Skip to main content

Emerging Role of microRNAs in Cerebral Stroke Pathophysiology

  • Chapter
  • First Online:
Advancement in the Pathophysiology of Cerebral Stroke

Abstract

Cerebral stroke is a major cause of death and physical disability throughout the world, yet therapeutic options remain limited. The outcomes of stroke injury are critical, causing an extensive burden to both the individual patient and society. Current interventions for stroke injury have been demonstrated to be inadequate, mostly attributable to a lack of understanding of the cellular and molecular changes that occur following an ischemic cerebral stroke. MicroRNAs (miRNAs) are small, endogenous, noncoding RNA molecules that have capacity as post-transcriptional negative regulators of a target mRNA by base-pairing with the 3′- untranslated region (3′-UTR). Novel methodologies are being produced to get miRNA-related therapeutics into the brain over an intact BBB, including chemical modification, use of targeting molecules and methods of disrupting the BBB. However, circulating miRNAs are novel, stable, and potential biomarkers for the early diagnosis of acute stroke in humans. These miRNA profiles also indicate the severity of stroke results related to age and sex in rodents. In this chapter, we focus on the pathophysiological role of miRNAs as novel diagnostic and prognostic biomarkers, in addition to promising therapeutic interventions in cerebral stroke patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BDNF:

Brain-derived neurotrophic factor

COX2:

Cyclooxygenase 2

e-NOS:

Endothelial-NOS

FAP-1:

Fas-associated protein-tyrosine phosphatase 1

FasL:

Fas ligand

FGF2:

Fibroblast growth factor 2

GAX:

Growth arrest-specific homeobox

GLT-1:

Glutamate transporter-1

GluR2:

Glutamate receptor 2

HOXA5:

Homeobox A5

HSPA12B:

Heat shock protein A12B

iASPP:

Inhibitory member of the apoptosis-stimulating proteins of p53 family

IGF-1:

Insulin-like growth factor 1

IL:

Interleukin

KIT:

Kit ligand

MDA:

Malondialdehyde

MMP-9:

Metalloproteinases 9

MnSOD:

Manganese SOD

MyD88:

Myeloid differentiation primary response gene 88

NCX1:

Sodium–calcium exchanger-1

NMDA:

N-Methyl-D-aspartate

NPC:

Neuronal progenitor cell

Nrf2:

Nuclear factor erythroid-2 related factor 2

PUMA:

p53 upregulated modulator of apoptosis

ROS:

Reactive oxygen species

SOCS1:

Suppressor of cytokine signaling 1

SOD:

Superoxide dismutase

Sox9:

Sry-box 9

TGF-β:

Transforming growth factor-β

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

VEGF:

Vascular endothelial growth factor

References

  1. Mukherjee, D., & Patil, C. G. (2011). Epidemiology and the global burden of stroke. World Neurosurgery, 76(6), S85–S90.

    Article  Google Scholar 

  2. Beal, C. C. (2010). Gender and stroke symptoms: A review of the current literature. Journal of Neuroscience Nursing, 42(2), 80–87.

    Article  Google Scholar 

  3. Liu, X., Li, F., Zhao, S., Luo, Y., Kang, J., Zhao, H., Yan, F., Li, S., & Ji, X. (2013). MicroRNA-124–mediated regulation of inhibitory member of apoptosis-stimulating protein of p53 family in experimental stroke. Stroke, 44(7), 1973–1980.

    Article  CAS  Google Scholar 

  4. Liu, F. J., Lim, K. Y., Kaur, P., Sepramaniam, S., Armugam, A., Wong, P. T. H., & Jeyaseelan, K. (2013). microRNAs involved in regulating spontaneous recovery in embolic stroke model. PLoS One, 8(6), e66393.

    Article  CAS  Google Scholar 

  5. Ouyang, Y. B., Xu, L., Lu, Y., Sun, X., Yue, S., Xiong, X. X., & Giffard, R. G. (2013). Astrocyte-enriched miR-29a targets PUMA and reduces neuronal vulnerability to forebrain ischemia. Glia, 61(11), 1784–1794.

    Article  Google Scholar 

  6. Yang, Z. B., Zhang, Z., Li, T. B., Lou, Z., Li, S. Y., Yang, H., Yang, J., Luo, X. J., & Peng, J. (2014). Up-regulation of brain-enriched miR-107 promotes excitatory neurotoxicity through down-regulation of glutamate transporter-1 expression following ischaemic stroke. Clinical Science, 127(12), 679–689.

    Article  CAS  Google Scholar 

  7. Harraz, M. M., Eacker, S. M., Wang, X., Dawson, T. M., & Dawson, V. L. (2012). MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proceedings of the National Academy of Sciences, 109(46), 18962–18967.

    Article  CAS  Google Scholar 

  8. Zhang, L., Li, Y. J., Wu, X. Y., Hong, Z., & Wei, W. S. (2015). MicroRNA-181c negatively regulates the inflammatory response in oxygen-glucose-deprived microglia by targeting Toll-like receptor 4. Journal of Neurochemistry, 132(6), 713–723.

    Article  CAS  Google Scholar 

  9. Ni, J., Wang, X., Chen, S., Liu, H., Wang, Y., Xu, X., Cheng, J., Jia, J., & Zhen, X. (2015). MicroRNA let-7c-5p protects against cerebral ischemia injury via mechanisms involving the inhibition of microglia activation. Brain, Behavior, and Immunity, 49, 75–85.

    Article  CAS  Google Scholar 

  10. Vinciguerra, A., Formisano, L., Cerullo, P., Guida, N., Cuomo, O., Esposito, A., Di Renzo, G., Annunziato, L., & Pignataro, G. (2014). MicroRNA-103-1 selectively downregulates brain NCX1 and its inhibition by anti-miRNA ameliorates stroke damage and neurological deficits. Molecular Therapy, 22(10), 1829–1838.

    Article  CAS  Google Scholar 

  11. Chi, W., Meng, F., Li, Y., Li, P., Wang, G., Cheng, H., Han, S., & Li, J. (2014). Impact of microRNA-134 on neural cell survival against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke by targeting HSPA12B. Brain Research, 1592, 22–33.

    Article  CAS  Google Scholar 

  12. Wang, P., Liang, X., Lu, Y., Zhao, X., & Liang, J. (2016). MicroRNA-93 downregulation ameliorates cerebral ischemic injury through the Nrf2/HO-1 defense pathway. Neurochemical Research, 41(10), 2627–2635.

    Article  CAS  Google Scholar 

  13. Zhai, F., Zhang, X., Guan, Y., Yang, X., Li, Y., Song, G., & Guan, L. (2012). Expression profiles of microRNAs after focal cerebral ischemia/reperfusion injury in rats. Neural Regeneration Research, 7(12), 917.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dharap, A., Bowen, K., Place, R., Li, L. C., & Vemuganti, R. (2009). Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. Journal of Cerebral Blood Flow & Metabolism, 29(4), 675–687.

    Article  CAS  Google Scholar 

  15. Schickel, R., Park, S. M., Murmann, A. E., & Peter, M. E. (2010). miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1. Molecular Cell, 38(6), 908–915.

    Article  CAS  Google Scholar 

  16. Wen, Y., Zhang, X., Dong, L., Zhao, J., Zhang, C., & Zhu, C. (2015). Acetylbritannilactone modulates microRNA-155-mediated inflammatory response in ischemic cerebral tissues. Molecular Medicine, 21(1), 197.

    Article  CAS  Google Scholar 

  17. Buller, B., Liu, X., Wang, X., Zhang, R. L., Zhang, L., Hozeska-Solgot, A., Chopp, M., & Zhang, Z. G. (2010). MicroRNA-21 protects neurons from ischemic death. The FEBS Journal, 277(20), 4299–4307.

    Article  CAS  Google Scholar 

  18. Tao, Z., Zhao, H., Wang, R., Liu, P., Yan, F., Zhang, C., Ji, X., & Luo, Y. (2015). Neuroprotective effect of microRNA-99a against focal cerebral ischemia-reperfusion injury in mice. Journal of the Neurological Sciences, 355(1), 113–119.

    Article  CAS  Google Scholar 

  19. Iyer, A., Zurolo, E., Prabowo, A., Fluiter, K., Spliet, W. G., van Rijen, P. C., Gorter, J. A., & Aronica, E. (2012). MicroRNA-146a: A key regulator of astrocyte-mediated inflammatory response. PLoS One, 7(9), e44789.

    Article  CAS  Google Scholar 

  20. Yin, K. J., Deng, Z., Huang, H., Hamblin, M., Xie, C., Zhang, J., & Chen, Y. E. (2010). miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiology of Disease, 38(1), 17–26.

    Article  CAS  Google Scholar 

  21. Suárez, Y., Fernández-Hernando, C., Pober, J. S., & Sessa, W. C. (2007). Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circulation Research, 100(8), 1164–1173.

    Article  Google Scholar 

  22. Zhao, H., Wang, J., Gao, L., Wang, R., Liu, X., Gao, Z., Tao, Z., Xu, C., Song, J., Ji, X., & Luo, Y. (2013). MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation. Stroke, 44(6), 1706–1713.

    Article  CAS  Google Scholar 

  23. Banerjee, S., Xie, N., Cui, H., Tan, Z., Yang, S., Icyuz, M., Abraham, E., & Liu, G. (2013). MicroRNA let-7c regulates macrophage polarization. The Journal of Immunology, 190(12), 6542–6549.

    Article  CAS  Google Scholar 

  24. Hua, Z., Lv, Q., Ye, W., Wong, C. K. A., Cai, G., Gu, D., Ji, Y., Zhao, C., Wang, J., Yang, B. B., & Zhang, Y. (2006). MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One, 1(1), e116.

    Article  Google Scholar 

  25. Xie, W., Li, M., Xu, N., Lv, Q., Huang, N., He, J., & Zhang, Y. (2013). MiR-181a regulates inflammation responses in monocytes and macrophages. PLoS One, 8(3), e58639.

    Article  CAS  Google Scholar 

  26. Yan, W., Zhang, W., Sun, L., Liu, Y., You, G., Wang, Y., Kang, C., You, Y., & Jiang, T. (2011). Identification of MMP-9 specific microRNA expression profile as potential targets of anti-invasion therapy in glioblastoma multiforme. Brain Research, 1411, 108–115.

    Article  CAS  Google Scholar 

  27. Zhang, J. F., Shi, L. L., Zhang, L., Zhao, Z. H., Liang, F., Xu, X., Zhao, L. Y., Yang, P. B., Zhang, J. S., & Tian, Y. F. (2016). MicroRNA-25 negatively regulates cerebral ischemia/reperfusion injury-induced cell apoptosis through Fas/FasL pathway. Journal of Molecular Neuroscience, 58(4), 507–516.

    Article  CAS  Google Scholar 

  28. Wei, N., Xiao, L., Xue, R., Zhang, D., Zhou, J., Ren, H., Guo, S., & Xu, J. (2016). MicroRNA-9 mediates the cell apoptosis by targeting Bcl2l11 in ischemic stroke. Molecular Neurobiology, 53(10), 6809–6817.

    Article  CAS  Google Scholar 

  29. Huang, W., Liu, X., Cao, J., Meng, F., Li, M., Chen, B., & Zhang, J. (2015). miR-134 regulates ischemia/reperfusion injury-induced neuronal cell death by regulating CREB signaling. Journal of Molecular Neuroscience, 55(4), 821–829.

    Article  CAS  Google Scholar 

  30. Liu, P., Zhao, H., Wang, R., Wang, P., Tao, Z., Gao, L., Yan, F., Liu, X., Yu, S., Ji, X., & Luo, Y. (2014). MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress. Stroke, 9, e91661.

    Google Scholar 

  31. Moon, J. M., Xu, L., & Giffard, R. G. (2013). Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss. Journal of Cerebral Blood Flow & Metabolism, 33(12), 1976–1982.

    Article  CAS  Google Scholar 

  32. Selvamani, A., Sathyan, P., Miranda, R. C., & Sohrabji, F. (2012). An antagomir to microRNA Let7f promotes neuroprotection in an ischemic stroke model. PLoS One, 7(2), e32662.

    Article  CAS  Google Scholar 

  33. Cheng, L. C., Pastrana, E., Tavazoie, M., & Doetsch, F. (2009). miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nature Neuroscience, 12(4), 399–408.

    Article  CAS  Google Scholar 

  34. Xu, L. J., Ouyang, Y. B., Xiong, X., Stary, C. M., & Giffard, R. G. (2015). Post-stroke treatment with miR-181 antagomir reduces injury and improves long-term behavioral recovery in mice after focal cerebral ischemia. Experimental Neurology, 264, 1–7.

    Article  CAS  Google Scholar 

  35. Edbauer, D., Neilson, J. R., Foster, K. A., Wang, C. F., Seeburg, D. P., Batterton, M. N., Tada, T., Dolan, B. M., Sharp, P. A., & Sheng, M. (2010). Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron, 65(3), 373–384.

    Google Scholar 

  36. Mellios, N., Huang, H. S., Grigorenko, A., Rogaev, E., & Akbarian, S. (2008). A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Human Molecular Genetics, 17(19), 3030–3042.

    Article  CAS  Google Scholar 

  37. Yin, K. J., Olsen, K., Hamblin, M., Zhang, J., Schwendeman, S. P., & Chen, Y. E. (2012). Vascular endothelial cell-specific microRNA-15a inhibits angiogenesis in hindlimb ischemia. Journal of Biological Chemistry, 287(32), 27055–27064.

    Article  CAS  Google Scholar 

  38. Chen, Y., & Gorski, D. H. (2008). Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood, 111(3), 1217–1226.

    Article  CAS  Google Scholar 

  39. Sepramaniam, S., Armugam, A., Lim, K. Y., Karolina, D. S., Swaminathan, P., Tan, J. R., & Jeyaseelan, K. (2010). MicroRNA 320a functions as a novel endogenous modulator of aquaporins 1 and 4 as well as a potential therapeutic target in cerebral ischemia. Journal of Biological Chemistry, 285(38), 29223–29230.

    Article  CAS  Google Scholar 

  40. Jickling, G. C., & Sharp, F. R. (2015). Biomarker panels in ischemic stroke. Stroke, 46(3), 915–920.

    Article  Google Scholar 

  41. Sepramaniam, S., Tan, J. R., Tan, K. S., DeSilva, D. A., Tavintharan, S., Woon, F. P., Wang, C. W., Yong, F. L., Karolina, D. S., Kaur, P., & Liu, F. J. (2014). Circulating microRNAs as biomarkers of acute stroke. International Journal of Molecular Sciences, 15(1), 1418–1432.

    Article  Google Scholar 

  42. Onwuekwe, I. O., & Ezeala-Adikaibe, B. (2012). Ischemic stroke and neuroprotection. Annals of Medical and Health Sciences Research, 2(2), 186–190.

    Article  Google Scholar 

  43. Guyot, L. L., Diaz, F. G., O’Regan, M. H., McLeod, S., Park, H., & Phillis, J. W. (2001). Real-time measurement of glutamate release from the ischemic penumbra of the rat cerebral cortex using a focal middle cerebral artery occlusion model. Neuroscience Letters, 299(1), 37–40.

    Article  CAS  Google Scholar 

  44. Ohta, K., Graf, R., Rosner, G., & Heiss, W. D. (2001). Calcium ion transients in peri-infarct depolarizations may deteriorate ion homeostasis and expand infarction in focal cerebral ischemia in cats. Stroke, 32(2), 535–543.

    Article  CAS  Google Scholar 

  45. Annunziato, L., Pignataro, G., & Di Renzo, G. F. (2004). Pharmacology of brain Na+/Ca2+ exchanger: From molecular biology to therapeutic perspectives. Pharmacological Reviews, 56(4), 633–654.

    Article  CAS  Google Scholar 

  46. Boscia, F., Gala, R., Pignataro, G., De Bartolomeis, A., Cicale, M., Ambesi-Impiombato, A., Di Renzo, G., & Annunziato, L. (2006). Permanent focal brain ischemia induces isoform-dependent changes in the pattern of Na+/Ca2+ exchanger gene expression in the ischemic core, periinfarct area, and intact brain regions. Journal of Cerebral Blood Flow & Metabolism, 26(4), 502–517.

    Article  CAS  Google Scholar 

  47. Tortiglione, A., Pignataro, G., Minale, M., Secondo, A., Scorziello, A., Di Renzo, G. F., Amoroso, S., Caliendo, G., Santagada, V., & Annunziato, L. (2002). Na+/Ca2+ exchanger in Na+ efflux-Ca2+ influx mode of operation exerts a neuroprotective role in cellular models of in vitro anoxia and in vivo cerebral ischemia. Annals of the New York Academy of Sciences, 976(1), 408–412.

    Article  CAS  Google Scholar 

  48. Jickling, G. C., & Sharp, F. R. (2011). Blood biomarkers of ischemic stroke. Neurotherapeutics, 8(3), 349.

    Article  CAS  Google Scholar 

  49. Zhan, X., Jickling, G. C., Tian, Y., Stamova, B., Xu, H., Ander, B. P., Turner, R. J., Mesias, M., Verro, P., Bushnell, C., & Johnston, S. C. (2011). Transient ischemic attacks characterized by RNA profiles in blood. Neurology, 77(19), 1718–1724.

    Article  CAS  Google Scholar 

  50. Hacke, W., Kaste, M., Fieschi, C., von Kummer, R., Davalos, A., Meier, D., Larrue, V., Bluhmki, E., Davis, S., Donnan, G., & Schneider, D. (1998). Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). The Lancet, 352(9136), 1245–1251.

    Google Scholar 

  51. Albers, G. W., Bates, V. E., Clark, W. M., Bell, R., Verro, P., & Hamilton, S. A. (2000). Intravenous tissue-type plasminogen activator for treatment of acute stroke: The Standard Treatment with Alteplase to Reverse Stroke (STARS) study. JAMA, 283(9), 1145–1150.

    Article  CAS  Google Scholar 

  52. Wahlgren, N., Ahmed, N., Dávalos, A., Ford, G. A., Grond, M., Hacke, W., Hennerici, M. G., Kaste, M., Kuelkens, S., Larrue, V., & Lees, K. R. (2007). Thrombolysis with alteplase for acute ischaemic stroke in the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST): An observational study. The Lancet, 369(9558), 275–282.

    Google Scholar 

  53. Kuebler, P., & Genentech, Inc., 2007. Method of treating stroke with thrombolytic agent. U.S. Patent Application 11/832,291.

    Google Scholar 

  54. Son, S., Jang, J., Youn, H., Lee, S., Lee, D., Lee, Y. S., Jeong, J. M., Kim, W. J., & Lee, D. S. (2011). A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA. Biomaterials, 32(21), 4968–4975.

    Article  Google Scholar 

  55. Pardridge, W. M. (2004). Intravenous, non-viral RNAi gene therapy of brain cancer. Expert Opinion on Biological Therapy, 4(7), 1103–1113.

    Article  CAS  Google Scholar 

  56. Pardridge, W. M. (2007). shRNA and siRNA delivery to the brain. Advanced Drug Delivery Reviews, 59(2), 141–152.

    Article  CAS  Google Scholar 

  57. Ruberti, F., Barbato, C., & Cogoni, C. (2012). Targeting microRNAs in neurons: Tools and perspectives. Experimental Neurology, 235(2), 419–426.

    Article  CAS  Google Scholar 

  58. Liu, X. S., Chopp, M., Zhang, R. L., Tao, T., Wang, X. L., Kassis, H., Hozeska-Solgot, A., Zhang, L., Chen, C., & Zhang, Z. G. (2011). MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway. PLoS One, 6(8), e23461.

    Article  CAS  Google Scholar 

  59. Bouchie, A. (2013). First microRNA mimic enters clinic. Nature Biotechnology, 31, 577.

    Article  CAS  Google Scholar 

  60. Leclercq, M., Diallo, A. B., & Blanchette, M. (2017). Prediction of human miRNA target genes using computationally reconstructed ancestral mammalian sequences. Nucleic Acids Research, 45(2), 556–566.

    Article  CAS  Google Scholar 

  61. Ouyang, Y. B., Lu, Y., Yue, S., Xu, L. J., Xiong, X. X., White, R. E., Sun, X., & Giffard, R. G. (2012). miR-181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo. Neurobiology of Disease, 45(1), 555–563.

    Google Scholar 

  62. Zhu, F., Liu, J. L., Li, J. P., Xiao, F., Zhang, Z. X., & Zhang, L. (2014). MicroRNA-124 (miR-124) regulates Ku70 expression and is correlated with neuronal death induced by ischemia/ reperfusion. Journal of Molecular Neuroscience, 52(1), 148–155.

    Google Scholar 

  63. Ouyang, Y. B., Lu, Y., Yue, S., & Giffard, R. G. (2012). miR-181 targets multiple Bcl-2 family members and influences apoptosis and mitochondrial function in astrocytes. Mitochondrion, 12(2), 213–219.

    Google Scholar 

  64. Yin, K. J., Hamblin, M., & Eugene Chen, Y. (2015). Angiogenesis-regulating microRNAs and ischemic stroke. Current Vascular Pharmacology, 13(3), 352–365.

    Google Scholar 

  65. Bhalala, O. G., Srikanth, M., & Kessler, J. A. (2013). The emerging roles of microRNAs in CNS injuries. Nature Reviews Neurology, 9(6), 328–339.

    Google Scholar 

  66. Allen, C. L., & Bayraktutan, U. (2009). Oxidative stress and its role in the pathogenesis of ischaemic stroke. International Journal of Stroke, 4(6), 461–470.

    Article  CAS  Google Scholar 

  67. Jeck, W. R., Sorrentino, J. A., Wang, K., Slevin, M. K., Burd, C. E., Liu, J., Marzluff, W. F., & Sharpless, N. E. (2013). Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 19(2), 141–157.

    Article  CAS  Google Scholar 

  68. Lu, D., & Xu, A. D. (2016). Mini review: Circular RNAs as potential clinical biomarkers for disorders in the central nervous system. Frontiers in Genetics, 7, 53.

    Article  Google Scholar 

  69. Han, B., Zhang, Y., Zhang, Y., Bai, Y., Chen, X., Huang, R., Wu, F., Leng, S., Chao, J., Zhang, J. H., & Hu, G. (2018). Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: Implications for cerebral ischemic stroke. Autophagy, 14(7), 1164–1184.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

AKT gratefully acknowledges the financial support provided by the Department of Science and Technology-Science Engineering Research Board (DST-SERB) (PDF/2016/002996/LS), New Delhi, India, and the Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, for providing facilities and support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathi, A.K., Tiwari, S.K., Mishra, P., Jain, M. (2019). Emerging Role of microRNAs in Cerebral Stroke Pathophysiology. In: Patnaik, R., Tripathi, A., Dwivedi, A. (eds) Advancement in the Pathophysiology of Cerebral Stroke. Springer, Singapore. https://doi.org/10.1007/978-981-13-1453-7_10

Download citation

Publish with us

Policies and ethics