Advertisement

Cerebral Stroke: An Introduction

  • Amit Kumar Tripathi
Chapter

Abstract

Stroke is the fifth leading cause of death and physical disability in the USA. Its prevention, diagnosis, and interventions are for the most part up and coming fields that give us feeling of how far medical and scientific work have progressed. Intravenous thrombolysis (IT) and endovascular thrombectomy (EVT) are evidence-based treatments for adults with a blocked blood vessel (ischemic stroke). EVT intervention is better than tpA treatment because of faster recanalization and less risk of hemorrhage especially in large artery occlusions. EVT treatment options include: Catheter-directed thrombolysis (CDT), pharmacomechanical catheter-directed thrombolysis (PCDT), percutaneous aspiration thrombectomy (PAT), vena cava filter protection, venous balloon dilatation and venous stent implantation. The feasibility, safety, and outcome of all therapies need to be assessed in adults, children, and pregnant women who have had a stroke. The significance of neuroprotective investigations in murine and stroke patients should be deliberately checked. Stem cells, nanoformulations and electromagnetic fields (EMF) are helpful emerging therapeutic interventions that contribute to the treatment of stroke patients.

Keywords

Stroke Thrombectomy Oxygen-glucose deprivation Stem cell tPA 

Notes

Acknowledgements

AKT gratefully acknowledges the financial support provided by the Department of Science and Technology-Science Engineering Research Board (DST-SERB) (PDF/2016/002996/LS), New Delhi, India, and the Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, for providing facilities and support.

References

  1. 1.
    Kissela, B., Broderick, J., Woo, D., Kothari, R., Miller, R., Khoury, J., Brott, T., Pancioli, A., Jauch, E., Gebel, J., & Shukla, R. (2001, June 1). Greater Cincinnati/Northern Kentucky Stroke Study: Volume of first-ever ischemic stroke among blacks in a population-based study. Stroke, 32(6), 1285–1290.CrossRefGoogle Scholar
  2. 2.
    Rosamond, W. (2007). American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics – 2007 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation, 115, e69–e171.CrossRefGoogle Scholar
  3. 3.
    Banerjee, T. K., & Das, S. K. (2016, January). Fifty years of stroke researches in India. Annals of Indian Academy of Neurology, 19(1), 1.CrossRefGoogle Scholar
  4. 4.
    Fuchs, Y., & Steller, H. (2011). Programmed cell death in animal development and disease. Cell, 147(4), 742–758.CrossRefGoogle Scholar
  5. 5.
    Wu, Q. J., & Tymianski, M. (2018, December). Targeting NMDA receptors in stroke: New hope in neuroprotection. Molecular Brain, 11(1), 15.CrossRefGoogle Scholar
  6. 6.
    Ribo, M., Montaner, J., Molina, C. A., Arenillas, J. F., Santamarina, E., & Alvarez-Sabín, J. (2004, December). Admission fibrinolytic profile predicts clot lysis resistance in stroke patients treated with tissue plasminogen activator. Thrombosis and Haemostasis, 92(06), 1146–1151.Google Scholar
  7. 7.
    Balami, J. S., White, P. M., McMeekin, P. J., Ford, G. A., & Buchan, A. M. (2017). Complications of endovascular treatment for acute ischemic stroke: Prevention and management. International Journal of Stroke, 13(4), 348–361.CrossRefGoogle Scholar
  8. 8.
    Wahlgren, N. G., & Ahmed, N. (2004). Neuroprotection in cerebral ischaemia: Facts and fancies – the need for new approaches. Cerebrovascular Diseases, 17(Suppl 1), 153–166.CrossRefGoogle Scholar
  9. 9.
    Zhang, H., Park, J. H., Maharjan, S., Park, J. A., Choi, K. S., Park, H., Jeong, Y., Ahn, J. H., Kim, I. H., Lee, J. C., & Cho, J. H. (2017, December). Sac-1004, a vascular leakage blocker, reduces cerebral ischemia–reperfusion injury by suppressing blood–brain barrier disruption and inflammation. Journal of Neuroinflammation, 14(1), 122.CrossRefGoogle Scholar
  10. 10.
    Gumbiner, B., Lowenkopf, T., & Apatira, D. (1991, April 15). Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proceedings of the National Academy of Sciences, 88(8), 3460–3464.CrossRefGoogle Scholar
  11. 11.
    Haskins, J., Gu, L., Wittchen, E. S., Hibbard, J., & Stevenson, B. R. (1998, April 6). ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. The Journal of Cell Biology., 141(1), 199–208.CrossRefGoogle Scholar
  12. 12.
    Zhang, H. Y., Wang, Z. G., Lu, X. H., Kong, X. X., Wu, F. Z., Lin, L., Tan, X., Ye, L. B., & Xiao, J. (2015, June 1). Endoplasmic reticulum stress: Relevance and therapeutics in central nervous system diseases. Molecular Neurobiology, 51(3), 1343–1352.CrossRefGoogle Scholar
  13. 13.
    Harding, H. P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., & Ron, D. (2000, November 1). Regulated translation initiation controls stress-induced gene expression in mammalian cells. Molecular Cell, 6(5), 1099–1108.CrossRefGoogle Scholar
  14. 14.
    Welihinda, A. A., Tirasophon, W., Green, S. R., & Kaufman, R. J. (1998, April 1). Protein serine/threonine phosphatase Ptc2p negatively regulates the unfolded-protein response by dephosphorylating Ire1p kinase. Molecular and Cellular Biology, 18(4), 1967–1977.CrossRefGoogle Scholar
  15. 15.
    Calfon, M., Zeng, H., Urano, F., Till, J. H., Hubbard, S. R., Harding, H. P., Clark, S. G., & Ron, D. (2002, January). IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature, 415(6867), 92.CrossRefGoogle Scholar
  16. 16.
    Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., & Mori, K. (2001, December 28). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell, 107(7), 881–891.CrossRefGoogle Scholar
  17. 17.
    Li, G., Morris-Blanco, K. C., Lopez, M. S., Yang, T., Zhao, H., Vemuganti, R., & Luo, Y. (2018). Impact of microRNAs on ischemic stroke: From pre-to post-disease. Progress in Neurobiology, 163–164, 59–78.CrossRefGoogle Scholar
  18. 18.
    Tripathi, A. K., Dwivedi, A., Pal, M. K., Rastogi, N., Gupta, P., Ali, S., BH, M. P., Kushwaha, H. N., Ray, R. S., Singh, S. K., & Duggal, S. (2014, December). Attenuated neuroprotective effect of riboflavin under UV-B irradiation via miR-203/c-Jun signaling pathway in vivo and in vitro. Journal of Biomedical Science, 21(1), 39.CrossRefGoogle Scholar
  19. 19.
    Cichoń, N., Bijak, M., Miller, E., & Saluk, J. (2017, July 1). Extremely low frequency electromagnetic field (ELF-EMF) reduces oxidative stress and improves functional and psychological status in ischemic stroke patients. Bioelectromagnetics, 38(5), 386–396.CrossRefGoogle Scholar
  20. 20.
    Hao, L., Zou, Z., Tian, H., Zhang, Y., Zhou, H., & Liu, L. (2014). Stem cell-based therapies for ischemic stroke. BioMed Research International, 2014, 468748.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Reis, C., Wilkinson, M., Reis, H., Akyol, O., Gospodarev, V., Araujo, C., Chen, S., & Zhang, J. H. (2017). Look into stem cell therapy: Exploring the options for treatment of ischemic stroke. Stem Cells International, 2017, 3267352.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Amit Kumar Tripathi
    • 1
  1. 1.School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University)VaranasiIndia

Personalised recommendations