Advertisement

Muscle Atrophy pp 281-306 | Cite as

Redox Homeostasis in Age-Related Muscle Atrophy

  • Giorgos K. Sakellariou
  • McDonagh Brian 
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1088)

Abstract

Muscle atrophy and weakness, characterized by loss of lean muscle mass and function, has a significant effect on the independence and quality of life of older people. The cellular mechanisms that drive the age-related decline in neuromuscular integrity and function are multifactorial. Quiescent and contracting skeletal muscle can endogenously generate reactive oxygen and nitrogen species (RONS) from various cellular sites. Excessive RONS can potentially cause oxidative damage and disruption of cellular signaling pathways contributing to the initiation and progression of age-related muscle atrophy. Altered redox homeostasis and modulation of intracellular signal transduction processes have been proposed as an underlying mechanism of sarcopenia. This chapter summarizes the current evidence that has associated disrupted redox homeostasis and muscle atrophy as a result of skeletal muscle inactivity and aging.

Keywords

Sarcopenia Redox signaling Antioxidants Nerve Superoxide 

Notes

Competing Financial Interests

The authors declare no competing financial interests.

References

  1. 1.
    Evans WJ (2010) Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr 91(4):1123S–1127S.  https://doi.org/10.3945/ajcn.2010.28608A CrossRefPubMedGoogle Scholar
  2. 2.
    Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, Tylavsky FA, Rubin SM, Harris TB (2006) Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci 61(1):72–77CrossRefGoogle Scholar
  3. 3.
    Larsson L (1983) Histochemical characteristics of human skeletal muscle during aging. Acta Physiol Scand 117(3):469–471CrossRefGoogle Scholar
  4. 4.
    Porter MM, Vandervoort AA, Lexell J (1995) Aging of human muscle: structure, function and adaptability. Scand J Med Sci Sports 5(3):129–142CrossRefGoogle Scholar
  5. 5.
    Campbell MJ, McComas AJ, Petito F (1973) Physiological changes in ageing muscles. J Neurol Neurosurg Psychiatry 36(2):174–182CrossRefGoogle Scholar
  6. 6.
    McNeil CJ, Rice CL (2007) Fatigability is increased with age during velocity-dependent contractions of the dorsiflexors. J Gerontol A Biol Sci Med Sci 62(6):624–629CrossRefGoogle Scholar
  7. 7.
    Hourigan ML, McKinnon NB, Johnson M, Rice CL, Stashuk DW, Doherty TJ (2015) Increased motor unit potential shape variability across consecutive motor unit discharges in the tibialis anterior and vastus medialis muscles of healthy older subjects. Clin Neurophysiol 126(12):2381–2389.  https://doi.org/10.1016/j.clinph.2015.02.002 CrossRefPubMedGoogle Scholar
  8. 8.
    Oda K (1984) Age changes of motor innervation and acetylcholine receptor distribution on human skeletal muscle fibres. J Neurol Sci 66(2-3):327–338CrossRefGoogle Scholar
  9. 9.
    Valdez G, Tapia JC, Kang H, Clemenson GD Jr, Gage FH, Lichtman JW, Sanes JR (2010) Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc Natl Acad Sci U S A 107(33):14863–14868.  https://doi.org/10.1073/pnas.1002220107 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wokke JH, Jennekens FG, van den Oord CJ, Veldman H, Smit LM, Leppink GJ (1990) Morphological changes in the human end plate with age. J Neurol Sci 95(3):291–310CrossRefGoogle Scholar
  11. 11.
    Krantic S, Mechawar N, Reix S, Quirion R (2005) Molecular basis of programmed cell death involved in neurodegeneration. Trends Neurosci 28(12):670–676.  https://doi.org/10.1016/j.tins.2005.09.011 CrossRefPubMedGoogle Scholar
  12. 12.
    Jang YC, Van Remmen H (2011) Age-associated alterations of the neuromuscular junction. Exp Gerontol 46(2-3):193–198.  https://doi.org/10.1016/j.exger.2010.08.029 CrossRefPubMedGoogle Scholar
  13. 13.
    Ward RE, Boudreau RM, Caserotti P, Harris TB, Zivkovic S, Goodpaster BH, Satterfield S, Kritchevsky S, Schwartz AV, Vinik AI, Cauley JA, Newman AB, Strotmeyer ES, Health ABCs (2015) Sensory and motor peripheral nerve function and longitudinal changes in quadriceps strength. J Gerontol A Biol Sci Med Sci 70(4):464–470.  https://doi.org/10.1093/gerona/glu183 CrossRefPubMedGoogle Scholar
  14. 14.
    Sakellariou GK, McDonagh B, Porter H, Giakoumaki II, Earl KE, Nye GA, Vasilaki A, Brooks SV, Richardson A, Van Remmen H, McArdle A, Jackson MJ (2018) Comparison of whole body SOD1 knockout with muscle-specific SOD1 knockout mice reveals a role for nerve redox signaling in regulation of degenerative pathways in skeletal muscle. Antioxid Redox Signal 28(4):275–295. https://doi.org/10.1089/ars.2017.7249CrossRefGoogle Scholar
  15. 15.
    Hepple RT, Rice CL (2016) Innervation and neuromuscular control in ageing skeletal muscle. J Physiol 594(8):1965–1978.  https://doi.org/10.1113/JP270561 CrossRefPubMedGoogle Scholar
  16. 16.
    Hughes VA, Roubenoff R, Wood M, Frontera WR, Evans WJ, Fiatarone Singh MA (2004) Anthropometric assessment of 10-y changes in body composition in the elderly. Am J Clin Nutr 80(2):475–482CrossRefGoogle Scholar
  17. 17.
    Wiswell RA, Hawkins SA, Jaque SV, Hyslop D, Constantino N, Tarpenning K, Marcell T, Schroeder ET (2001) Relationship between physiological loss, performance decrement, and age in master athletes. J Gerontol A Biol Sci Med Sci 56(10):M618–M626CrossRefGoogle Scholar
  18. 18.
    Fenn WO, Gerschman R, Gilbert DL, Terwilliger DE, Cothran FV (1957) Mutagenic effects of high oxygen tensions on Escherichia Coli. Proc Natl Acad Sci U S A 43(12):1027–1032CrossRefGoogle Scholar
  19. 19.
    Gerschman R, Gilbert DL, Nye SW, Dwyer P, Fenn WO (1954) Oxygen poisoning and x-irradiation: a mechanism in common. Science 119(3097):623–626CrossRefGoogle Scholar
  20. 20.
    Davies KJ, Quintanilha AT, Brooks GA, Packer L (1982) Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 107(4):1198–1205CrossRefGoogle Scholar
  21. 21.
    Dillard CJ, Litov RE, Savin WM, Dumelin EE, Tappel AL (1978) Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. J Appl Physiol 45(6):927–932CrossRefGoogle Scholar
  22. 22.
    Jackson MJ, Edwards RH, Symons MC (1985) Electron spin resonance studies of intact mammalian skeletal muscle. Biochim Biophys Acta 847(2):185–190 doi:0167-4889(85)90019-9 [pii]CrossRefGoogle Scholar
  23. 23.
    Halliwell B, Gutteridge J (2007) Free radicals in biology and medicine. Oxford University Press, OxfordGoogle Scholar
  24. 24.
    Jackson MJ (2008) Free radicals generated by contracting muscle: by-products of metabolism or key regulators of muscle function? Free Radic Biol Med 44(2):132–141. doi:S0891-5849(07)00388-7 [pii].  https://doi.org/10.1016/j.freeradbiomed.2007.06.003 CrossRefPubMedGoogle Scholar
  25. 25.
    Jackson MJ (2009) Redox regulation of adaptive responses in skeletal muscle to contractile activity. Free Radic Biol Med 47(9):1267–1275. doi:S0891-5849(09)00531-0 [pii].  https://doi.org/10.1016/j.freeradbiomed.2009.09.005 CrossRefPubMedGoogle Scholar
  26. 26.
    Palomero J, Jackson MJ (2010) Redox regulation in skeletal muscle during contractile activity and aging. J Anim Sci 88(4):1307–1313. doi:jas.2009-2436 [pii].  https://doi.org/10.2527/jas.2009-2436 CrossRefPubMedGoogle Scholar
  27. 27.
    Picard M, Ritchie D, Wright KJ, Romestaing C, Thomas MM, Rowan SL, Taivassalo T, Hepple RT (2010) Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers. Aging Cell 9(6):1032–1046.  https://doi.org/10.1111/j.1474-9726.2010.00628.x CrossRefPubMedGoogle Scholar
  28. 28.
    Sakellariou GK, Vasilaki A, Palomero J, Kayani A, Zibrik L, McArdle A, Jackson MJ (2013) Studies of mitochondrial and nonmitochondrial sources implicate nicotinamide adenine dinucleotide phosphate oxidase(s) in the increased skeletal muscle superoxide generation that occurs during contractile activity. Antioxid Redox Signal 18(6):603–621.  https://doi.org/10.1089/ars.2012.4623 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hidalgo C, Sanchez G, Barrientos G, Aracena-Parks P (2006) A transverse tubule NADPH oxidase activity stimulates calcium release from isolated triads via ryanodine receptor type 1 S -glutathionylation. J Biol Chem 281(36):26473–26482. doi:M600451200 [pii].  https://doi.org/10.1074/jbc.M600451200 CrossRefPubMedGoogle Scholar
  30. 30.
    Xia R, Webb JA, Gnall LL, Cutler K, Abramson JJ (2003) Skeletal muscle sarcoplasmic reticulum contains a NADH-dependent oxidase that generates superoxide. Am J Physiol Cell Physiol 285(1):C215–C221.  https://doi.org/10.1152/ajpcell.00034.2002 00034.2002 [pii]CrossRefPubMedGoogle Scholar
  31. 31.
    Mofarrahi M, Brandes RP, Gorlach A, Hanze J, Terada LS, Quinn MT, Mayaki D, Petrof B, Hussain SN (2008) Regulation of proliferation of skeletal muscle precursor cells by NADPH oxidase. Antioxid Redox Signal 10(3):559–574.  https://doi.org/10.1089/ars.2007.1792 CrossRefPubMedGoogle Scholar
  32. 32.
    Whitehead NP, Yeung EW, Froehner SC, Allen DG (2010) Skeletal muscle NADPH oxidase is increased and triggers stretch-induced damage in the mdx mouse. PLoS One 5(12):e15354.  https://doi.org/10.1371/journal.pone.0015354 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kalyanaraman B, Darley-Usmar V, Davies KJ, Dennery PA, Forman HJ, Grisham MB, Mann GE, Moore K, Roberts LJ 2nd, Ischiropoulos H (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52(1):1–6.  https://doi.org/10.1016/j.freeradbiomed.2011.09.030 CrossRefPubMedGoogle Scholar
  34. 34.
    Sakellariou GK, Pye D, Vasilaki A, Zibrik L, Palomero J, Kabayo T, McArdle F, Van Remmen H, Richardson A, Tidball JG, McArdle A, Jackson MJ (2011) Role of superoxide-nitric oxide interactions in the accelerated age-related loss of muscle mass in mice lacking Cu,Zn superoxide dismutase. Aging Cell 10(5):749–760.  https://doi.org/10.1111/j.1474-9726.2011.00709.x CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    McDonagh B, Scullion SM, Vasilaki A, Pollock N, McArdle A, Jackson MJ (2016) Ageing-induced changes in the redox status of peripheral motor nerves imply an effect on redox signalling rather than oxidative damage. Free Radic Biol Med 94:27–35.  https://doi.org/10.1016/j.freeradbiomed.2016.02.008 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Pattwell D, Ashton T, McArdle A, Griffiths RD, Jackson MJ (2003) Ischemia and reperfusion of skeletal muscle lead to the appearance of a stable lipid free radical in the circulation. Am J Physiol Heart Circ Physiol 284(6):H2400–H2404.  https://doi.org/10.1152/ajpheart.00931.2002 CrossRefPubMedGoogle Scholar
  37. 37.
    Sartoretto JL, Kalwa H, Pluth MD, Lippard SJ, Michel T (2011) Hydrogen peroxide differentially modulates cardiac myocyte nitric oxide synthesis. Proc Natl Acad Sci U S A 108(38):15792–15797.  https://doi.org/10.1073/pnas.1111331108 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Loehr JA, Abo-Zahrah R, Pal R, Rodney GG (2014) Sphingomyelinase promotes oxidant production and skeletal muscle contractile dysfunction through activation of NADPH oxidase. Front Physiol 5:530.  https://doi.org/10.3389/fphys.2014.00530 CrossRefPubMedGoogle Scholar
  39. 39.
    Espinosa A, Garcia A, Hartel S, Hidalgo C, Jaimovich E (2009) NADPH oxidase and hydrogen peroxide mediate insulin-induced calcium increase in skeletal muscle cells. J Biol Chem 284(4):2568–2575.  https://doi.org/10.1074/jbc.M804249200 CrossRefPubMedGoogle Scholar
  40. 40.
    McArdle A, Jackson MJ (2000) Exercise, oxidative stress and ageing. J Anat 197(Pt 4):539–541CrossRefGoogle Scholar
  41. 41.
    Jackson MJ, McArdle A (2011) Age-related changes in skeletal muscle reactive oxygen species generation and adaptive responses to reactive oxygen species. J Physiol 589(Pt 9):2139–2145. doi:jphysiol.2011.206623 [pii].  https://doi.org/10.1113/jphysiol.2011.206623 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88(4):1243–1276. doi:88/4/1243 [pii].  https://doi.org/10.1152/physrev.00031.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Muller FL, Liu Y, Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 279(47):49064–49073CrossRefGoogle Scholar
  44. 44.
    Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13CrossRefGoogle Scholar
  45. 45.
    Goncalves RL, Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Brand MD (2015) Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J Biol Chem 290(1):209–227.  https://doi.org/10.1074/jbc.M114.619072 CrossRefGoogle Scholar
  46. 46.
    Quinlan CL, Orr AL, Perevoshchikova IV, Treberg JR, Ackrell BA, Brand MD (2012) Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J Biol Chem 287(32):27255–27264.  https://doi.org/10.1074/jbc.M112.374629 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Brand MD (2016) Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med.  https://doi.org/10.1016/j.freeradbiomed.2016.04.001 CrossRefGoogle Scholar
  48. 48.
    Sun QA, Hess DT, Nogueira L, Yong S, Bowles DE, Eu J, Laurita KR, Meissner G, Stamler JS (2011) Oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor-Ca2+ release channel by NADPH oxidase 4. Proc Natl Acad Sci U S A 108(38):16098–16103.  https://doi.org/10.1073/pnas.1109546108 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Gomez-Cabrera MC, Close GL, Kayani A, McArdle A, Vina J, Jackson MJ (2010) Effect of xanthine oxidase-generated extracellular superoxide on skeletal muscle force generation. Am J Physiol Regul Integr Comp Physiol 298(1):R2–R8. doi:00142.2009 [pii].  https://doi.org/10.1152/ajpregu.00142.2009 CrossRefPubMedGoogle Scholar
  50. 50.
    Hellsten Y, Frandsen U, Orthenblad N, Sjodin B, Richter EA (1997) Xanthine oxidase in human skeletal muscle following eccentric exercise: a role in inflammation. J Physiol 498(Pt 1):239–248CrossRefGoogle Scholar
  51. 51.
    Zuo L, Christofi FL, Wright VP, Bao S, Clanton TL (2004) Lipoxygenase-dependent superoxide release in skeletal muscle. J Appl Physiol 97(2):661–668.  https://doi.org/10.1152/japplphysiol.00096.2004 00096.2004 [pii]CrossRefPubMedGoogle Scholar
  52. 52.
    Gong MC, Arbogast S, Guo Z, Mathenia J, Su W, Reid MB (2006) Calcium-independent phospholipase A2 modulates cytosolic oxidant activity and contractile function in murine skeletal muscle cells. J Appl Physiol 100(2):399–405. doi:00873.2005 [pii].  https://doi.org/10.1152/japplphysiol.00873.2005 CrossRefPubMedGoogle Scholar
  53. 53.
    Nethery D, Stofan D, Callahan L, DiMarco A, Supinski G (1999) Formation of reactive oxygen species by the contracting diaphragm is PLA(2) dependent. J Appl Physiol 87(2):792–800CrossRefGoogle Scholar
  54. 54.
    Sakellariou GK, Jackson MJ, Vasilaki A (2014) Redefining the major contributors to superoxide production in contracting skeletal muscle. The role of NAD(P)H oxidases. Free Radical Res 48(1):12–29.  https://doi.org/10.3109/10715762.2013.830718 CrossRefGoogle Scholar
  55. 55.
    Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43(2):109–142PubMedGoogle Scholar
  56. 56.
    Reid MB (1998) Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance. Acta Physiol Scand 162(3):401–409.  https://doi.org/10.1046/j.1365-201X.1998.0303f.x CrossRefPubMedGoogle Scholar
  57. 57.
    Allen DG, Whitehead NP, Froehner SC (2016) Absence of dystrophin disrupts skeletal muscle signaling: roles of ca2+, reactive oxygen species, and nitric oxide in the development of muscular dystrophy. Physiol Rev 96(1):253–305.  https://doi.org/10.1152/physrev.00007.2015 CrossRefPubMedGoogle Scholar
  58. 58.
    Garcia-Cardena G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC (1998) Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392(6678):821–824.  https://doi.org/10.1038/33934 CrossRefPubMedGoogle Scholar
  59. 59.
    Rigamonti E, Touvier T, Clementi E, Manfredi AA, Brunelli S, Rovere-Querini P (2013) Requirement of inducible nitric oxide synthase for skeletal muscle regeneration after acute damage. J Immunol 190(4):1767–1777.  https://doi.org/10.4049/jimmunol.1202903 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Adams V, Nehrhoff B, Spate U, Linke A, Schulze PC, Baur A, Gielen S, Hambrecht R, Schuler G (2002) Induction of iNOS expression in skeletal muscle by IL-1beta and NFkappaB activation: an in vitro and in vivo study. Cardiovasc Res 54(1):95–104CrossRefGoogle Scholar
  61. 61.
    Tidball JG, Spencer MJ, Wehling M, Lavergne E (1999) Nitric-oxide synthase is a mechanical signal transducer that modulates talin and vinculin expression. J Biol Chem 274(46):33155–33160CrossRefGoogle Scholar
  62. 62.
    Hirschfield W, Moody MR, O’Brien WE, Gregg AR, Bryan RM Jr, Reid MB (2000) Nitric oxide release and contractile properties of skeletal muscles from mice deficient in type III NOS. Am J Physiol Regul Integr Comp Physiol 278(1):R95–R100CrossRefGoogle Scholar
  63. 63.
    Pye D, Palomero J, Kabayo T, Jackson MJ (2007) Real-time measurement of nitric oxide in single mature mouse skeletal muscle fibres during contractions. J Physiol 581(Pt 1):309–318. doi:jphysiol.2006.125930 [pii].  https://doi.org/10.1113/jphysiol.2006.125930 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Tidball JG, Wehling-Henricks M (2004) Expression of a NOS transgene in dystrophin-deficient muscle reduces muscle membrane damage without increasing the expression of membrane-associated cytoskeletal proteins. Mol Genet Metab 82(4):312–320.  https://doi.org/10.1016/j.ymgme.2004.06.006 CrossRefPubMedGoogle Scholar
  65. 65.
    Brenman JE, Chao DS, Xia H, Aldape K, Bredt DS (1995) Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82(5):743–752CrossRefGoogle Scholar
  66. 66.
    Stamler JS, Meissner G (2001) Physiology of nitric oxide in skeletal muscle. Physiol Rev 81(1):209–237CrossRefGoogle Scholar
  67. 67.
    Marinho HS, Real C, Cyrne L, Soares H, Antunes F (2014) Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2:535–562.  https://doi.org/10.1016/j.redox.2014.02.006 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Jackson MJ, McArdle A (2016) Role of reactive oxygen species in age-related neuromuscular deficits. J Physiol.  https://doi.org/10.1113/JP270564 CrossRefGoogle Scholar
  69. 69.
    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. doi:S1357-2725(06)00219-6 [pii].  https://doi.org/10.1016/j.biocel.2006.07.001 CrossRefPubMedGoogle Scholar
  70. 70.
    Takac I, Schroder K, Zhang L, Lardy B, Anilkumar N, Lambeth JD, Shah AM, Morel F, Brandes RP (2011) The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J Biol Chem 286(15):13304–13313.  https://doi.org/10.1074/jbc.M110.192138 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Koziel R, Pircher H, Kratochwil M, Lener B, Hermann M, Dencher NA, Jansen-Durr P (2013) Mitochondrial respiratory chain complex I is inactivated by NADPH oxidase Nox4. Biochem J 452(2):231–239.  https://doi.org/10.1042/BJ20121778 CrossRefPubMedGoogle Scholar
  72. 72.
    Halliwell B, Clement MV, Long LH (2000) Hydrogen peroxide in the human body. FEBS Lett 486(1):10–13CrossRefGoogle Scholar
  73. 73.
    Mehmeti I, Lortz S, Lenzen S (2012) The H2O2-sensitive HyPer protein targeted to the endoplasmic reticulum as a mirror of the oxidizing thiol-disulfide milieu. Free Radic Biol Med 53(7):1451–1458.  https://doi.org/10.1016/j.freeradbiomed.2012.08.010 CrossRefPubMedGoogle Scholar
  74. 74.
    Ramming T, Okumura M, Kanemura S, Baday S, Birk J, Moes S, Spiess M, Jeno P, Berneche S, Inaba K, Appenzeller-Herzog C (2015) A PDI-catalyzed thiol-disulfide switch regulates the production of hydrogen peroxide by human Ero1. Free Radic Biol Med 83:361–372.  https://doi.org/10.1016/j.freeradbiomed.2015.02.011 CrossRefPubMedGoogle Scholar
  75. 75.
    Sigel A, Sigel H, Sigel RKO (2013) Interrelations between essential metal ions and human diseases. SpringerGoogle Scholar
  76. 76.
    Murphy RM, Dutka TL, Lamb GD (2008) Hydroxyl radical and glutathione interactions alter calcium sensitivity and maximum force of the contractile apparatus in rat skeletal muscle fibres. J Physiol 586(8):2203–2216.  https://doi.org/10.1113/jphysiol.2007.150516 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Imlay JA (2014) The mismetallation of enzymes during oxidative stress. J Biol Chem 289(41):28121–28128.  https://doi.org/10.1074/jbc.R114.588814 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149(1):43–50CrossRefGoogle Scholar
  79. 79.
    O’Neill CA, Stebbins CL, Bonigut S, Halliwell B, Longhurst JC (1996) Production of hydroxyl radicals in contracting skeletal muscle of cats. J Appl Physiol 81(3):1197–1206CrossRefGoogle Scholar
  80. 80.
    Konno S (2005) Hydroxyl radical formation in skeletal muscle of rats with glucocorticoid-induced myopathy. Neurochem Res 30(5):669–675CrossRefGoogle Scholar
  81. 81.
    Kondo H, Nishino K, Itokawa Y (1994) Hydroxyl radical generation in skeletal muscle atrophied by immobilization. FEBS Lett 349(2):169–172CrossRefGoogle Scholar
  82. 82.
    Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424.  https://doi.org/10.1152/physrev.00029.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266(7):4244–4250PubMedGoogle Scholar
  84. 84.
    Powers SK, Ji LL, Kavazis AN, Jackson MJ (2011) Reactive oxygen species: impact on skeletal muscle. Compr Physiol 1(2):941–969.  https://doi.org/10.1002/cphy.c100054 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Greenacre SA, Ischiropoulos H (2001) Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic Res 34(6):541–581CrossRefGoogle Scholar
  86. 86.
    Montagna C, Di Giacomo G, Rizza S, Cardaci S, Ferraro E, Grumati P, De Zio D, Maiani E, Muscoli C, Lauro F, Ilari S, Bernardini S, Cannata S, Gargioli C, Ciriolo MR, Cecconi F, Bonaldo P, Filomeni G (2014) S-nitrosoglutathione reductase deficiency-induced S-nitrosylation results in neuromuscular dysfunction. Antioxid Redox Signal 21(4):570–587.  https://doi.org/10.1089/ars.2013.5696 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Vasilaki A, Simpson D, McArdle F, McLean L, Beynon RJ, Van Remmen H, Richardson AG, McArdle A, Faulkner JA, Jackson MJ (2007) Formation of 3-nitrotyrosines in carbonic anhydrase III is a sensitive marker of oxidative stress in skeletal muscle. Proteomics Clin Appl 1(4):362–372.  https://doi.org/10.1002/prca.200600702 CrossRefPubMedGoogle Scholar
  88. 88.
    Sakellariou GK, Lightfoot AP, Earl KE, Stofanko M, McDonagh B (2017) Redox homeostasis and age-related deficits in neuromuscular integrity and function. J Cachexia Sarcopenia Muscle 8(6):881–906.  https://doi.org/10.1002/jcsm.12223 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Jackson MJ (2011) Control of reactive oxygen species production in contracting skeletal muscle. Antioxid Redox Signal 15(9):2477–2486.  https://doi.org/10.1089/ars.2011.3976 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Radak Z (2000) Free Radicals in exercise and aging. Human Kinetics, ChampaignGoogle Scholar
  91. 91.
    Kirkman HN, Gaetani GF (2007) Mammalian catalase: a venerable enzyme with new mysteries. Trends Biochem Sci 32(1):44–50.  https://doi.org/10.1016/j.tibs.2006.11.003 CrossRefPubMedGoogle Scholar
  92. 92.
    Pereira B, Costa Rosa LF, Safi DA, Medeiros MH, Curi R, Bechara EJ (1994) Superoxide dismutase, catalase, and glutathione peroxidase activities in muscle and lymphoid organs of sedentary and exercise-trained rats. Physiol Behav 56(5):1095–1099CrossRefGoogle Scholar
  93. 93.
    Fuchs J, Podda M, Packer L (2003) Redox-genome interactions in health and disease. Taylor & FrancisGoogle Scholar
  94. 94.
    Lawler JM, Powers SK (1998) Oxidative stress, antioxidant status, and the contracting diaphragm. Can J Appl Physiol 23(1):23–55CrossRefGoogle Scholar
  95. 95.
    Landis GN, Tower J (2005) Superoxide dismutase evolution and life span regulation. Mech Ageing Dev 126(3):365–379.  https://doi.org/10.1016/j.mad.2004.08.012 CrossRefPubMedGoogle Scholar
  96. 96.
    Brigelius-Flohe R (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 27(9-10):951–965CrossRefGoogle Scholar
  97. 97.
    Frey RS, Ushio-Fukai M, Malik AB (2009) NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology. Antioxid Redox signal 11(4):791–810.  https://doi.org/10.1089/ARS.2008.2220 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Jin RC, Mahoney CE, Coleman Anderson L, Ottaviano F, Croce K, Leopold JA, Zhang YY, Tang SS, Handy DE, Loscalzo J (2011) Glutathione peroxidase-3 deficiency promotes platelet-dependent thrombosis in vivo. Circulation 123(18):1963–1973.  https://doi.org/10.1161/CIRCULATIONAHA.110.000034 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Olson GE, Whitin JC, Hill KE, Winfrey VP, Motley AK, Austin LM, Deal J, Cohen HJ, Burk RF (2010) Extracellular glutathione peroxidase (Gpx3) binds specifically to basement membranes of mouse renal cortex tubule cells. Am J Physiol Renal Physiol 298(5):F1244–F1253.  https://doi.org/10.1152/ajprenal.00662.2009 CrossRefPubMedGoogle Scholar
  100. 100.
    Brigelius-Flohe R (2006) Glutathione peroxidases and redox-regulated transcription factors. Biol Chem 387(10-11):1329–1335.  https://doi.org/10.1515/BC.2006.166 CrossRefPubMedGoogle Scholar
  101. 101.
    Williams K, Frayne J, Hall L (1998) Expression of extracellular glutathione peroxidase type 5 (GPX5) in the rat male reproductive tract. Mol Hum Reprod 4(9):841–848CrossRefGoogle Scholar
  102. 102.
    Moscow JA, Morrow CS, He R, Mullenbach GT, Cowan KH (1992) Structure and function of the 5’-flanking sequence of the human cytosolic selenium-dependent glutathione peroxidase gene (hgpx1). J Biol Chem 267(9):5949–5958PubMedGoogle Scholar
  103. 103.
    Mates JM, Sanchez-Jimenez F (1999) Antioxidant enzymes and their implications in pathophysiologic processes. Front Biosci 4:D339–D345CrossRefGoogle Scholar
  104. 104.
    Chae HZ, Kim IH, Kim K, Rhee SG (1993) Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae. J Biol Chem 268(22):16815–16821PubMedGoogle Scholar
  105. 105.
    Kim K, Kim IH, Lee KY, Rhee SG, Stadtman ER (1988) The isolation and purification of a specific “protector” protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J Biol Chem 263(10):4704–4711PubMedGoogle Scholar
  106. 106.
    Kim K, Rhee SG, Stadtman ER (1985) Nonenzymatic cleavage of proteins by reactive oxygen species generated by dithiothreitol and iron. J Biol Chem 260(29):15394–15397PubMedGoogle Scholar
  107. 107.
    Wood ZA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28(1):32–40CrossRefGoogle Scholar
  108. 108.
    Rhee SG, Chae HZ, Kim K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38(12):1543–1552. doi:S0891-5849(05)00098-5 [pii].  https://doi.org/10.1016/j.freeradbiomed.2005.02.026 CrossRefPubMedGoogle Scholar
  109. 109.
    Dubuisson M, Vander Stricht D, Clippe A, Etienne F, Nauser T, Kissner R, Koppenol WH, Rees JF, Knoops B (2004) Human peroxiredoxin 5 is a peroxynitrite reductase. FEBS Lett 571(1-3):161–165.  https://doi.org/10.1016/j.febslet.2004.06.080 CrossRefPubMedGoogle Scholar
  110. 110.
    Wadley AJ, Aldred S, Coles SJ (2015) An unexplored role for Peroxiredoxin in exercise-induced redox signalling? Redox Biol 8:51–58.  https://doi.org/10.1016/j.redox.2015.10.003 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    McDonagh B, Sakellariou GK, Smith NT, Brownridge P, Jackson MJ (2014) Differential cysteine labeling and global label-free proteomics reveals an altered metabolic state in skeletal muscle aging. J Proteome Res 13(11):5008–5021.  https://doi.org/10.1021/pr5006394 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Berndt C, Lillig CH, Holmgren A (2007) Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am J Physiol Heart Circ Physiol 292(3):H1227–H1236.  https://doi.org/10.1152/ajpheart.01162.2006 CrossRefPubMedGoogle Scholar
  113. 113.
    Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH (2013) Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 19(13):1539–1605.  https://doi.org/10.1089/ars.2012.4599 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Hanschmann EM, Lonn ME, Schutte LD, Funke M, Godoy JR, Eitner S, Hudemann C, Lillig CH (2010) Both thioredoxin 2 and glutaredoxin 2 contribute to the reduction of the mitochondrial 2-Cys peroxiredoxin Prx3. J Biol Chem 285(52):40699–40705.  https://doi.org/10.1074/jbc.M110.185827 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Murata H, Ihara Y, Nakamura H, Yodoi J, Sumikawa K, Kondo T (2003) Glutaredoxin exerts an antiapoptotic effect by regulating the redox state of Akt. J Biol Chem 278(50):50226–50233.  https://doi.org/10.1074/jbc.M310171200 CrossRefPubMedGoogle Scholar
  116. 116.
    Daily D, Vlamis-Gardikas A, Offen D, Mittelman L, Melamed E, Holmgren A, Barzilai A (2001) Glutaredoxin protects cerebellar granule neurons from dopamine-induced apoptosis by activating NF-kappa B via Ref-1. J Biol Chem 276(2):1335–1344.  https://doi.org/10.1074/jbc.M008121200 CrossRefPubMedGoogle Scholar
  117. 117.
    Pan S, Berk BC (2007) Glutathiolation regulates tumor necrosis factor-alpha-induced caspase-3 cleavage and apoptosis: key role for glutaredoxin in the death pathway. Circ Res 100(2):213–219.  https://doi.org/10.1161/01.RES.0000256089.30318.20 CrossRefPubMedGoogle Scholar
  118. 118.
    Rodriguez-Manzaneque MT, Tamarit J, Belli G, Ros J, Herrero E (2002) Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol Biol Cell 13(4):1109–1121.  https://doi.org/10.1091/mbc.01-10-0517 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Lonn ME, Hudemann C, Berndt C, Cherkasov V, Capani F, Holmgren A, Lillig CH (2008) Expression pattern of human glutaredoxin 2 isoforms: identification and characterization of two testis/cancer cell-specific isoforms. Antioxid Redox Signal 10(3):547–557.  https://doi.org/10.1089/ars.2007.1821 CrossRefPubMedGoogle Scholar
  120. 120.
    Johansson C, Roos AK, Montano SJ, Sengupta R, Filippakopoulos P, Guo K, von Delft F, Holmgren A, Oppermann U, Kavanagh KL (2011) The crystal structure of human GLRX5: iron-sulfur cluster co-ordination, tetrameric assembly and monomer activity. Biochem J 433(2):303–311.  https://doi.org/10.1042/BJ20101286 CrossRefPubMedGoogle Scholar
  121. 121.
    Beer SM, Taylor ER, Brown SE, Dahm CC, Costa NJ, Runswick MJ, Murphy MP (2004) Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE. J Biol Chem 279(46):47939–47951.  https://doi.org/10.1074/jbc.M408011200 CrossRefPubMedGoogle Scholar
  122. 122.
    Kozakowska M, Pietraszek-Gremplewicz K, Jozkowicz A, Dulak J (2015) The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. J Muscle Res Cell Motil 36(6):377–393.  https://doi.org/10.1007/s10974-015-9438-9 CrossRefPubMedGoogle Scholar
  123. 123.
    Theodorou AA, Nikolaidis MG, Paschalis V, Sakellariou GK, Fatouros IG, Koutedakis Y, Jamurtas AZ (2010) Comparison between glucose-6-phosphate dehydrogenase-deficient and normal individuals after eccentric exercise. Med Sci Sports Exerc 42(6):1113–1121.  https://doi.org/10.1249/MSS.0b013e3181c67ecd CrossRefPubMedGoogle Scholar
  124. 124.
    Gomes EC, Silva AN, de Oliveira MR (2012) Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species. Oxid Med Cell Longev 2012:756132.  https://doi.org/10.1155/2012/756132 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Sen C, Packer L, Hänninen O (2000) Handbook of oxidants and antioxidants in exercise. Elsevier ScienceGoogle Scholar
  126. 126.
    Cobley JN, Sakellariou GK, Murray S, Waldron S, Gregson W, Burniston JG, Morton JP, Iwanejko LA, Close GL (2013) Lifelong endurance training attenuates age-related genotoxic stress in human skeletal muscle. Longevity & Healthspan 2(1):11.  https://doi.org/10.1186/2046-2395-2-11 CrossRefGoogle Scholar
  127. 127.
    Cobley JN, Sakellariou GK, Owens DJ, Murray S, Waldron S, Gregson W, Fraser WD, Burniston JG, Iwanejko LA, McArdle A, Morton JP, Jackson MJ, Close GL (2014) Lifelong training preserves some redox-regulated adaptive responses after an acute exercise stimulus in aged human skeletal muscle. Free Radic Biol Med 70:23–32.  https://doi.org/10.1016/j.freeradbiomed.2014.02.004 CrossRefPubMedGoogle Scholar
  128. 128.
    Mecocci P, Fano G, Fulle S, MacGarvey U, Shinobu L, Polidori MC, Cherubini A, Vecchiet J, Senin U, Beal MF (1999) Age-dependent increases in oxidative damage to DNA, lipids, and proteins in human skeletal muscle. Free Radic Biol Med 26(3-4):303–308CrossRefGoogle Scholar
  129. 129.
    Broome CS, Kayani AC, Palomero J, Dillmann WH, Mestril R, Jackson MJ, McArdle A (2006) Effect of lifelong overexpression of HSP70 in skeletal muscle on age-related oxidative stress and adaptation after nondamaging contractile activity. FASEB J 20(9):1549–1551.  https://doi.org/10.1096/fj.05-4935fje CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Lee HY, Choi CS, Birkenfeld AL, Alves TC, Jornayvaz FR, Jurczak MJ, Zhang D, Woo DK, Shadel GS, Ladiges W, Rabinovitch PS, Santos JH, Petersen KF, Samuel VT, Shulman GI (2010) Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance. Cell Metab 12(6):668–674.  https://doi.org/10.1016/j.cmet.2010.11.004 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    McDonagh B, Sakellariou GK, Jackson MJ (2014) Application of redox proteomics to skeletal muscle aging and exercise. Biochem Soc Trans 42(4):965–970.  https://doi.org/10.1042/BST20140085 CrossRefPubMedGoogle Scholar
  132. 132.
    Wang AL, Lukas TJ, Yuan M, Neufeld AH (2010) Age-related increase in mitochondrial DNA damage and loss of DNA repair capacity in the neural retina. Neurobiol Aging 31(11):2002–2010.  https://doi.org/10.1016/j.neurobiolaging.2008.10.019 CrossRefPubMedGoogle Scholar
  133. 133.
    Miro O, Casademont J, Casals E, Perea M, Urbano-Marquez A, Rustin P, Cardellach F (2000) Aging is associated with increased lipid peroxidation in human hearts, but not with mitochondrial respiratory chain enzyme defects. Cardiovasc Res 47(3):624–631CrossRefGoogle Scholar
  134. 134.
    Rosa EF, Silva AC, Ihara SS, Mora OA, Aboulafia J (1985) Nouailhetas VL (2005) Habitual exercise program protects murine intestinal, skeletal, and cardiac muscles against aging. J Appl Physiol 99(4):1569–1575.  https://doi.org/10.1152/japplphysiol.00417.2005 CrossRefGoogle Scholar
  135. 135.
    Simic MG (1992) The rate of DNA damage and aging. In: Free radicals and aging. Verlag, BirkhauserGoogle Scholar
  136. 136.
    Cutler RG (1991) Human longevity and aging: possible role of reactive oxygen species. Ann N Y Acad Sci 621:1–28CrossRefGoogle Scholar
  137. 137.
    Miquel J, Ramirez-Bosca A, Soler A, Diez A, Carrion-Gutierrez MA, Diaz-Alperi J, Quintanilla-Ripoll E, Bernd A, Quintanilla-Almagro E (1998) Increase with age of serum lipid peroxides: implications for the prevention of atherosclerosis. Mech Ageing Dev 100(1):17–24CrossRefGoogle Scholar
  138. 138.
    McDonagh B, Sakellariou GK, Smith NT, Brownridge P, Jackson MJ (2014a) Differential cysteine labeling and global label-free proteomics reveals an altered metabolic state in skeletal muscle aging. J Proteome Res 13(11):5008–5021. https://doi.org/10.1021/pr5006394CrossRefGoogle Scholar
  139. 139.
    McDonagh B, Sakellariou GK, Jackson MJ (2014b) Application of redox proteomics to skeletal muscle aging and exercise. Biochem Soc Trans 42(4):965–970. https://doi.org/10.1042/BST20140085CrossRefGoogle Scholar
  140. 140.
    Palomero J, Vasilaki A, Pye D, McArdle A, Jackson MJ (2013) Aging increases the oxidation of dichlorohydrofluorescein in single isolated skeletal muscle fibers at rest, but not during contractions. Am J Physiol Regul Integr Comp Physiol.  https://doi.org/10.1152/ajpregu.00530.2012 CrossRefGoogle Scholar
  141. 141.
    Sakellariou GK, Pearson T, Lightfoot AP, Nye GA, Wells N, Giakoumaki II, Vasilaki A, Griffiths RD, Jackson MJ, McArdle A (2016) Mitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy. Sci Rep 6:33944.  https://doi.org/10.1038/srep33944 CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Ivannikov MV, Van Remmen H (2015) Sod1 gene ablation in adult mice leads to physiological changes at the neuromuscular junction similar to changes that occur in old wild-type mice. Free Radic Biol Med 84:254–262.  https://doi.org/10.1016/j.freeradbiomed.2015.03.021 CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Jang YC, Lustgarten MS, Liu Y, Muller FL, Bhattacharya A, Liang H, Salmon AB, Brooks SV, Larkin L, Hayworth CR, Richardson A, Van Remmen H (2010) Increased superoxide in vivo accelerates age-associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration. FASEB J 24(5):1376–1390.  https://doi.org/10.1096/fj.09-146308 CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Larkin LM, Davis CS, Sims-Robinson C, Kostrominova TY, Remmen HV, Richardson A, Feldman EL, Brooks SV (2011) Skeletal muscle weakness due to deficiency of CuZn-superoxide dismutase is associated with loss of functional innervation. Am J Physiol Regul Integr Comp Physiol 301(5):R1400–R1407.  https://doi.org/10.1152/ajpregu.00093.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Muller FL, Song W, Liu Y, Chaudhuri A, Pieke-Dahl S, Strong R, Huang TT, Epstein CJ, Roberts LJ 2nd, Csete M, Faulkner JA, Van Remmen H (2006) Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. Free Radic Biol Med 40(11):1993–2004.  https://doi.org/10.1016/j.freeradbiomed.2006.01.036 CrossRefPubMedGoogle Scholar
  146. 146.
    Vasilaki A, van der Meulen JH, Larkin L, Harrison DC, Pearson T, Van Remmen H, Richardson A, Brooks SV, Jackson MJ, McArdle A (2010) The age-related failure of adaptive responses to contractile activity in skeletal muscle is mimicked in young mice by deletion of Cu,Zn superoxide dismutase. Aging Cell 9(6):979–990.  https://doi.org/10.1111/j.1474-9726.2010.00635.x CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Sakellariou GK, Davis CS, Shi Y, Ivannikov MV, Zhang Y, Vasilaki A, Macleod GT, Richardson A, Van Remmen H, Jackson MJ, McArdle A, Brooks SV (2014) Neuron-specific expression of CuZnSOD prevents the loss of muscle mass and function that occurs in homozygous CuZnSOD-knockout mice. FASEB J 28(4):1666–1681.  https://doi.org/10.1096/fj.13-240390 CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Sataranatarajan K, Qaisar R, Davis C, Sakellariou GK, Vasilaki A, Zhang Y, Liu Y, Bhaskaran S, McArdle A, Jackson M, Brooks SV, Richardson A, Van Remmen H (2015) Neuron specific reduction in CuZnSOD is not sufficient to initiate a full sarcopenia phenotype. Redox Biol 5:140–148.  https://doi.org/10.1016/j.redox.2015.04.005 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Zhang Y, Davis C, Sakellariou GK, Shi Y, Kayani AC, Pulliam D, Bhattacharya A, Richardson A, Jackson MJ, McArdle A, Brooks SV, Van Remmen H (2013) CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice. FASEB J.  https://doi.org/10.1096/fj.13-228130 CrossRefGoogle Scholar
  150. 150.
    Shi Y, Ivannikov MV, Walsh ME, Liu Y, Zhang Y, Jaramillo CA, Macleod GT, Van Remmen H (2014) The lack of CuZnSOD leads to impaired neurotransmitter release, neuromuscular junction destabilization and reduced muscle strength in mice. PLoS One 9(6):e100834.  https://doi.org/10.1371/journal.pone.0100834 CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Sun QA, Wang B, Miyagi M, Hess DT, Stamler JS (2013) Oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor/Ca2+ release channel (RyR1): sites and nature of oxidative modification. J Biol Chem 288(32):22961–22971.  https://doi.org/10.1074/jbc.M113.480228 CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Tong X, Hou X, Jourd’heuil D, Weisbrod RM, Cohen RA (2010) Upregulation of Nox4 by TGF{beta}1 oxidizes SERCA and inhibits NO in arterial smooth muscle of the prediabetic Zucker rat. Circ Res 107(8):975–983.  https://doi.org/10.1161/CIRCRESAHA.110.221242 CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    McDonagh B, Sakellariou GK, Smith NT, Brownridge P, Jackson MJ (2015) Redox proteomic analysis of the gastrocnemius muscle from adult and old mice. Data Brief 4:344–348.  https://doi.org/10.1016/j.dib.2015.06.012 CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Kramer PA, Duan J, Qian WJ, Marcinek DJ (2015) The measurement of reversible redox dependent post-translational modifications and their regulation of mitochondrial and skeletal muscle function. Front Physiol 6:347.  https://doi.org/10.3389/fphys.2015.00347 CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Labunskyy VM, Gladyshev VN (2012) Role of reactive oxygen species-mediated signaling in aging. Antioxid Redox Signal.  https://doi.org/10.1089/ars.2012.4891 CrossRefGoogle Scholar
  156. 156.
    Egan B, Zierath JR (2013) Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 17(2):162–184.  https://doi.org/10.1016/j.cmet.2012.12.012 CrossRefPubMedGoogle Scholar
  157. 157.
    Aachmann FL, Sal LS, Kim HY, Marino SM, Gladyshev VN, Dikiy A (2010) Insights into function, catalytic mechanism, and fold evolution of selenoprotein methionine sulfoxide reductase B1 through structural analysis. J Biol Chem 285(43):33315–33323.  https://doi.org/10.1074/jbc.M110.132308 CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Calabrese V, Sultana R, Scapagnini G, Guagliano E, Sapienza M, Bella R, Kanski J, Pennisi G, Mancuso C, Stella AM, Butterfield DA (2006) Nitrosative stress, cellular stress response, and thiol homeostasis in patients with Alzheimer’s disease. Antioxid Redox Signal 8(11–12):1975–1986.  https://doi.org/10.1089/ars.2006.8.1975 CrossRefPubMedGoogle Scholar
  159. 159.
    Smuder AJ, Kavazis AN, Hudson MB, Nelson WB, Powers SK (2010) Oxidation enhances myofibrillar protein degradation via calpain and caspase-3. Free Radic Biol Med 49(7):1152–1160.  https://doi.org/10.1016/j.freeradbiomed.2010.06.025 CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Pinto JR, de Sousa VP, Sorenson MM (2011) Redox state of troponin C cysteine in the D/E helix alters the C-domain affinity for the thin filament of vertebrate striated muscle. Biochim Biophys Acta 1810(4):391–397.  https://doi.org/10.1016/j.bbagen.2010.11.008 CrossRefPubMedGoogle Scholar
  161. 161.
    Coirault C, Guellich A, Barbry T, Samuel JL, Riou B, Lecarpentier Y (2007) Oxidative stress of myosin contributes to skeletal muscle dysfunction in rats with chronic heart failure. Am J Physiol Heart Circ Physiol 292(2):H1009–H1017.  https://doi.org/10.1152/ajpheart.00438.2006 CrossRefPubMedGoogle Scholar
  162. 162.
    Li M, Ogilvie H, Ochala J, Artemenko K, Iwamoto H, Yagi N, Bergquist J, Larsson L (2015) Aberrant post-translational modifications compromise human myosin motor function in old age. Aging Cell 14(2):228–235.  https://doi.org/10.1111/acel.12307 CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Prochniewicz E, Spakowicz D, Thomas DD (2008) Changes in actin structural transitions associated with oxidative inhibition of muscle contraction. Biochemistry 47(45):11811–11817.  https://doi.org/10.1021/bi801080x CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Andrade FH, Reid MB, Allen DG, Westerblad H (1998) Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. J Physiol 509(Pt 2):565–575CrossRefGoogle Scholar
  165. 165.
    Tisdale MJ (2009) Mechanisms of cancer cachexia. Physiol Rev 89(2):381–410.  https://doi.org/10.1152/physrev.00016.2008 CrossRefPubMedGoogle Scholar
  166. 166.
    Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, Debigare R, Dekhuijzen PN, Franssen F, Gayan-Ramirez G, Gea J, Gosker HR, Gosselink R, Hayot M, Hussain SN, Janssens W, Polkey MI, Roca J, Saey D, Schols AM, Spruit MA, Steiner M, Taivassalo T, Troosters T, Vogiatzis I, Wagner PD, COPD AEAHCoLMDi (2014) An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 189(9):e15–e62.  https://doi.org/10.1164/rccm.201402-0373ST CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Powers SK, Morton AB, Ahn B, Smuder AJ (2016) Redox control of skeletal muscle atrophy. Free Radic Biol Med.  https://doi.org/10.1016/j.freeradbiomed.2016.02.021 CrossRefGoogle Scholar
  168. 168.
    Rodney GG, Pal R, Abo-Zahrah R (2016) Redox regulation of autophagy in skeletal muscle. Free Radic Biol Med 98:103–112.  https://doi.org/10.1016/j.freeradbiomed.2016.05.010 CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Romanello V, Sandri M (2015) Mitochondrial quality control and muscle mass maintenance. Front Physiol 6:422.  https://doi.org/10.3389/fphys.2015.00422 CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Vasilaki A, McArdle F, Iwanejko LM, McArdle A (2006) Adaptive responses of mouse skeletal muscle to contractile activity: the effect of age. Mech Ageing Dev 127(11):830–839.  https://doi.org/10.1016/j.mad.2006.08.004 CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, Stumvoll M, Kahn CR, Bluher M (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A 106(21):8665–8670.  https://doi.org/10.1073/pnas.0903485106 CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Jackson MJ (2016) Reactive oxygen species in sarcopenia: Should we focus on excess oxidative damage or defective redox signalling? Mol Aspects Med 50:33–40.  https://doi.org/10.1016/j.mam.2016.05.002 CrossRefPubMedGoogle Scholar
  173. 173.
    Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M (2013) Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280(17):4294–4314.  https://doi.org/10.1111/febs.12253 CrossRefPubMedGoogle Scholar
  174. 174.
    Tan PL, Shavlakadze T, Grounds MD, Arthur PG (2015) Differential thiol oxidation of the signaling proteins Akt, PTEN or PP2A determines whether Akt phosphorylation is enhanced or inhibited by oxidative stress in C2C12 myotubes derived from skeletal muscle. Int J Biochem Cell Biol 62:72–79.  https://doi.org/10.1016/j.biocel.2015.02.015 CrossRefPubMedGoogle Scholar
  175. 175.
    Hudson MB, Smuder AJ, Nelson WB, Wiggs MP, Shimkus KL, Fluckey JD, Szeto HH, Powers SK (2015) Partial support ventilation and mitochondrial-targeted antioxidants protect against ventilator-induced decreases in diaphragm muscle protein synthesis. PLoS One 10(9):e0137693.  https://doi.org/10.1371/journal.pone.0137693 CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Kim RJ, Hah YS, Sung CM, Kang JR, Park HB (2014) Do antioxidants inhibit oxidative-stress-induced autophagy of tenofibroblasts? J Orthop Res 32(7):937–943.  https://doi.org/10.1002/jor.22608 CrossRefPubMedGoogle Scholar
  177. 177.
    Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26(7):1749–1760.  https://doi.org/10.1038/sj.emboj.7601623 CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Betters JL, Criswell DS, Shanely RA, Van Gammeren D, Falk D, Deruisseau KC, Deering M, Yimlamai T, Powers SK (2004) Trolox attenuates mechanical ventilation-induced diaphragmatic dysfunction and proteolysis. Am J Respir Crit Care Med 170(11):1179–1184.  https://doi.org/10.1164/rccm.200407-939OC CrossRefPubMedGoogle Scholar
  179. 179.
    Dargelos E, Brule C, Stuelsatz P, Mouly V, Veschambre P, Cottin P, Poussard S (2010) Up-regulation of calcium-dependent proteolysis in human myoblasts under acute oxidative stress. Exp Cell Res 316(1):115–125.  https://doi.org/10.1016/j.yexcr.2009.07.025 CrossRefPubMedGoogle Scholar
  180. 180.
    Choi MH, Ow JR, Yang ND, Taneja R (2016) Oxidative stress-mediated skeletal muscle degeneration: molecules, mechanisms, and therapies. Oxid Med Cell Longev 2016:6842568.  https://doi.org/10.1155/2016/6842568 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Giorgos K. Sakellariou
    • 1
  • McDonagh Brian 
    • 2
  1. 1.Oxford Innovation for Science and Technology LimitedOxfordUK
  2. 2.Discipline of Physiology, School of MedicineNUI GalwayGalwayIreland

Personalised recommendations