe and effective way to treat cerebral ischemia in rats. Cell Transplantation, 23(1), S73–S82.

    Article  PubMed  Google Scholar 

  45. Ohmi, K., Greenberg, D. S., Rajavel, K. S., Ryazantsev, S., Li, H. H., & Neufeld, E. F. (2003, February 18). Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB. Proceedings of the National Academy of Sciences, 100(4), 1902–1907.

    Article  CAS  Google Scholar 

  46. Ma, X. L., Liu, K. D., Li, F. C., Jiang, X. M., Jiang, L., & Li, H. L. (2013, May 1). Human mesenchymal stem cells increases expression of α-tubulin and angiopoietin 1 and 2 in focal cerebral ischemia and reperfusion. Current Neurovascular Research, 10(2), 103–111.

    Article  CAS  PubMed  Google Scholar 

  47. Zhao, Y., Lai, W., Xu, Y., Li, L., Chen, Z., & Wu, W. (2013, December 1). Exogenous and endogenous therapeutic effects of combination sodium ferulate and bone marrow stromal cells (BMSCs) treatment enhance neurogenesis after rat focal cerebral ischemia. Metabolic Brain Disease, 28(4), 655–666.

    Article  CAS  PubMed  Google Scholar 

  48. Li, G., Yu, F., Lei, T., Gao, H., Li, P., Sun, Y., Huang, H., & Mu, Q. (2016, June). Bone marrow mesenchymal stem cell therapy in ischemic stroke: Mechanisms of action and treatment optimization strategies. Neural Regeneration Research, 11(6), 1015.

    PubMed  PubMed Central  Google Scholar 

  49. Kim, H. W., Mallick, F., Durrani, S., Ashraf, M., Jiang, S., & Haider, K. H. (2012, October 15). Concomitant activation of miR-107/PDCD10 and hypoxamir-210/Casp8ap2 and their role in cytoprotection during ischemic preconditioning of stem cells. Antioxidants & Redox Signaling, 17(8), 1053–1065.

    Article  CAS  Google Scholar 

  50. Tsuji, W., Rubin, J. P., & Marra, K. G. (2014, July 26). Adipose-derived stem cells: Implications in tissue regeneration. World Journal of Stem Cells, 6(3), 312.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lindroos, B., Suuronen, R., & Miettinen, S. (2011). The potential of adipose stem cells in regenerative medicine. Stem Cell Reviews, 7, 269–290.

    Article  Google Scholar 

  52. Bhang, S. H., Cho, S. W., La, W. G., Lee, T. J., Yang, H. S., Sun, A. Y., Baek, S. H., Rhie, J. W., & Kim, B. S. (2011). Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials, 32, 2734–2747.

    Article  CAS  PubMed  Google Scholar 

  53. Eto, H., Suga, H., Inoue, K., Aoi, N., Kato, H., Araki, J., Doi, K., Higashino, T., & Yoshimura, K. (2011). Adipose injury-associated factors mitigate hypoxia in ischemic tissues through activation of adipose-derived stem/progenitor/stromal cells and induction of angiogenesis. The American Journal of Pathology, 178(5), 2322–2332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jiang, W., Liang, G., Li, X., Li, Z., Gao, X., Feng, S., Wang, X., Liu, M., & Liu, Y. (2014, May 1). Intracarotid transplantation of autologous adipose-derived mesenchymal stem cells significantly improves neurological deficits in rats after MCAo. Journal of Materials Science Materials in Medicine, 25(5), 1357–1366.

    Article  CAS  PubMed  Google Scholar 

  55. Covas, D. T., Siufi, J. L., Silva, A. R., & Orellana, M. D. (2003, September). Isolation and culture of umbilical vein mesenchymal stem cells. Brazilian Journal of Medical and Biological Research, 36(9), 1179–1183.

    Article  CAS  PubMed  Google Scholar 

  56. Shahaduzzaman, M., Golden, J. E., Green, S., Gronda, A. E., Adrien, E., Ahmed, A., Sanberg, P. R., Bickford, P. C., Gemma, C., & Willing, A. E. (2013, December 1). A single administration of human umbilical cord blood T cells produces long-lasting effects in the aging hippocampus. Age, 35(6), 2071–2087.

    Article  CAS  PubMed  Google Scholar 

  57. Dalous, J., Larghero, J., & Baud, O. (2012, February 8). Transplantation of umbilical cord-derived mesenchymal stem cells as a novel strategy to protect the central nervous system: Technical aspects, preclinical studies, and clinical perspectives. Pediatric Research, 71(4–2), 482–490.

    Article  CAS  PubMed  Google Scholar 

  58. Malgieri, A., Kantzari, E., Patrizi, M. P., & Gambardella, S. (2010). Bone marrow and umbilical cord blood human mesenchymal stem cells: State of the art. International Journal of Clinical and Experimental Medicine, 3(4), 248.

    PubMed  PubMed Central  Google Scholar 

  59. Delorme, B., Ringe, J., Gallay, N., Le Vern, Y., Kerboeuf, D., Jorgensen, C., Rosset, P., Sensebe, L., Layrolle, P., Häupl, T., & Charbord, P. (2008, March 1). Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood, 111(5), 2631–2635.

    Article  CAS  PubMed  Google Scholar 

  60. Hodgkinson, C. P., Gomez, J. A., Mirotsou, M., & Dzau, V. J. (2010). Genetic engineering of mesenchymal stem cells and its application in human disease therapy. Human Gene Therapy, 21, 1513–1526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Koh, S. H., Kim, K. S., Choi, M. R., Jung, K. H., Park, K. S., Chai, Y. G., Roh, W., Hwang, S. J., Ko, H. J., Huh, Y. M., & Kim, H. T. (2008, September 10). Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats. Brain Research, 1229, 233–248.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, L., Li, Y., Zhang, C., Chopp, M., Gosiewska, A., & Hong, K. (2011). Delayed administration of human umbilical tissue-derived cells improved neurological functional recovery in a rodent model of focal ischemia. Stroke, 42, 1437–1444.

    Article  PubMed  Google Scholar 

  63. Meng, X., Ichim, T. E., Zhong, J., Rogers, A., Yin, Z., Jackson, J., Wang, H., Ge, W., Bogin, V., Chan, K. W., & Thébaud, B. (2007, November 15). Endometrial regenerative cells: A novel stem cell population. Journal of Translational Medicine, 5(1), 57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sousa, B. R., Parreira, R. C., Fonseca, E. A., Amaya, M. J., Tonelli, F. M., Lacerda, S., Lalwani, P., Santos, A. K., Gomes, K. N., Ulrich, H., & Kihara, A. H. (2014, January 1). Human adult stem cells from diverse origins: An overview from multiparametric immunophenotyping to clinical applications. Cytometry Part A, 85(1), 43–77.

    Article  CAS  Google Scholar 

  65. Gargett, C. E., & Masuda, H. (2010). Adult stem cells in the endometrium. Molecular Human Reproduction, 16, 818–834.

    Article  CAS  PubMed  Google Scholar 

  66. Cho, N. H., Park, Y. K., Kim, Y. T., Yang, H., & Kim, S. K. (2004, February 29). Lifetime expression of stem cell markers in the uterine endometrium. Fertility and Sterility, 81(2), 403–407.

    Article  CAS  PubMed  Google Scholar 

  67. Borlongan, C. V., Kaneko, Y., Maki, M., Yu, S. J., Ali, M., Allickson, J. G., Sanberg, C. D., Kuzmin-Nichols, N., & Sanberg, P. R. (2010, April 1). Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells and Development, 19(4), 439–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Becker, A. J., Mc, C. E., & Till, J. E. (1963). Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature, 197, 452–454.

    Article  CAS  PubMed  Google Scholar 

  69. Kirschstein, R., & Skirboll, L. R. (2001). Hematopoietic stem cells. In Nih (Ed.), Stem cells: Scientific progress and future research direction (pp. 43–58). Bethesda: National Institutes of Health—Department of Health and Human Services.

    Google Scholar 

  70. Mayle, A., Luo, M., Jeong, M., & Goodell, M. A. (2013). Flow cytometry analysis of murine hematopoietic stem cells. Cytometry Part A Journal of the International Society for Analytical Cytology, 83, 27–37.

    Article  CAS  Google Scholar 

  71. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Yilmaz, O. H., Terhorst, C., & Morrison, S. J. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121, 1109–1121.

    Article  CAS  PubMed  Google Scholar 

  72. Calvi, L. M., Adams, G. B., Weibrecht, K. W., & Weber, J. M. (2003, October 23). Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 425(6960), 841.

    Article  CAS  PubMed  Google Scholar 

  73. Taguchi, A., Soma, T., Tanaka, H., Kanda, T., Nishimura, H., Yoshikawa, H., Tsukamoto, Y., Iso, H., Fujimori, Y., Stern, D. M., & Naritomi, H. (2004, August 1). Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. The Journal of Clinical Investigation, 114(3), 330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shyu, W. C., Lin, S. Z., Chiang, M. F., Su, C. Y., & Li, H. (2006). Intracerebral peripheral blood stem cell (CD34+) implantation induces neuroplasticity by enhancing beta1 integrin-mediated angiogenesis in chronic stroke rats. The Journal of Neuroscience, 26, 3444–3453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Felfly, H., Muotri, A., Yao, H., & Haddad, G. G. (2010, October 31). Hematopoietic stem cell transplantation protects mice from lethal stroke. Experimental Neurology, 225(2), 284–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Takahashi, K., & Yamanaka, S. (2006, August 25). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  CAS  PubMed  Google Scholar 

  77. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007, November 30). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    Article  CAS  PubMed  Google Scholar 

  78. Schmidt, R., & Plath, K. (2012, October 22). The roles of the reprogramming factors Oct4, Sox2 and Klf4 in resetting the somatic cell epigenome during induced pluripotent stem cell generation. Genome Biology, 13(10), 251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Han, W., Zhao, Y., & Fu, X. (2010, April 1). Induced pluripotent stem cells: The dragon awakens. Bioscience, 60(4), 278–285.

    Article  Google Scholar 

  80. Jiang, M., Lv, L., Ji, H., Yang, X., Zhu, W., Cai, L., Gu, X., Chai, C., Huang, S., Sun, J., & Dong, Q. (2011, August 1). Induction of pluripotent stem cells transplantation therapy for ischemic stroke. Molecular and Cellular Biochemistry, 354(1–2), 67–75.

    Article  CAS  PubMed  Google Scholar 

  81. Chen, S. J., Chang, C. M., Tsai, S. K., Chang, Y. L., Chou, S. J., Huang, S. S., Tai, L. K., Chen, Y. C., Ku, H. H., Li, H. Y., & Chiou, S. H. (2010, March 1). Functional improvement of focal cerebral ischemia injury by subdural transplantation of induced pluripotent stem cells with fibrin glue. Stem Cells and Development, 19(11), 1757–1767.

    Article  CAS  PubMed  Google Scholar 

  82. Cooray, S., Howe, S. J., & Thrasher, A. J. (2012 January 1). Retrovirus and lentivirus vector design and methods of cell conditioning. Methods in Enzymology, 507, 29.

    Article  CAS  PubMed  Google Scholar 

  83. Lowry, W. E., Richter, L., Yachechko, R., Pyle, A. D., Tchieu, J., Sridharan, R., Clark, A. T., & Plath, K. (2008). Generation of human induced pluripotent stem cells from dermal fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 105, 2883–2888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yu, S. P., Wei, Z., & Wei, L. (2013, February 1). Preconditioning strategy in stem cell transplantation therapy. Translational Stroke Research, 4(1), 76–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wei, L., Fraser, J. L., Lu, Z. Y., Hu, X. Y., & Yu, S. P. (2012). Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiology of Disease, 46, 635–645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu, X. B., Wang, J. A., Ji, X. Y., Yu, S. P., & Wei, L. (2014). Preconditioning of bone marrow mesenchymal stem cells by prolyl hydroxylase inhibition enhances cell survival and angiogenesis in vitro and after transplantation into the ischemic heart of rats. Stem Cell Research & Therapy, 5(5), 111.

    Article  CAS  Google Scholar 

  87. Taban, Z. F., Khatibi, S., Halabian, R., & Roushandeh, A. M. (2016). The effects of preconditioning on survival of mesenchymal stem cells in vitro. Gene, Cell and Tissue, 3(4), e40229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, G., Mukherjee, S., Paliwal, P., Tripathi, A.K., Krishnamurthy, S., Patnaik, R. (2019). Stem Cell-Based Therapy for Ischemic Stroke. In: Patnaik, R., Tripathi, A., Dwivedi, A. (eds) Advancement in the Pathophysiology of Cerebral Stroke. Springer, Singapore. https://doi.org/10.1007/978-981-13-1453-7_9

Download citation

Publish with us

Policies and ethics