Critical Role of Mitochondrial Autophagy in Cerebral Stroke

  • Pankaj PaliwalEmail author
  • Sairam Krishnamurthy
  • Gaurav Kumar
  • Ranjana Patnaik


Mitochondria supply energy to cells by generating ATP; thus it can be considered as one of the essential organelles of the cell. For the efficient working of cells, a good quality of mitochondria is essential; thus the elimination of injured or nonfunctional mitochondria by means of mitophagy is a very important process for cell function. Mitophagy showed a neuroprotective property in cerebral ischemia by accurate labeling and entrapment of defective mitochondria into isolation membranes. Then the entrapped mitochondria were digested by lysosomes. Therefore, the regulation of mitophagy in ischemic brain injury may be used as a therapeutic strategy to protect the neuron by the efficient removal of injured mitochondria.


Mitochondria Stroke Cerebral ischemia Autophagy Mitophagy 


  1. 1.
    Paliwal, P., Dash, D., & Krishnamurthy, S. (2017). Pharmacokinetic study of piracetam in focal cerebral ischemic rats. European Journal of Drug Metabolism and Pharmacokinetics, 1–9.Google Scholar
  2. 2.
    Paliwal, P., Chauhan, G., Gautam, D., Dash, D., Patne, S. C. U., & Krishnamurthy, S. (2018). Indole-3-Carbinol improves neurobehavioral symptoms in a cerebral ischemic stroke model. Naunyn-Schmiedeberg’s Archives of Pharmacology, 391, 613–625.CrossRefGoogle Scholar
  3. 3.
    Lipton, P. (1999). Ischemic cell death in brain neurons. Physiological Reviews, 79, 1431–1568.CrossRefGoogle Scholar
  4. 4.
    Carloni, S., Girelli, S., Scopa, C., Buonocore, G., Longini, M., & Balduini, W. (2010). Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy, 6, 366–377.CrossRefGoogle Scholar
  5. 5.
    Deter, R. L., & De Duve, C. (1967). Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. The Journal of Cell Biology, 33, 437–449.CrossRefGoogle Scholar
  6. 6.
    Deter, R. L., Baudhuin, P., & De Duve, C. (1967). Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. The Journal of Cell Biology, 35, C11–C16.CrossRefGoogle Scholar
  7. 7.
    Yu, L., Alva, A., Su, H., Dutt, P., Freundt, E., Welsh, S., Baehrecke, E. H., & Lenardo, M. J. (2004). Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science, 304(5676), 1500–1502.CrossRefGoogle Scholar
  8. 8.
    Liu, L., Sakakibar, a. K., Chen, Q., & Okamoto, K. (2014). Receptor-mediated mitophagy in yeast and mammalian systems. Cell Research, 24, 787–795.CrossRefGoogle Scholar
  9. 9.
    Santos, R. X., SC, C. a., Wang, X., Perry, G., Smith, M. A., Moreira, P. I., et al. (2010). A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer’s disease. Journal of Alzheimer’s Disease, 20(2), 401–412.CrossRefGoogle Scholar
  10. 10.
    Vives-Bauza, C., & Przedborski, S. (2011). Mitophagy: The latest problem for Parkinson’s disease. Trends in Molecular Medicine, 17(3), 158–165.CrossRefGoogle Scholar
  11. 11.
    Zhang, X., Yan, H., Yuan, Y., Gao, J., Shen, Z., Cheng, Y., Shen, Y., Wang, R. R., Wang, X., Hu, W. W., & Wang, G. (2013). Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy, 9(9), 1321–1333.CrossRefGoogle Scholar
  12. 12.
    Zuo, W., Zhang, S., Xia, C. Y., Guo, X. F., He, W. B., & Chen, N. H. (2014). Mitochondria autophagy is induced after hypoxic/ischemic stress in a Drp1 dependent manner: The role of inhibition of Drp1 in ischemic brain damage. Neuropharmacology, 86, 103–115.CrossRefGoogle Scholar
  13. 13.
    Huang, C., Andres, A. M., Ratliff, E. P., Hernandez, G., Lee, P., & Gottlieb, R. A. (2011). Preconditioning involves selective mitophagy mediated by Parkin and p62/SQSTM1. PLoS One, 6(6), e20975.CrossRefGoogle Scholar
  14. 14.
    Li, Q., Zhang, T., Wang, J., Zhang, Z., Zhai, Y., Yang, G. Y., & Sun, X. (2014). Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke. Biochemical and Biophysical Research Communications, 444, 182–188.CrossRefGoogle Scholar
  15. 15.
    Youle, R. J., & Narendra, D. P. (2011). Mechanisms of mitophagy. Nature Reviews Molecular Cell Biology, 12(1), 9.CrossRefGoogle Scholar
  16. 16.
    Kroemer, G., Dallaporta, B., & Resche-Rigon, M. (1998). The mitochondrial death/life regulator in apoptosis and necrosis. Annual Review of Physiology, 60(1), 619–642.CrossRefGoogle Scholar
  17. 17.
    Chen, H., & Chan, D. C. (2010). Physiological functions of mitochondrial fusion. Annals of the New York Academy of Sciences, 1201, 21–25.CrossRefGoogle Scholar
  18. 18.
    Chen, H., Chomyn, A., & Chan, D. C. (2005). Disruption of fusion results in mitochondrial heterogeneity and dysfunction. The Journal of Biological Chemistry, 280, 26185–26192.CrossRefGoogle Scholar
  19. 19.
    Detmer, S. A., & Chan, D. C. (2007). Functions and dysfunctions of mitochondrial dynamics. Nature Reviews Molecular Cell Biology, 8, 870–879.CrossRefGoogle Scholar
  20. 20.
    Cipolat, S., Rudka, T., Hartmann, D., Costa, V., Serneels, L., Craessaerts, K., Metzger, K., Frezza, C., Annaert, W., D'Adamio, L., & Derks, C. (2006). Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell, 126(1), 163–175.CrossRefGoogle Scholar
  21. 21.
    Züchner, S., Mersiyanova, I. V., Muglia, M., Bissar-Tadmouri, N., Rochelle, J., Dadali, E. L., Zappia, M., Nelis, E., Patitucci, A., Senderek, J., & Parman, Y. (2004). Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nature Genetics, 36(5), 449.CrossRefGoogle Scholar
  22. 22.
    Alexander, C., Votruba, M., Pesch, U. E., Thiselton, D. L., Mayer, S., Moore, A., Rodriguez, M., Kellner, U., Leo-Kottler, B., Auburger, G., & Bhattacharya, S. S. (2000). OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nature Genetics, 26(2), 211.CrossRefGoogle Scholar
  23. 23.
    Chang, C. R., Manlandro, C. M., Arnoult, D., Stadler, J., Posey, A. E., Hill, R. B., & Blackstone, C. (2010). A lethal de novo mutation in the middle domain of the dynamin-related GTPase Drp1 impairs higher order assembly and mitochondrial division. Journal of Biological Chemistry, 285(42), 32494–32503.CrossRefGoogle Scholar
  24. 24.
    James, D. I., Parone, P. A., Mattenberger, Y., & Martinou, J. C. (2003). hFis1, a novel component of the mammalian mitochondrial fission machinery. The Journal of Biological Chemistry, 278, 36373–36379.CrossRefGoogle Scholar
  25. 25.
    Smirnova, E., Shurland, D. L., Ryazantsev, S. N., & van der Bliek, A. M. (1998). A human dynamin-related protein controls the distribution of mitochondria. The Journal of Cell Biology, 143, 351–358.CrossRefGoogle Scholar
  26. 26.
    Ishihara, N., Nomura, M., & Jofuku, A. (2009). Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nature Cell Biology, 11, 958–966.CrossRefGoogle Scholar
  27. 27.
    Hoppins, S., Lackner, L., & Nunnari, J. (2007). The machines that divide and fuse mitochondria. Annual Review of Biochemistry, 76, 751–780.CrossRefGoogle Scholar
  28. 28.
    Takagi, H., Matsui, Y., Hirotani, S., Sakoda, H., Asano, T., & Sadoshima, J. (2007). AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy, 3, 405–407.CrossRefGoogle Scholar
  29. 29.
    Mengesdorf, T., Jensen, P. H., Mies, G., Aufenberg, C., & Paschen, W. (2002). Down-regulation of parkin protein in transient focal cerebral ischemia: A link between stroke and degenerative disease? Proceedings of the National Academy of Sciences of the United States of America, 99, 15042–15047.CrossRefGoogle Scholar
  30. 30.
    Tang, Y. C., Tian, H. X., Yi, T., & Chen, H. B. (2016). The critical roles of mitophagy in cerebral ischemia. Protein & Cell, 7(10), 699–713.CrossRefGoogle Scholar
  31. 31.
    Wang, P., Guan, Y. F., Du, H., Zhai, Q. W., Su, D. F., & Miao, C. Y. (2012). Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy, 8(1), 77–87.CrossRefGoogle Scholar
  32. 32.
    Yamamori, T., Ike, S., Bo, T., Sasagawa, T., Sakai, Y., Suzuki, M., Yamamoto, K., Nagane, M., Yasui, H., & Inanami, O. (2015). Inhibition of the mitochondrial fission protein dynamin-related protein 1 (Drp1) impairs mitochondrial fission and mitotic catastrophe after x-irradiation. Molecular Biology of the Cell, 26(25), 4607–4617.CrossRefGoogle Scholar
  33. 33.
    Gomes, L. C., Di Benedetto, G., & Scorrano, L. (2011). During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nature Cell Biology, 13, 589–598.CrossRefGoogle Scholar
  34. 34.
    Kumari, S., Anderson, L., Farmer, S., Mehta, S. L., & Li, P. A. (2012). Hyperglycemia alters mitochondrial fission and fusion proteins in mice subjected to cerebral ischemia and reperfusion. Translational Stroke Research, 3, 296–304.CrossRefGoogle Scholar
  35. 35.
    Zuo, W., Yang, P. F., Chen, J., Zhang, Z., & Chen, N. H. (2016). Drp-1, a potential therapeutic target for brain ischaemic stroke. British Journal of Pharmacology, 173(10), 1665–1677.CrossRefGoogle Scholar
  36. 36.
    Gurung, P., Lukens, J. R., & Kanneganti, T. D. (2015). Mitochondria: Diversity in the regulation of the NLRP3 inflammasome. Trends in Molecular Medicine, 21, 193–201.CrossRefGoogle Scholar
  37. 37.
    Zhong, Z., Umemura, A., Sanchez-Lopez, E., Liang, S., Shalapour, S., Wong, J., He, F., Boassa, D., Perkins, G., Ali, S. R., & McGeough, M. D. (2016). NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell, 164(5), 896–910.CrossRefGoogle Scholar
  38. 38.
    Zhao, J., Mou, Y., Bernstock, J. D., Klimanis, D., Wang, S., Spatz, M., Maric, D., Johnson, K., Klinman, D. M., Li, X., & Li, X. (2015). Synthetic oligodeoxynucleotides containing multiple telemeric TTAGGG motifs suppress inflammasome activity in macrophages subjected to oxygen and glucose deprivation and reduce ischemic brain injury in stroke-prone spontaneously hypertensive rats. PLoS One, 10(10), e0140772.CrossRefGoogle Scholar
  39. 39.
    Malagelada, C., Jin, Z. H., Jackson-Lewis, V., Przedborski, S., & Greene, L. A. (2010). Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson’s disease. The Journal of Neuroscience, 30, 1166–1175.CrossRefGoogle Scholar
  40. 40.
    Miclescu, A., Sharma, H. S., Martijn, C., & Wiklund, L. (2010). Methylene blue protects the cortical blood–brain barrier against ischemia/reperfusion-induced disruptions. Critical Care Medicine, 38, 2199–2206.CrossRefGoogle Scholar
  41. 41.
    Di, Y., He, Y. L., Zhao, T., Huang, X., Wu, K. W., Liu, S. H., Zhao, Y. Q., Fan, M., Wu, L. Y., & Zhu, L. L. (2015). Methylene blue reduces acute cerebral ischemic injury via the induction of mitophagy. Molecular Medicine, 21, 420–429.CrossRefGoogle Scholar
  42. 42.
    Jin, R., Yang, G., & Li, G. (2010). Inflammatory mechanisms in ischemic stroke: Role of inflammatory cells. Journal of Leukocyte Biology, 87, 779–789.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pankaj Paliwal
    • 1
    Email author
  • Sairam Krishnamurthy
    • 1
  • Gaurav Kumar
    • 2
  • Ranjana Patnaik
    • 2
  1. 1.Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
  2. 2.School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University)VaranasiIndia

Personalised recommendations