Advertisement

Muscle Atrophy pp 207-233 | Cite as

Hormones and Muscle Atrophy

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1088)

Abstract

The endocrine system is an essential regulator of muscle metabolism in both health and disease. Hormones such as growth hormone (GH), insulin-like growth factor-I (IGF-I) and androgens are the main regulators of muscle metabolism in both health and disease; have profound influences on muscle, acting as anabolic factors; and are important regulators of muscle mass. On the contrary, glucocorticoids have direct catabolic effects and induce muscle protein loss. Muscle wasting is a systemic response to fasting and several diseases like cancer, sepsis, renal and cardiac failure and trauma. Muscle atrophy also occurs in specific muscles with denervation, immobilization or inactivity. All of these conditions are characterized by significant changes in the endocrine environment. The aim of this review was to describe the role of endocrine system on the development of muscle atrophy. Understanding hormonal regulation of the skeletal muscle in these conditions might facilitate the development of hormone-mediated therapies for muscle atrophy.

Keywords

Hormones GH IGF-I Glucocorticoids Androgens Testosterone Thyroid hormones Insulin Leptin Ghrelin 

Notes

Acknowledgements

The authors are indebted to Christina Bickart for the English correction of the manuscript. This work was supported by grant BFU2012-38468 and fellowships from UCM to ABGSM.

Competing Financial Interests

The authors declare no competing financial interests.

References

  1. 1.
    Malavaki CJ, Sakkas GK, Mitrou GI, Kalyva A, Stefanidis I, Myburgh KH, Karatzaferi C (2015) Skeletal muscle atrophy: disease-induced mechanisms may mask disuse atrophy. J Muscle Res Cell Motil 36(6):405–421.  https://doi.org/10.1007/s10974-015-9439-8 CrossRefPubMedGoogle Scholar
  2. 2.
    Campbell EL, Seynnes OR, Bottinelli R, McPhee JS, Atherton PJ, Jones DA, Butler-Browne G, Narici MV (2013) Skeletal muscle adaptations to physical inactivity and subsequent retraining in young men. Biogerontology 14(3):247–259.  https://doi.org/10.1007/s10522-013-9427-6 CrossRefPubMedGoogle Scholar
  3. 3.
    Kim H, Barton E, Muja N, Yakar S, Pennisi P, Leroith D (2005) Intact insulin and insulin-like growth factor-I receptor signaling is required for growth hormone effects on skeletal muscle growth and function in vivo. Endocrinology 146(4):1772–1779.  https://doi.org/10.1210/en.2004-0906 CrossRefPubMedGoogle Scholar
  4. 4.
    Velloso CP (2008) Regulation of muscle mass by growth hormone and IGF-I. Br J Pharmacol 154(3):557–568.  https://doi.org/10.1038/bjp.2008.153 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chikani V, Ho KK (2014) Action of GH on skeletal muscle function: molecular and metabolic mechanisms. J Mol Endocrinol 52(1):R107–R123.  https://doi.org/10.1530/JME-13-0208 CrossRefPubMedGoogle Scholar
  6. 6.
    Widdowson WM, Gibney J (2008) The effect of growth hormone replacement on exercise capacity in patients with GH deficiency: a metaanalysis. J Clin Endocrinol Metab 93(11):4413–4417.  https://doi.org/10.1210/jc.2008-1239 CrossRefPubMedGoogle Scholar
  7. 7.
    Bentham J, Rodriguez-Arnao J, Ross RJ (1993) Acquired growth hormone resistance in patients with hypercatabolism. Horm Res 40(1–3):87–91.  https://doi.org/10.1159/000183772 CrossRefPubMedGoogle Scholar
  8. 8.
    Ross R, Miell J, Freeman E, Jones J, Matthews D, Preece M, Buchanan C (1991) Critically ill patients have high basal growth hormone levels with attenuated oscillatory activity associated with low levels of insulin-like growth factor-I. Clin Endocrinol 35(1):47–54CrossRefGoogle Scholar
  9. 9.
    Huang Q, Nai YJ, Jiang ZW, Li JS (2005) Change of the growth hormone-insulin-like growth factor-I axis in patients with gastrointestinal cancer: related to tumour type and nutritional status. Br J Nutr 93(6):853–858CrossRefGoogle Scholar
  10. 10.
    Defalque D, Brandt N, Ketelslegers JM, Thissen JP (1999) GH insensitivity induced by endotoxin injection is associated with decreased liver GH receptors. Am J Phys 276(3 Pt 1):E565–E572Google Scholar
  11. 11.
    Denson LA, Held MA, Menon RK, Frank SJ, Parlow AF, Arnold DL (2003) Interleukin-6 inhibits hepatic growth hormone signaling via upregulation of Cis and Socs-3. Am J Physiol Gastrointest Liver Physiol 284(4):G646–G654.  https://doi.org/10.1152/ajpgi.00178.2002 CrossRefPubMedGoogle Scholar
  12. 12.
    Zhao Y, Xiao X, Frank SJ, Lin HY, Xia Y (2014) Distinct mechanisms of induction of hepatic growth hormone resistance by endogenous IL-6, TNF-alpha, and IL-1beta. Am J Physiol Endocrinol Metab 307(2):E186–E198.  https://doi.org/10.1152/ajpendo.00652.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nair V, Robinson-Cohen C, Smith MR, Bellovich KA, Bhat ZY, Bobadilla M, Brosius F, de Boer IH, Essioux L, Formentini I, Gadegbeku CA, Gipson D, Hawkins J, Himmelfarb J, Kestenbaum B, Kretzler M, Magnone MC, Perumal K, Steigerwalt S, Ju W, Bansal N (2017) Growth differentiation factor-15 and risk of CKD progression. J Am Soc Nephrol 28(7):2233–2240.  https://doi.org/10.1681/ASN.2016080919 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Patel MS, Lee J, Baz M, Wells CE, Bloch S, Lewis A, Donaldson AV, Garfield BE, Hopkinson NS, Natanek A, Man WD, Wells DJ, Baker EH, Polkey MI, Kemp PR (2016) Growth differentiation factor-15 is associated with muscle mass in chronic obstructive pulmonary disease and promotes muscle wasting in vivo. J Cachexia Sarcopenia Muscle 7(4):436–448.  https://doi.org/10.1002/jcsm.12096 CrossRefPubMedGoogle Scholar
  15. 15.
    Wollert KC, Kempf T, Wallentin L (2017) Growth differentiation factor 15 as a biomarker in cardiovascular disease. Clin Chem 63(1):140–151.  https://doi.org/10.1373/clinchem.2016.255174 CrossRefPubMedGoogle Scholar
  16. 16.
    Wang T, Liu J, McDonald C, Lupino K, Zhai X, Wilkins BJ, Hakonarson H, Pei L (2017) GDF15 is a heart-derived hormone that regulates body growth. EMBO Mol Med 9(8):1150–1164.  https://doi.org/10.15252/emmm.201707604 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lopez-Calderon A, Soto L, Martin AI (1999) Chronic inflammation inhibits GH secretion and alters the serum insulin-like growth factor system in rats. Life Sci 65(20):2049–2060CrossRefGoogle Scholar
  18. 18.
    Templ E, Koeller M, Riedl M, Wagner O, Graninger W, Luger A (1996) Anterior pituitary function in patients with newly diagnosed rheumatoid arthritis. Br J Rheumatol 35(4):350–356CrossRefGoogle Scholar
  19. 19.
    Bechtold S, Ripperger P, Dalla Pozza R, Roth J, Hafner R, Michels H, Schwarz HP (2010) Dynamics of body composition and bone in patients with juvenile idiopathic arthritis treated with growth hormone. J Clin Endocrinol Metab 95(1):178–185.  https://doi.org/10.1210/jc.2009-0979 CrossRefPubMedGoogle Scholar
  20. 20.
    Lopez-Calderon A, Ibanez de Caceres I, Soto L, Priego T, Martin AI, Villanua MA (2001) The decrease in hepatic IGF-I gene expression in arthritic rats is not associated with modifications in hepatic GH receptor mRNA. Eur J Endocrinol 144(5):529–534CrossRefGoogle Scholar
  21. 21.
    Lopez-Menduina M, Martin AI, Castillero E, Villanua MA, Lopez-Calderon A (2012) Short-term growth hormone or IGF-I administration improves the IGF-IGFBP system in arthritic rats. Growth Hormon IGF Res 22(1):22–29.  https://doi.org/10.1016/j.ghir.2011.12.003 CrossRefGoogle Scholar
  22. 22.
    Junnila RK, List EO, Berryman DE, Murrey JW, Kopchick JJ (2013) The GH/IGF-1 axis in ageing and longevity. Nat Rev Endocrinol 9(6):366–376.  https://doi.org/10.1038/nrendo.2013.67 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Blackman MR, Sorkin JD, Munzer T, Bellantoni MF, Busby-Whitehead J, Stevens TE, Jayme J, O'Connor KG, Christmas C, Tobin JD, Stewart KJ, Cottrell E, St Clair C, Pabst KM, Harman SM (2002) Growth hormone and sex steroid administration in healthy aged women and men: a randomized controlled trial. JAMA 288(18):2282–2292CrossRefGoogle Scholar
  24. 24.
    Piovezan RD, Abucham J, Dos Santos RV, Mello MT, Tufik S, Poyares D (2015) The impact of sleep on age-related sarcopenia: possible connections and clinical implications. Ageing Res Rev 23(Pt B):210–220.  https://doi.org/10.1016/j.arr.2015.07.003 CrossRefPubMedGoogle Scholar
  25. 25.
    Chakravarthy MV, Davis BS, Booth FW (2000) IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle. J Appl Physiol (1985) 89(4):1365–1379.  https://doi.org/10.1152/jappl.2000.89.4.1365 CrossRefGoogle Scholar
  26. 26.
    Philippou A, Barton ER (2014) Optimizing IGF-I for skeletal muscle therapeutics. Growth Hormon IGF Res 24(5):157–163.  https://doi.org/10.1016/j.ghir.2014.06.003 CrossRefGoogle Scholar
  27. 27.
    Adams GR, SA MC (1998) Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol (1985) 84(5):1716–1722.  https://doi.org/10.1152/jappl.1998.84.5.1716 CrossRefGoogle Scholar
  28. 28.
    Hameed M, Lange KH, Andersen JL, Schjerling P, Kjaer M, Harridge SD, Goldspink G (2004) The effect of recombinant human growth hormone and resistance training on IGF-I mRNA expression in the muscles of elderly men. J Physiol 555(Pt 1):231–240.  https://doi.org/10.1113/jphysiol.2003.051722 CrossRefPubMedGoogle Scholar
  29. 29.
    Hill M, Goldspink G (2003) Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage. J Physiol 549(Pt 2):409–418.  https://doi.org/10.1113/jphysiol.2002.035832 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bikle DD, Tahimic C, Chang W, Wang Y, Philippou A, Barton ER (2015) Role of IGF-I signaling in muscle bone interactions. Bone 80:79–88.  https://doi.org/10.1016/j.bone.2015.04.036 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Coolican SA, Samuel DS, Ewton DZ, McWade FJ, Florini JR (1997) The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J Biol Chem 272(10):6653–6662CrossRefGoogle Scholar
  32. 32.
    Matheny RW Jr, Nindl BC, Adamo ML (2010) Minireview: mechano-growth factor: a putative product of IGF-I gene expression involved in tissue repair and regeneration. Endocrinology 151(3):865–875.  https://doi.org/10.1210/en.2009-1217 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jogie-Brahim S, Feldman D, Oh Y (2009) Unraveling insulin-like growth factor binding protein-3 actions in human disease. Endocr Rev 30(5):417–437.  https://doi.org/10.1210/er.2008-0028 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Cheng GS, Zhang YS, Zhang TT, He L, Wang XY (2017) Bone marrow-derived mesenchymal stem cells modified with IGFBP-3 inhibit the proliferation of pulmonary artery smooth muscle cells. Int J Mol Med 39(1):223–230.  https://doi.org/10.3892/ijmm.2016.2820 CrossRefPubMedGoogle Scholar
  35. 35.
    Cortes-Sempere M, de Miguel MP, Pernia O, Rodriguez C, de Castro Carpeno J, Nistal M, Conde E, Lopez-Rios F, Belda-Iniesta C, Perona R, Ibanez de Caceres I (2013) IGFBP-3 methylation-derived deficiency mediates the resistance to cisplatin through the activation of the IGFIR/Akt pathway in non-small cell lung cancer. Oncogene 32(10):1274–1283.  https://doi.org/10.1038/onc.2012.146 CrossRefPubMedGoogle Scholar
  36. 36.
    Granado M, Martin AI, Priego T, Villanua MA, Lopez-Calderon A (2006) Inactivation of Kupffer cells by gadolinium administration prevents lipopolysaccharide-induced decrease in liver insulin-like growth factor-I and IGF-binding protein-3 gene expression. J Endocrinol 188(3):503–511.  https://doi.org/10.1677/joe.1.06585 CrossRefPubMedGoogle Scholar
  37. 37.
    Papastathi C, Mavrommatis A, Mentzelopoulos S, Konstandelou E, Alevizaki M, Zakynthinos S (2013) Insulin-like growth factor I and its binding protein 3 in sepsis. Growth Hormon IGF Res 23(4):98–104.  https://doi.org/10.1016/j.ghir.2013.03.005 CrossRefGoogle Scholar
  38. 38.
    Priego T, Granado M, Ibanez de Caceres I, Martin AI, Villanua MA, Lopez-Calderon A (2003) Endotoxin at low doses stimulates pituitary GH whereas it decreases IGF-I and IGF-binding protein-3 in rats. J Endocrinol 179(1):107–117CrossRefGoogle Scholar
  39. 39.
    Gomez-SanMiguel AB, Villanua MA, Martin AI, Lopez-Calderon A (2016) D-TRP(8)-gammaMSH prevents the effects of endotoxin in rat skeletal muscle cells through TNFalpha/NF-KB signalling pathway. PLoS One 11(5):e0155645.  https://doi.org/10.1371/journal.pone.0155645 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lang CH, Frost RA, Jefferson LS, Kimball SR, Vary TC (2000) Endotoxin-induced decrease in muscle protein synthesis is associated with changes in eIF2B, eIF4E, and IGF-I. Am J Physiol Endocrinol Metab 278(6):E1133–E1143.  https://doi.org/10.1152/ajpendo.2000.278.6.E1133 CrossRefPubMedGoogle Scholar
  41. 41.
    Pampusch MS, Kamanga-Sollo E, White ME, Hathaway MR, Dayton WR (2003) Effect of recombinant porcine IGF-binding protein-3 on proliferation of embryonic porcine myogenic cell cultures in the presence and absence of IGF-I. J Endocrinol 176(2):227–235CrossRefGoogle Scholar
  42. 42.
    Costelli P, Muscaritoli M, Bossola M, Penna F, Reffo P, Bonetto A, Busquets S, Bonelli G, Lopez-Soriano FJ, Doglietto GB, Argiles JM, Baccino FM, Rossi Fanelli F (2006) IGF-1 is downregulated in experimental cancer cachexia. Am J Phys Regul Integr Comp Phys 291(3):R674–R683.  https://doi.org/10.1152/ajpregu.00104.2006 CrossRefGoogle Scholar
  43. 43.
    White JP, Baynes JW, Welle SL, Kostek MC, Matesic LE, Sato S, Carson JA (2011) The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the Apc(Min/+) mouse. PLoS One 6(9):e24650.  https://doi.org/10.1371/journal.pone.0024650 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bonetto A, Penna F, Aversa Z, Mercantini P, Baccino FM, Costelli P, Ziparo V, Lucia S, Rossi Fanelli F, Muscaritoli M (2013) Early changes of muscle insulin-like growth factor-1 and myostatin gene expression in gastric cancer patients. Muscle Nerve 48(3):387–392.  https://doi.org/10.1002/mus.23798 CrossRefPubMedGoogle Scholar
  45. 45.
    Martin AI, Lopez-Calderon A (2017) Arthritis-induced anorexia and muscle wasting. handbook of famine, starvation, and nutrient deprivation. Springer, Cham.  https://doi.org/10.1007/978-3-319-40007-5_79-1 CrossRefGoogle Scholar
  46. 46.
    Baker JF, Von Feldt JM, Mostoufi-Moab S, Kim W, Taratuta E, Leonard MB (2015) Insulin-like growth factor 1 and Adiponectin and associations with muscle deficits, disease characteristics, and treatments in Rheumatoid Arthritis. J Rheumatol 42(11):2038–2045.  https://doi.org/10.3899/jrheum.150280 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Castillero E, Martin AI, Lopez-Menduina M, Granado M, Villanua MA, Lopez-Calderon A (2009) IGF-I system, atrogenes and myogenic regulatory factors in arthritis induced muscle wasting. Mol Cell Endocrinol 309(1–2):8–16.  https://doi.org/10.1016/j.mce.2009.05.017 CrossRefPubMedGoogle Scholar
  48. 48.
    Lopez-Menduina M, Martin AI, Castillero E, Villanua MA, Lopez-Calderon A (2010) Systemic IGF-I administration attenuates the inhibitory effect of chronic arthritis on gastrocnemius mass and decreases atrogin-1 and IGFBP-3. Am J Phys Regul Integr Comp Phys 299(2):R541–R551.  https://doi.org/10.1152/ajpregu.00211.2010 CrossRefGoogle Scholar
  49. 49.
    Saitoh M, Ishida J, Doehner W, von Haehling S, Anker MS, Coats AJS, Anker SD, Springer J (2017) Sarcopenia, cachexia, and muscle performance in heart failure: review update 2016. Int J Cardiol 238:5–11.  https://doi.org/10.1016/j.ijcard.2017.03.155 CrossRefPubMedGoogle Scholar
  50. 50.
    Schulze PC, Gielen S, Schuler G, Hambrecht R (2002) Chronic heart failure and skeletal muscle catabolism: effects of exercise training. Int J Cardiol 85(1):141–149CrossRefGoogle Scholar
  51. 51.
    Hambrecht R, Schulze PC, Gielen S, Linke A, Mobius-Winkler S, Erbs S, Kratzsch J, Schubert A, Adams V, Schuler G (2005) Effects of exercise training on insulin-like growth factor-I expression in the skeletal muscle of non-cachectic patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil 12(4):401–406CrossRefGoogle Scholar
  52. 52.
    Lee S, Leone TC, Rogosa L, Rumsey J, Ayala J, Coen PM, Fitts RH, Vega RB, Kelly DP (2017) Skeletal muscle PGC-1beta signaling is sufficient to drive an endurance exercise phenotype and to counteract components of detraining in mice. Am J Physiol Endocrinol Metab 312(5):E394–E406.  https://doi.org/10.1152/ajpendo.00380.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Volterrani M, Rosano G, Iellamo F (2012) Testosterone and heart failure. Endocrine 42(2):272–277.  https://doi.org/10.1007/s12020-012-9725-9 CrossRefPubMedGoogle Scholar
  54. 54.
    Ye F, Mathur S, Liu M, Borst SE, Walter GA, Sweeney HL, Vandenborne K (2013) Overexpression of insulin-like growth factor-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse. Exp Physiol 98(5):1038–1052.  https://doi.org/10.1113/expphysiol.2012.070722 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14(3):395–403CrossRefGoogle Scholar
  56. 56.
    Tay L, Ding YY, Leung BP, Ismail NH, Yeo A, Yew S, Tay KS, Tan CH, Chong MS (2015) Sex-specific differences in risk factors for sarcopenia amongst community-dwelling older adults. Age (Dordr) 37(6):121.  https://doi.org/10.1007/s11357-015-9860-3 CrossRefGoogle Scholar
  57. 57.
    Gielen E, O'Neill TW, Pye SR, Adams JE, Wu FC, Laurent MR, Claessens F, Ward KA, Boonen S, Bouillon R, Vanderschueren D, Verschueren S (2015) Endocrine determinants of incident sarcopenia in middle-aged and elderly European men. J Cachexia Sarcopenia Muscle 6(3):242–252.  https://doi.org/10.1002/jcsm.12030 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Mesotten D, Wouters PJ, Peeters RP, Hardman KV, Holly JM, Baxter RC, Van den Berghe G (2004) Regulation of the somatotropic axis by intensive insulin therapy during protracted critical illness. J Clin Endocrinol Metab 89(7):3105–3113.  https://doi.org/10.1210/jc.2003-032102 CrossRefPubMedGoogle Scholar
  59. 59.
    Gagner JP, Drouin J (1985) Opposite regulation of pro-opiomelanocortin gene transcription by glucocorticoids and CRH. Mol Cell Endocrinol 40(1):25–32CrossRefGoogle Scholar
  60. 60.
    Malkoski SP, Dorin RI (1999) Composite glucocorticoid regulation at a functionally defined negative glucocorticoid response element of the human corticotropin-releasing hormone gene. Mol Endocrinol 13(10):1629–1644.  https://doi.org/10.1210/mend.13.10.0351 CrossRefPubMedGoogle Scholar
  61. 61.
    Stocco DM, Clark BJ (1996) Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev 17(3):221–244.  https://doi.org/10.1210/edrv-17-3-221 CrossRefPubMedGoogle Scholar
  62. 62.
    Vegiopoulos A, Herzig S (2007) Glucocorticoids, metabolism and metabolic diseases. Mol Cell Endocrinol 275(1–2):43–61.  https://doi.org/10.1016/j.mce.2007.05.015 CrossRefPubMedGoogle Scholar
  63. 63.
    Braun TP, Zhu X, Szumowski M, Scott GD, Grossberg AJ, Levasseur PR, Graham K, Khan S, Damaraju S, Colmers WF, Baracos VE, Marks DL (2011) Central nervous system inflammation induces muscle atrophy via activation of the hypothalamic-pituitary-adrenal axis. J Exp Med 208(12):2449–2463.  https://doi.org/10.1084/jem.20111020 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Cohen S, Nathan JA, Goldberg AL (2015) Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov 14(1):58–74.  https://doi.org/10.1038/nrd4467 CrossRefPubMedGoogle Scholar
  65. 65.
    Hasselgren PO (1999) Glucocorticoids and muscle catabolism. Curr Opin Clin Nutr Metab Care 2(3):201–205CrossRefGoogle Scholar
  66. 66.
    Knapp ML, al-Sheibani S, Riches PG, Hanham IW, Phillips RH (1991) Hormonal factors associated with weight loss in patients with advanced breast cancer. Ann Clin Biochem 28(Pt 5):480–486.  https://doi.org/10.1177/000456329102800510 CrossRefPubMedGoogle Scholar
  67. 67.
    Schakman O, Kalista S, Barbe C, Loumaye A, Thissen JP (2013) Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol 45(10):2163–2172.  https://doi.org/10.1016/j.biocel.2013.05.036 CrossRefPubMedGoogle Scholar
  68. 68.
    Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, Goldberg AL, Spiegelman BM (2006) PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci U S A 103(44):16260–16265.  https://doi.org/10.1073/pnas.0607795103 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Shikatani EA, Trifonova A, Mandel ER, Liu ST, Roudier E, Krylova A, Szigiato A, Beaudry J, Riddell MC, Haas TL (2012) Inhibition of proliferation, migration and proteolysis contribute to corticosterone-mediated inhibition of angiogenesis. PLoS One 7(10):e46625.  https://doi.org/10.1371/journal.pone.0046625 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Shimizu N, Yoshikawa N, Ito N, Maruyama T, Suzuki Y, Takeda S, Nakae J, Tagata Y, Nishitani S, Takehana K, Sano M, Fukuda K, Suematsu M, Morimoto C, Tanaka H (2011) Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab 13(2):170–182.  https://doi.org/10.1016/j.cmet.2011.01.001 CrossRefPubMedGoogle Scholar
  71. 71.
    Liu Z, Li G, Kimball SR, Jahn LA, Barrett EJ (2004) Glucocorticoids modulate amino acid-induced translation initiation in human skeletal muscle. Am J Physiol Endocrinol Metab 287(2):E275–E281.  https://doi.org/10.1152/ajpendo.00457.2003 CrossRefPubMedGoogle Scholar
  72. 72.
    Braun TP, Marks DL (2015) The regulation of muscle mass by endogenous glucocorticoids. Front Physiol 6:12.  https://doi.org/10.3389/fphys.2015.00012 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hu Z, Wang H, Lee IH, Du J, Mitch WE (2009) Endogenous glucocorticoids and impaired insulin signaling are both required to stimulate muscle wasting under pathophysiological conditions in mice. J Clin Invest 119(10):3059–3069.  https://doi.org/10.1172/JCI38770 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Nakao R, Hirasaka K, Goto J, Ishidoh K, Yamada C, Ohno A, Okumura Y, Nonaka I, Yasutomo K, Baldwin KM, Kominami E, Higashibata A, Nagano K, Tanaka K, Yasui N, Mills EM, Takeda S, Nikawa T (2009) Ubiquitin ligase Cbl-b is a negative regulator for insulin-like growth factor 1 signaling during muscle atrophy caused by unloading. Mol Cell Biol 29(17):4798–4811.  https://doi.org/10.1128/MCB.01347-08 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Gilson H, Schakman O, Combaret L, Lause P, Grobet L, Attaix D, Ketelslegers JM, Thissen JP (2007) Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy. Endocrinology 148(1):452–460.  https://doi.org/10.1210/en.2006-0539 CrossRefPubMedGoogle Scholar
  76. 76.
    Ma K, Mallidis C, Bhasin S, Mahabadi V, Artaza J, Gonzalez-Cadavid N, Arias J, Salehian B (2003) Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab 285(2):E363–E371.  https://doi.org/10.1152/ajpendo.00487.2002 CrossRefPubMedGoogle Scholar
  77. 77.
    Qin J, Du R, Yang YQ, Zhang HQ, Li Q, Liu L, Guan H, Hou J, An XR (2013) Dexamethasone-induced skeletal muscle atrophy was associated with upregulation of myostatin promoter activity. Res Vet Sci 94(1):84–89.  https://doi.org/10.1016/j.rvsc.2012.07.018 CrossRefPubMedGoogle Scholar
  78. 78.
    Kawada S, Tachi C, Ishii N (2001) Content and localization of myostatin in mouse skeletal muscles during aging, mechanical unloading and reloading. J Muscle Res Cell Motil 22(8):627–633CrossRefGoogle Scholar
  79. 79.
    Argiles JM, Orpi M, Busquets S, Lopez-Soriano FJ (2012) Myostatin: more than just a regulator of muscle mass. Drug Discov Today 17(13–14):702–709.  https://doi.org/10.1016/j.drudis.2012.02.001 CrossRefPubMedGoogle Scholar
  80. 80.
    Allen DL, Loh AS (2011) Posttranscriptional mechanisms involving microRNA-27a and b contribute to fast-specific and glucocorticoid-mediated myostatin expression in skeletal muscle. Am J Phys Cell Phys 300(1):C124–C137.  https://doi.org/10.1152/ajpcell.00142.2010 CrossRefGoogle Scholar
  81. 81.
    Yamamoto D, Maki T, Herningtyas EH, Ikeshita N, Shibahara H, Sugiyama Y, Nakanishi S, Iida K, Iguchi G, Takahashi Y, Kaji H, Chihara K, Okimura Y (2010) Branched-chain amino acids protect against dexamethasone-induced soleus muscle atrophy in rats. Muscle Nerve 41(6):819–827.  https://doi.org/10.1002/mus.21621 CrossRefPubMedGoogle Scholar
  82. 82.
    Hayashi K, Tada O, Higuchi K, Ohtsuka A (2000) Effects of corticosterone on connectin content and protein breakdown in rat skeletal muscle. Biosci Biotechnol Biochem 64(12):2686–2688CrossRefGoogle Scholar
  83. 83.
    Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6(6):458–471.  https://doi.org/10.1016/j.cmet.2007.11.001 CrossRefPubMedGoogle Scholar
  84. 84.
    Sandri M (2010) Autophagy in skeletal muscle. FEBS Lett 584(7):1411–1416.  https://doi.org/10.1016/j.febslet.2010.01.056 CrossRefPubMedGoogle Scholar
  85. 85.
    Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6(6):472–483.  https://doi.org/10.1016/j.cmet.2007.11.004 CrossRefPubMedGoogle Scholar
  86. 86.
    Wei W, Fareed MU, Evenson A, Menconi MJ, Yang H, Petkova V, Hasselgren PO (2005) Sepsis stimulates calpain activity in skeletal muscle by decreasing calpastatin activity but does not activate caspase-3. Am J Phys Regul Integr Comp Phys 288(3):R580–R590.  https://doi.org/10.1152/ajpregu.00341.2004 CrossRefGoogle Scholar
  87. 87.
    Tanaka H, Shimizu N, Yoshikawa N (2017) Role of skeletal muscle glucocorticoid receptor in systemic energy homeostasis. Exp Cell Res 360(1):24–26.  https://doi.org/10.1016/j.yexcr.2017.03.049 CrossRefPubMedGoogle Scholar
  88. 88.
    Li W, Moylan JS, Chambers MA, Smith J, Reid MB (2009) Interleukin-1 stimulates catabolism in C2C12 myotubes. Am J Phys Cell Phys 297(3):C706–C714.  https://doi.org/10.1152/ajpcell.00626.2008 CrossRefGoogle Scholar
  89. 89.
    Braun TP, Grossberg AJ, Krasnow SM, Levasseur PR, Szumowski M, Zhu XX, Maxson JE, Knoll JG, Barnes AP, Marks DL (2013) Cancer- and endotoxin-induced cachexia require intact glucocorticoid signaling in skeletal muscle. FASEB J 27(9):3572–3582.  https://doi.org/10.1096/fj.13-230375 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Furuyama T, Kitayama K, Yamashita H, Mori N (2003) Forkhead transcription factor FOXO1 (FKHR)-dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation. Biochem J 375(Pt 2):365–371.  https://doi.org/10.1042/BJ20030022 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Zhao W, Qin W, Pan J, Wu Y, Bauman WA, Cardozo C (2009) Dependence of dexamethasone-induced Akt/FOXO1 signaling, upregulation of MAFbx, and protein catabolism upon the glucocorticoid receptor. Biochem Biophys Res Commun 378(3):668–672.  https://doi.org/10.1016/j.bbrc.2008.11.123 CrossRefPubMedGoogle Scholar
  92. 92.
    Wray CJ, Mammen JM, Hershko DD, Hasselgren PO (2003) Sepsis upregulates the gene expression of multiple ubiquitin ligases in skeletal muscle. Int J Biochem Cell Biol 35(5):698–705CrossRefGoogle Scholar
  93. 93.
    Frost RA, Nystrom GJ, Jefferson LS, Lang CH (2007) Hormone, cytokine, and nutritional regulation of sepsis-induced increases in atrogin-1 and MuRF1 in skeletal muscle. Am J Physiol Endocrinol Metab 292(2):E501–E512.  https://doi.org/10.1152/ajpendo.00359.2006 CrossRefPubMedGoogle Scholar
  94. 94.
    Llovera M, Garcia-Martinez C, Costelli P, Agell N, Carbo N, Lopez-Soriano FJ, Argiles JM (1996) Muscle hypercatabolism during cancer cachexia is not reversed by the glucocorticoid receptor antagonist RU38486. Cancer Lett 99(1):7–14CrossRefGoogle Scholar
  95. 95.
    Rivadeneira DE, Naama HA, McCarter MD, Fujita J, Evoy D, Mackrell P, Daly JM (1999) Glucocorticoid blockade does not abrogate tumor-induced cachexia. Nutr Cancer 35(2):202–206.  https://doi.org/10.1207/S15327914NC352_16 CrossRefPubMedGoogle Scholar
  96. 96.
    Mitch WE, Bailey JL, Wang X, Jurkovitz C, Newby D, Price SR (1999) Evaluation of signals activating ubiquitin-proteasome proteolysis in a model of muscle wasting. Am J Phys 276(5 Pt 1):C1132–C1138CrossRefGoogle Scholar
  97. 97.
    Waters DL, Qualls CR, Dorin RI, Veldhuis JD, Baumgartner RN (2008) Altered growth hormone, cortisol, and leptin secretion in healthy elderly persons with sarcopenia and mixed body composition phenotypes. J Gerontol A Biol Sci Med Sci 63(5):536–541CrossRefGoogle Scholar
  98. 98.
    Hassan-Smith ZK, Morgan SA, Sherlock M, Hughes B, Taylor AE, Lavery GG, Tomlinson JW, Stewart PM (2015) Gender-specific differences in skeletal muscle 11beta-HSD1 expression across healthy aging. J Clin Endocrinol Metab 100(7):2673–2681.  https://doi.org/10.1210/jc.2015-1516 CrossRefPubMedGoogle Scholar
  99. 99.
    Rieu I, Sornet C, Grizard J, Dardevet D (2004) Glucocorticoid excess induces a prolonged leucine resistance on muscle protein synthesis in old rats. Exp Gerontol 39(9):1315–1321.  https://doi.org/10.1016/j.exger.2004.06.005 CrossRefPubMedGoogle Scholar
  100. 100.
    Krause MP, Riddell MC, Hawke TJ (2011) Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms. Pediatr Diabetes 12(4 Pt 1):345–364.  https://doi.org/10.1111/j.1399-5448.2010.00699.x CrossRefPubMedGoogle Scholar
  101. 101.
    Tischler ME (1994) Effect of the antiglucocorticoid RU38486 on protein metabolism in unweighted soleus muscle. Metabolism 43(11):1451–1455CrossRefGoogle Scholar
  102. 102.
    Watson ML, Baehr LM, Reichardt HM, Tuckermann JP, Bodine SC, Furlow JD (2012) A cell-autonomous role for the glucocorticoid receptor in skeletal muscle atrophy induced by systemic glucocorticoid exposure. Am J Physiol Endocrinol Metab 302(10):E1210–E1220.  https://doi.org/10.1152/ajpendo.00512.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Fitts RH, Riley DR, Widrick JJ (2000) Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J Appl Physiol (1985) 89(2):823–839.  https://doi.org/10.1152/jappl.2000.89.2.823 CrossRefGoogle Scholar
  104. 104.
    Fitts RH, Romatowski JG, Peters JR, Paddon-Jones D, Wolfe RR, Ferrando AA (2007) The deleterious effects of bed rest on human skeletal muscle fibers are exacerbated by hypercortisolemia and ameliorated by dietary supplementation. Am J Phys Cell Phys 293(1):C313–C320.  https://doi.org/10.1152/ajpcell.00573.2006 CrossRefGoogle Scholar
  105. 105.
    Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY (2016) Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst Rev 5:CD003725.  https://doi.org/10.1002/14651858.CD003725.pub4 CrossRefGoogle Scholar
  106. 106.
    Quattrocelli M, Barefield DY, Warner JL, Vo AH, Hadhazy M, Earley JU, Demonbreun AR, McNally EM (2017) Intermittent glucocorticoid steroid dosing enhances muscle repair without eliciting muscle atrophy. J Clin Invest 127(6):2418–2432.  https://doi.org/10.1172/JCI91445 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Crossland H, Constantin-Teodosiu D, Greenhaff PL, Gardiner SM (2010) Low-dose dexamethasone prevents endotoxaemia-induced muscle protein loss and impairment of carbohydrate oxidation in rat skeletal muscle. J Physiol 588(Pt 8):1333–1347.  https://doi.org/10.1113/jphysiol.2009.183699 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Carson JA, Manolagas SC (2015) Effects of sex steroids on bones and muscles: similarities, parallels, and putative interactions in health and disease. Bone 80:67–78.  https://doi.org/10.1016/j.bone.2015.04.015 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Chambon C, Duteil D, Vignaud A, Ferry A, Messaddeq N, Malivindi R, Kato S, Chambon P, Metzger D (2010) Myocytic androgen receptor controls the strength but not the mass of limb muscles. Proc Natl Acad Sci U S A 107(32):14327–14332.  https://doi.org/10.1073/pnas.1009536107 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Hughes DC, Stewart CE, Sculthorpe N, Dugdale HF, Yousefian F, Lewis MP, Sharples AP (2016) Testosterone enables growth and hypertrophy in fusion impaired myoblasts that display myotube atrophy: deciphering the role of androgen and IGF-I receptors. Biogerontology 17(3):619–639.  https://doi.org/10.1007/s10522-015-9621-9 CrossRefPubMedGoogle Scholar
  111. 111.
    Rossetti ML, Steiner JL, Gordon BS (2017) Androgen-mediated regulation of skeletal muscle protein balance. Mol Cell Endocrinol 447:35–44.  https://doi.org/10.1016/j.mce.2017.02.031 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    White JP, Gao S, Puppa MJ, Sato S, Welle SL, Carson JA (2013) Testosterone regulation of Akt/mTORC1/FoxO3a signaling in skeletal muscle. Mol Cell Endocrinol 365(2):174–186.  https://doi.org/10.1016/j.mce.2012.10.019 CrossRefPubMedGoogle Scholar
  113. 113.
    Estrada M, Espinosa A, Muller M, Jaimovich E (2003) Testosterone stimulates intracellular calcium release and mitogen-activated protein kinases via a G protein-coupled receptor in skeletal muscle cells. Endocrinology 144(8):3586–3597.  https://doi.org/10.1210/en.2002-0164 CrossRefPubMedGoogle Scholar
  114. 114.
    Mendler L, Baka Z, Kovacs-Simon A, Dux L (2007) Androgens negatively regulate myostatin expression in an androgen-dependent skeletal muscle. Biochem Biophys Res Commun 361(1):237–242.  https://doi.org/10.1016/j.bbrc.2007.07.023 CrossRefPubMedGoogle Scholar
  115. 115.
    Pronsato L, Milanesi L, Vasconsuelo A, La Colla A (2017) Testosterone modulates FoxO3a and p53-related genes to protect C2C12 skeletal muscle cells against apoptosis. Steroids 124:35–45.  https://doi.org/10.1016/j.steroids.2017.05.012 CrossRefPubMedGoogle Scholar
  116. 116.
    Sitnick M, Foley AM, Brown M, Spangenburg EE (2006) Ovariectomy prevents the recovery of atrophied gastrocnemius skeletal muscle mass. J Appl Physiol (1985) 100(1):286–293.  https://doi.org/10.1152/japplphysiol.00869.2005 CrossRefGoogle Scholar
  117. 117.
    Vasconsuelo A, Milanesi L, Boland R (2008) 17Beta-estradiol abrogates apoptosis in murine skeletal muscle cells through estrogen receptors: role of the phosphatidylinositol 3-kinase/Akt pathway. J Endocrinol 196(2):385–397.  https://doi.org/10.1677/JOE-07-0250 CrossRefPubMedGoogle Scholar
  118. 118.
    Galluzzo P, Rastelli C, Bulzomi P, Acconcia F, Pallottini V, Marino M (2009) 17beta-Estradiol regulates the first steps of skeletal muscle cell differentiation via ER-alpha-mediated signals. Am J Phys Cell Phys 297(5):C1249–C1262.  https://doi.org/10.1152/ajpcell.00188.2009 CrossRefGoogle Scholar
  119. 119.
    Ronda AC, Buitrago C, Colicheo A, de Boland AR, Roldan E, Boland R (2007) Activation of MAPKs by 1alpha,25(OH)2-Vitamin D3 and 17beta-estradiol in skeletal muscle cells leads to phosphorylation of Elk-1 and CREB transcription factors. J Steroid Biochem Mol Biol 103(3–5):462–466.  https://doi.org/10.1016/j.jsbmb.2006.11.005 CrossRefPubMedGoogle Scholar
  120. 120.
    Smith GI, Yoshino J, Reeds DN, Bradley D, Burrows RE, Heisey HD, Moseley AC, Mittendorfer B (2014) Testosterone and progesterone, but not estradiol, stimulate muscle protein synthesis in postmenopausal women. J Clin Endocrinol Metab 99(1):256–265.  https://doi.org/10.1210/jc.2013-2835 CrossRefPubMedGoogle Scholar
  121. 121.
    Grinspoon S, Corcoran C, Lee K, Burrows B, Hubbard J, Katznelson L, Walsh M, Guccione A, Cannan J, Heller H, Basgoz N, Klibanski A (1996) Loss of lean body and muscle mass correlates with androgen levels in hypogonadal men with acquired immunodeficiency syndrome and wasting. J Clin Endocrinol Metab 81(11):4051–4058.  https://doi.org/10.1210/jcem.81.11.8923860 CrossRefPubMedGoogle Scholar
  122. 122.
    Gonzalez BD, Jim HSL, Small BJ, Sutton SK, Fishman MN, Zachariah B, Heysek RV, Jacobsen PB (2016) Changes in physical functioning and muscle strength in men receiving androgen deprivation therapy for prostate cancer: a controlled comparison. Support Care Cancer 24(5):2201–2207.  https://doi.org/10.1007/s00520-015-3016-y CrossRefPubMedGoogle Scholar
  123. 123.
    Spratt DI, Kramer RS, Morton JR, Lucas FL, Becker K, Longcope C (2008) Characterization of a prospective human model for study of the reproductive hormone responses to major illness. Am J Physiol Endocrinol Metab 295(1):E63–E69.  https://doi.org/10.1152/ajpendo.00472.2007 CrossRefPubMedGoogle Scholar
  124. 124.
    Burney BO, Hayes TG, Smiechowska J, Cardwell G, Papusha V, Bhargava P, Konda B, Auchus RJ, Garcia JM (2012) Low testosterone levels and increased inflammatory markers in patients with cancer and relationship with cachexia. J Clin Endocrinol Metab 97(5):E700–E709.  https://doi.org/10.1210/jc.2011-2387 CrossRefPubMedGoogle Scholar
  125. 125.
    Wiechno PJ, Poniatowska GM, Michalski W, Kucharz J, Sadowska M, Jonska-Gmyrek J, Nietupski K, Rzymowska J, Demkow T (2017) Clinical significance of androgen secretion disorders in men with a malignancy. Med Oncol 34(7):123.  https://doi.org/10.1007/s12032-017-0982-6 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Atlantis E, Fahey P, Cochrane B, Wittert G, Smith S (2013) Endogenous testosterone level and testosterone supplementation therapy in chronic obstructive pulmonary disease (COPD): a systematic review and meta-analysis. BMJ Open 3(8):e003127.  https://doi.org/10.1136/bmjopen-2013-003127 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Ponnusamy S, Sullivan RD, You D, Zafar N, He Yang C, Thiyagarajan T, Johnson DL, Barrett ML, Koehler NJ, Star M, Stephenson EJ, Bridges D, Cormier SA, Pfeffer LM, Narayanan R (2017) Androgen receptor agonists increase lean mass, improve cardiopulmonary functions and extend survival in preclinical models of Duchenne muscular dystrophy. Hum Mol Genet 26(13):2526–2540.  https://doi.org/10.1093/hmg/ddx150 CrossRefPubMedGoogle Scholar
  128. 128.
    Brown M, Ning J, Ferreira JA, Bogener JL, Lubahn DB (2009) Estrogen receptor-alpha and -beta and aromatase knockout effects on lower limb muscle mass and contractile function in female mice. Am J Physiol Endocrinol Metab 296(4):E854–E861.  https://doi.org/10.1152/ajpendo.90696.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Enns DL, Tiidus PM (2008) Estrogen influences satellite cell activation and proliferation following downhill running in rats. J Appl Physiol (1985) 104(2):347–353.  https://doi.org/10.1152/japplphysiol.00128.2007 CrossRefGoogle Scholar
  130. 130.
    McClung JM, Davis JM, Carson JA (2007) Ovarian hormone status and skeletal muscle inflammation during recovery from disuse in rats. Exp Physiol 92(1):219–232.  https://doi.org/10.1113/expphysiol.2006.035071 CrossRefPubMedGoogle Scholar
  131. 131.
    Sipila S, Narici M, Kjaer M, Pollanen E, Atkinson RA, Hansen M, Kovanen V (2013) Sex hormones and skeletal muscle weakness. Biogerontology 14(3):231–245.  https://doi.org/10.1007/s10522-013-9425-8 CrossRefPubMedGoogle Scholar
  132. 132.
    Greising SM, Baltgalvis KA, Lowe DA, Warren GL (2009) Hormone therapy and skeletal muscle strength: a meta-analysis. J Gerontol A Biol Sci Med Sci 64(10):1071–1081.  https://doi.org/10.1093/gerona/glp082 CrossRefPubMedGoogle Scholar
  133. 133.
    Roelfsema F, Boelen A, Kalsbeek A, Fliers E (2017) Regulatory aspects of the human hypothalamus-pituitary-thyroid axis. Best Pract Res Clin Endocrinol Metab 31(5):487–503.  https://doi.org/10.1016/j.beem.2017.09.004 CrossRefPubMedGoogle Scholar
  134. 134.
    Lesmana R, Sinha RA, Singh BK, Zhou J, Ohba K, Wu Y, Yau WW, Bay BH, Yen PM (2016) Thyroid hormone stimulation of autophagy is essential for mitochondrial biogenesis and activity in skeletal muscle. Endocrinology 157(1):23–38.  https://doi.org/10.1210/en.2015-1632 CrossRefPubMedGoogle Scholar
  135. 135.
    Salvatore D, Simonides WS, Dentice M, Zavacki AM, Larsen PR (2014) Thyroid hormones and skeletal muscle–new insights and potential implications. Nat Rev Endocrinol 10(4):206–214.  https://doi.org/10.1038/nrendo.2013.238 CrossRefPubMedGoogle Scholar
  136. 136.
    O'Neal P, Alamdari N, Smith I, Poylin V, Menconi M, Hasselgren PO (2009) Experimental hyperthyroidism in rats increases the expression of the ubiquitin ligases atrogin-1 and MuRF1 and stimulates multiple proteolytic pathways in skeletal muscle. J Cell Biochem 108(4):963–973.  https://doi.org/10.1002/jcb.22329 CrossRefPubMedGoogle Scholar
  137. 137.
    Carneiro I, Castro-Piedras I, Munoz A, Labandeira-Garcia JL, Devesa J, Arce VM (2008) Hypothyroidism is associated with increased myostatin expression in rats. J Endocrinol Investig 31(9):773–778.  https://doi.org/10.1007/BF03349256 CrossRefGoogle Scholar
  138. 138.
    Boelen A, van der Spek AH, Bloise F, de Vries EM, Surovtseva OV, van Beeren M, Ackermans MT, Kwakkel J, Fliers E (2017) Tissue thyroid hormone metabolism is differentially regulated during illness in mice. J Endocrinol 233(1):25–36.  https://doi.org/10.1530/JOE-16-0483 CrossRefPubMedGoogle Scholar
  139. 139.
    Van den Berghe G (2016) On the neuroendocrinopathy of critical illness. Perspectives for feeding and novel treatments. Am J Respir Crit Care Med 194(11):1337–1348.  https://doi.org/10.1164/rccm.201607-1516CI CrossRefPubMedGoogle Scholar
  140. 140.
    Boelen A, Kwakkel J, Fliers E (2011) Beyond low plasma T3: local thyroid hormone metabolism during inflammation and infection. Endocr Rev 32(5):670–693.  https://doi.org/10.1210/er.2011-0007 CrossRefPubMedGoogle Scholar
  141. 141.
    Mebis L, Debaveye Y, Visser TJ, Van den Berghe G (2006) Changes within the thyroid axis during the course of critical illness. Endocrinol Metab Clin N Am 35(4):807–821.  https://doi.org/10.1016/j.ecl.2006.09.009 CrossRefGoogle Scholar
  142. 142.
    Mebis L, Van den Berghe G (2011) Thyroid axis function and dysfunction in critical illness. Best Pract Res Clin Endocrinol Metab 25(5):745–757.  https://doi.org/10.1016/j.beem.2011.03.002 CrossRefPubMedGoogle Scholar
  143. 143.
    Roy B, Curtis ME, Fears LS, Nahashon SN, Fentress HM (2016) Molecular mechanisms of obesity-induced osteoporosis and muscle atrophy. Front Physiol 7:439.  https://doi.org/10.3389/fphys.2016.00439 CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    McKee A, Morley JE, Matsumoto AM, Vinik A (2017) Sarcopenia: an endocrine disorder? Endocr Pract 23(9):1140–1149.  https://doi.org/10.4158/EP171795.RA CrossRefPubMedGoogle Scholar
  145. 145.
    Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395(6704):763–770.  https://doi.org/10.1038/27376 CrossRefPubMedGoogle Scholar
  146. 146.
    Woods SC, Seeley RJ (2000) Adiposity signals and the control of energy homeostasis. Nutrition 16(10):894–902CrossRefGoogle Scholar
  147. 147.
    Ahima RS, Osei SY (2004) Leptin signaling. Physiol Behav 81(2):223–241.  https://doi.org/10.1016/j.physbeh.2004.02.014 CrossRefPubMedGoogle Scholar
  148. 148.
    Muoio DM, Lynis Dohm G (2002) Peripheral metabolic actions of leptin. Best Pract Res Clin Endocrinol Metab 16(4):653–666CrossRefGoogle Scholar
  149. 149.
    Rodriguez J, Vernus B, Chelh I, Cassar-Malek I, Gabillard JC, Hadj Sassi A, Seiliez I, Picard B, Bonnieu A (2014) Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cell Mol Life Sci 71(22):4361–4371.  https://doi.org/10.1007/s00018-014-1689-x CrossRefPubMedGoogle Scholar
  150. 150.
    Arounleut P, Bowser M, Upadhyay S, Shi XM, Fulzele S, Johnson MH, Stranahan AM, Hill WD, Isales CM, Hamrick MW (2013) Absence of functional leptin receptor isoforms in the POUND (Lepr(db/lb)) mouse is associated with muscle atrophy and altered myoblast proliferation and differentiation. PLoS One 8(8):e72330.  https://doi.org/10.1371/journal.pone.0072330 CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Sainz N, Rodriguez A, Catalan V, Becerril S, Ramirez B, Gomez-Ambrosi J, Fruhbeck G (2009) Leptin administration favors muscle mass accretion by decreasing FoxO3a and increasing PGC-1alpha in ob/ob mice. PLoS One 4(9):e6808.  https://doi.org/10.1371/journal.pone.0006808 CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Bartell SM, Rayalam S, Ambati S, Gaddam DR, Hartzell DL, Hamrick M, She JX, Della-Fera MA, Baile CA (2011) Central (ICV) leptin injection increases bone formation, bone mineral density, muscle mass, serum IGF-1, and the expression of osteogenic genes in leptin-deficient ob/ob mice. J Bone Miner Res 26(8):1710–1720.  https://doi.org/10.1002/jbmr.406 CrossRefPubMedGoogle Scholar
  153. 153.
    Hamrick MW, Dukes A, Arounleut P, Davis C, Periyasamy-Thandavan S, Mork S, Herberg S, Johnson MH, Isales CM, Hill WD, Otvos L Jr, Belin de Chantemele EJ (2015) The adipokine leptin mediates muscle- and liver-derived IGF-1 in aged mice. Exp Gerontol 70:92–96.  https://doi.org/10.1016/j.exger.2015.07.014 CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Zhou Q, Du J, Hu Z, Walsh K, Wang XH (2007) Evidence for adipose-muscle cross talk: opposing regulation of muscle proteolysis by adiponectin and Fatty acids. Endocrinology 148(12):5696–5705.  https://doi.org/10.1210/en.2007-0183 CrossRefPubMedGoogle Scholar
  155. 155.
    Amitani M, Asakawa A, Amitani H, Inui A (2013) Control of food intake and muscle wasting in cachexia. Int J Biochem Cell Biol 45(10):2179–2185.  https://doi.org/10.1016/j.biocel.2013.07.016 CrossRefPubMedGoogle Scholar
  156. 156.
    Hamrick MW (2017) Role of the Cytokine-like Hormone Leptin in Muscle-bone Crosstalk with Aging. J Bone Metab 24(1):1–8.  https://doi.org/10.11005/jbm.2017.24.1.1 CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    O'Neill BT, Lauritzen HP, Hirshman MF, Smyth G, Goodyear LJ, Kahn CR (2015) Differential role of Insulin/IGF-1 receptor signaling in muscle growth and glucose homeostasis. Cell Rep 11(8):1220–1235.  https://doi.org/10.1016/j.celrep.2015.04.037 CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    D'Souza DM, Al-Sajee D, Hawke TJ (2013) Diabetic myopathy: impact of diabetes mellitus on skeletal muscle progenitor cells. Front Physiol 4:379.  https://doi.org/10.3389/fphys.2013.00379 CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Mastrocola R, Reffo P, Penna F, Tomasinelli CE, Boccuzzi G, Baccino FM, Aragno M, Costelli P (2008) Muscle wasting in diabetic and in tumor-bearing rats: role of oxidative stress. Free Radic Biol Med 44(4):584–593.  https://doi.org/10.1016/j.freeradbiomed.2007.10.047 CrossRefPubMedGoogle Scholar
  160. 160.
    Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF, Gunton JE (2013) The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev 34(1):33–83.  https://doi.org/10.1210/er.2012-1012 CrossRefPubMedGoogle Scholar
  161. 161.
    Fabbriciani G, Pirro M, Leli C, Cecchetti A, Callarelli L, Rinonapoli G, Scarponi AM, Mannarino E (2010) Diffuse muscoskeletal pain and proximal myopathy: do not forget hypovitaminosis D. J Clin Rheumatol 16(1):34–37.  https://doi.org/10.1097/RHU.0b013e3181c3b2c0 CrossRefPubMedGoogle Scholar
  162. 162.
    Glerup H, Mikkelsen K, Poulsen L, Hass E, Overbeck S, Andersen H, Charles P, Eriksen EF (2000) Hypovitaminosis D myopathy without biochemical signs of osteomalacic bone involvement. Calcif Tissue Int 66(6):419–424CrossRefGoogle Scholar
  163. 163.
    van der Heyden JJ, Verrips A, ter Laak HJ, Otten B, Fiselier T (2004) Hypovitaminosis D-related myopathy in immigrant teenagers. Neuropediatrics 35(5):290–292.  https://doi.org/10.1055/s-2004-821035 CrossRefPubMedGoogle Scholar
  164. 164.
    Zhu K, Austin N, Devine A, Bruce D, Prince RL (2010) A randomized controlled trial of the effects of vitamin D on muscle strength and mobility in older women with vitamin D insufficiency. J Am Geriatr Soc 58(11):2063–2068.  https://doi.org/10.1111/j.1532-5415.2010.03142.x CrossRefPubMedGoogle Scholar
  165. 165.
    Muir SW, Montero-Odasso M (2011) Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: a systematic review and meta-analysis. J Am Geriatr Soc 59(12):2291–2300.  https://doi.org/10.1111/j.1532-5415.2011.03733.x CrossRefPubMedGoogle Scholar
  166. 166.
    Cipriani C, Pepe J, Piemonte S, Colangelo L, Cilli M, Minisola S (2014) Vitamin D and its relationship with obesity and muscle. Int J Endocrinol 2014:841248.  https://doi.org/10.1155/2014/841248 CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Vitale G, Cesari M, Mari D (2016) Aging of the endocrine system and its potential impact on sarcopenia. Eur J Intern Med 35:10–15.  https://doi.org/10.1016/j.ejim.2016.07.017 CrossRefPubMedGoogle Scholar
  168. 168.
    Brink M, Price SR, Chrast J, Bailey JL, Anwar A, Mitch WE, Delafontaine P (2001) Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I. Endocrinology 142(4):1489–1496.  https://doi.org/10.1210/endo.142.4.8082 CrossRefPubMedGoogle Scholar
  169. 169.
    Song YH, Li Y, Du J, Mitch WE, Rosenthal N, Delafontaine P (2005) Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting. J Clin Invest 115(2):451–458.  https://doi.org/10.1172/JCI22324 CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Cabello-Verrugio C, Cordova G, Salas JD (2012) Angiotensin II: role in skeletal muscle atrophy. Curr Protein Pept Sci 13(6):560–569CrossRefGoogle Scholar
  171. 171.
    Yoshida T, Tabony AM, Galvez S, Mitch WE, Higashi Y, Sukhanov S, Delafontaine P (2013) Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia. Int J Biochem Cell Biol 45(10):2322–2332.  https://doi.org/10.1016/j.biocel.2013.05.035 CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Sartiani L, Spinelli V, Laurino A, Blescia S, Raimondi L, Cerbai E, Mugelli A (2015) Pharmacological perspectives in sarcopenia: a potential role for renin-angiotensin system blockers? Clin Cases Miner Bone Metab 12(2):135–138.  https://doi.org/10.11138/ccmbm/2015.12.2.135 CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Collamati A, Marzetti E, Calvani R, Tosato M, D'Angelo E, Sisto AN, Landi F (2016) Sarcopenia in heart failure: mechanisms and therapeutic strategies. J Geriatr Cardiol 13(7):615–624.  https://doi.org/10.11909/j.issn.1671-5411.2016.07.004 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Physiology, Faculty of MedicineComplutense UniversityMadridSpain

Personalised recommendations