Muscle Atrophy pp 235-248 | Cite as

Ubiquitin-Proteasome Pathway and Muscle Atrophy

  • Rania Khalil
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1088)


Many systemic diseases are featured by muscle atrophy. Cellular proteins are modified by covalent attachment to a small protein known as ubiquitin (Ub) through ubiquitination. This ubiquitination process serves as signal for protein turnover that leads to rapid muscle mass lack. This process is carried out through an enzymatic cascade, which includes three groups of enzymes termed ubiquitin E1 (activating enzyme), ubiquitin E2 (conjugating enzyme), and ubiquitin E3 (ligase). There are several ways of ubiquitin conjugation driving to ubiquitination of specific proteins through ubiquitin-proteasome system (UPS). A lot of UPS genes stated to be included in skeletal muscle atrophy. These genes do their effects by modifying different processes which affect muscle mass including myofibrillar protein degradation, myogenesis inhibition, and even modulation of autophagy as well as upstream regulatory pathways.


Muscle atrophy Signal pathways Ubiquitin Ubiquitin ligases Ubiquitin-proteasome system 


  1. 1.
    Almilaji A, Pakladok T, Guo A, Munoz C, Föller M, Lang F (2012) Regulation of the glutamate transporter EAAT3 by mammalian target of rapamycin mTOR. Biochem Biophys Res Commun 421(2):159–163CrossRefGoogle Scholar
  2. 2.
    Atherton PJ, Greenhaff PL, Phillips SM, Bodine SC, Adams CM, Lang CH (2016) Control of skeletal muscle atrophy in response to disuse: clinical/preclinical contentions and fallacies of evidence. Am J Physiol Endocrinol Metab 311(3):E594–E604CrossRefGoogle Scholar
  3. 3.
    Baehr LM, West DWD, Marshall AG, Marcotte GR, Baar K, Bodine SC (2017) Muscle-specific and age-related changes in protein synthesis and protein degradation in response to hindlimb unloading in rats. J Appl Physiol (1985) 122:1336–1350CrossRefGoogle Scholar
  4. 4.
    Banerjee R, He J, Spaniel C, Quintana MT, Wang Z, Bain J, Newgard CB, Muehlbauer MJ, Willis MS (2015) Non-targeted metabolomics analysis of cardiac Muscle Ring Finger-1 (MuRF1), MuRF2, and MuRF3 in vivo reveals novel and redundant metabolic changes. Metabolomics 11:312–322CrossRefGoogle Scholar
  5. 5.
    Bell RA, Al-Khalaf M, Megeney LA (2016) The beneficial role of proteolysis in skeletal muscle growth and stress adaptation. Skelet Muscle 6:16CrossRefGoogle Scholar
  6. 6.
    Bilodeau PA, Coyne ES, Wing SS (2016) The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation. Am J Physiol Cell Physiol 311:C392–C403CrossRefGoogle Scholar
  7. 7.
    Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab 307:E469–E484CrossRefGoogle Scholar
  8. 8.
    Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294(5547):1704–1708CrossRefGoogle Scholar
  9. 9.
    Boutari C, Mantzoros CS (2017) Decreasing lean body mass with age: challenges and opportunities for novel therapies. Endocrinol Metab (Seoul) 32(4):422–425CrossRefGoogle Scholar
  10. 10.
    Bowen TS, Adams V, Werner S, Fischer T, Vinke P, Brogger MN, Mangner N, Linke A, Sehr P, Lewis J, Labeit D, Gasch A, Labeit S (2017) Small-molecule inhibition of MuRF1 attenuates skeletal muscle atrophy and dysfunction in cardiac cachexia. J Cachexia Sarcopenia Muscle 8(6):939–953CrossRefGoogle Scholar
  11. 11.
    Brocca L, Toniolo L, Reggiani C, Bottinelli R, Sandri M, Pellegrino MA (2017) Foxo dependent atrogenes vary among catabolic conditions and play a key role in muscle atrophy induced by hindlimb suspension. J Physiol 595(4):1143–1158CrossRefGoogle Scholar
  12. 12.
    Bustos F, de la Vega E, Cabezas F, Thompson J, Cornelison DD, Olwin BB, Yates JR 3rd, Olguín HC (2015) NEDD4 regulates PAX7 levels promoting activation of the differentiation program in skeletal muscle precursors. Stem Cells 33(10):3138–3151CrossRefGoogle Scholar
  13. 13.
    Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, Gartner C, Latres E, Goldberg AL (2009) During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol 185(6):1083–1095CrossRefGoogle Scholar
  14. 14.
    Cohen S, Zhai B, Gygi SP, Goldberg AL (2012) Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy. J Cell Biol 198(4):575–589CrossRefGoogle Scholar
  15. 15.
    Cohen S, Nathan JA, Goldberg AL (2015) Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov 14(1):58–74CrossRefGoogle Scholar
  16. 16.
    Crass MF 3rd, Lombardini JB (1977) Loss of cardiac muscle taurine after acute left ventricular ischemia. Life Sci 21:951–958CrossRefGoogle Scholar
  17. 17.
    Crossland H, Constantin-Teodosiu D, Gardiner SM, Constantin D, Greenhaff PL (2008) A potential role for Akt/FOXO signalling in both protein loss and the impairment of muscle carbohydrate oxidation during sepsis in rodent skeletal muscle. J Physiol 586(22):5589–5600CrossRefGoogle Scholar
  18. 18.
    de Theije CC, Langen RC, Lamers WH, Schols AM, Köhler SE (2013) Distinct responses of protein turnover regulatory pathways in hypoxia- and semistarvation-induced muscle atrophy. Am J Physiol Lung Cell Mol Physiol 305(1):L82–L91CrossRefGoogle Scholar
  19. 19.
    Dodd SL, Gagnon BJ, Senf SM, Hain BA, Judge AR (2010) Ros-mediated activation of NF-kappaB and Foxo during muscle disuse. Muscle Nerve 41:110–113CrossRefGoogle Scholar
  20. 20.
    Dou Y, Shen H, Feng D, Li H, Tian X, Zhang J, Wang Z, Chen G (2017) Tumor necrosis factor receptor-associated factor 6 participates in early brain injury after subarachnoid hemorrhage in rats through inhibiting autophagy and promoting oxidative stress. J Neurochem 142(3):478–492CrossRefGoogle Scholar
  21. 21.
    Drummond MJ, Timmerman KL, Markofski MM, Walker DK, Dickinson JM, Jamaluddin M, Brasier AR, Rasmussen BB, Volpi E (2013) Short-term bed rest increases TLR4 and IL-6 expression in skeletal muscle of older adults. Am J Physiol Regul Integr Comp Physiol 305(3):R216–R223CrossRefGoogle Scholar
  22. 22.
    Foletta VC, White LJ, Larsen AE, Léger B, Russell AP (2011) The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch 461(3):325–335CrossRefGoogle Scholar
  23. 23.
    Frisard MI, Wu Y, McMillan RP, Voelker KA, Wahlberg KA, Anderson AS, Boutagy N, Resendes K, Ravussin E, Hulver MW (2015) Low levels of lipopolysaccharide modulate mitochondrial oxygen consumption in skeletal muscle. Metabolism 64(3):416–427CrossRefGoogle Scholar
  24. 24.
    Fu TM, Shen C, Li Q, Zhang P, Wu H (2018) Mechanism of ubiquitin transfer promoted by TRAF6. Proc Natl Acad Sci U S A 115(8):1783–1788CrossRefGoogle Scholar
  25. 25.
    Fukata M, Vamadevan AS, Abreu MT (2009) Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders. Semin Immunol 21(4):242–253CrossRefGoogle Scholar
  26. 26.
    Fyfe JJ, Bishop DJ, Bartlett JD, Hanson ED, Anderson MJ, Garnham AP, Stepto NK (2018) Enhanced skeletal muscle ribosome biogenesis, yet attenuated mTORC1 and ribosome biogenesis-related signalling, following short-term concurrent versus single-mode resistance training. Sci Rep 8(1):560CrossRefGoogle Scholar
  27. 27.
    Gao Z, Gammoh N, Wong PM, Erdjument-Bromage H, Tempst P, Jiang X (2010) Processing of autophagic protein LC3 by the 20S proteasome. Autophagy 6(1):126–137CrossRefGoogle Scholar
  28. 28.
    Gill R, Hitchins L, Fletcher F, Dhoot GK (2010) Sulf1A and HGF regulate satellite-cell growth. J Cell Sci 123 .(Pt 11:1873–1883CrossRefGoogle Scholar
  29. 29.
    Guoqiang X, Jaffrey SR (2013) Proteomic identification of protein ubiquitination events. Biotechnol Genet Eng Rev 29(1):73–109CrossRefGoogle Scholar
  30. 30.
    Hindi SM, Sato S, Choi Y, Kumar A (2014) Distinct roles of TRAF6 at early and late stages of muscle pathology in the mdx model of Duchenne muscular dystrophy. Hum Mol Genet 23(6):1492–1505CrossRefGoogle Scholar
  31. 31.
    Jannig PR, Moreira JB, Bechara LR, Bozi LH, Bacurau AV, Monteiro AW, Dourado PM, Wisløff U, Brum PC (2014) Autophagy signaling in skeletal muscle of infarcted rats. PLoS One 9(1):e85820CrossRefGoogle Scholar
  32. 32.
    Jin S, Tian S, Chen Y, Zhang C, Xie W, Xia X, Cui J, Wang RF (2016) USP19 modulates autophagy and antiviral immune responses by deubiquitinating Beclin-1. EMBO J 35(8):866–880CrossRefGoogle Scholar
  33. 33.
    Jung SY, Ko YG (2010) TRIM72, a novel negative feedback regulator of myogenesis, is transcriptionally activated by the synergism of MyoD (or myogenin) and MEF2. Biochem Biophys Res Commun 396(2):238–245CrossRefGoogle Scholar
  34. 34.
    Kang P, Wang X, Wu H, Zhu H, Hou Y, Wang L, Liu Y (2017) Glutamate alleviates muscle protein loss by modulating TLR4, NODs, Akt/FOXO and mTOR signaling pathways in LPS-challenged piglets. PLoS One 12(8):e0182246CrossRefGoogle Scholar
  35. 35.
    Kawanishi N, Nozaki R, Naito H, Machida S (2017) TLR4-defective (C3H/HeJ) mice are not protected from cast immobilization-induced muscle atrophy. Physiol Rep 5(8):e13255CrossRefGoogle Scholar
  36. 36.
    Kessel A, Toubi E, Pavlotzky E, Mogilner J, Coran AG, Lurie M, Karry R, Sukhotnik I (2008) Treatment with glutamine is associated with down-regulation of Toll-like receptor-4 and myeloid differentiation factor 88 expression and decrease in intestinal mucosal injury caused by lipopolysaccharide endotoxaemia in a rat. Clin Exp Immunol 151(2):341–347CrossRefGoogle Scholar
  37. 37.
    Khalil RM, Abdo WS, Saad A, Khedr EG (2017) Muscle proteolytic system modulation through the effect of taurine on mice bearing muscular atrophy. Mol Cell Biochem 444:161. Epub ahead of printCrossRefPubMedGoogle Scholar
  38. 38.
    Kirkin V, McEwan DG, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34(3):259–269CrossRefGoogle Scholar
  39. 39.
    Lavine KJ, Sierra OL (2017) Skeletal muscle inflammation and atrophy in heart failure. Heart Fail Rev 22(2):179–189CrossRefGoogle Scholar
  40. 40.
    Lazzari E, Meroni G (2016) TRIM32 ubiquitin E3 ligase, one enzyme for several pathologies: from muscular dystrophy to tumours. Int J Biochem Cell Biol 79:469–477CrossRefGoogle Scholar
  41. 41.
    Liu CC, Lin YC, Chen YH, Chen CM, Pang LY, Chen HA, Wu PR, Lin MY, Jiang ST, Tsai TF, Chen RH (2016a) Cul3-KLHL20 ubiquitin ligase governs the turnover of ULK1 and VPS34 complexes to control autophagy termination. Mol Cell 61(1):84–97CrossRefGoogle Scholar
  42. 42.
    Liu Y, Wang X, Wu H, Chen S, Zhu H, Zhang J, Hou Y, Hu CA, Zhang G (2016b) Glycine enhances muscle protein mass associated with maintaining Akt-mTOR-FOXO1 signaling and suppressing TLR4 and NOD2 signaling in piglets challenged with LPS. Am J Physiol Regul Integr Comp Physiol 311(2):R365–R373CrossRefGoogle Scholar
  43. 43.
    Meng SJ, Yu LJ (2010) Oxidative stress, molecular inflammation and sarcopenia. Int J Mol Sci 11:1509–1526CrossRefGoogle Scholar
  44. 44.
    Mokhonova EI, Avliyakulov NK, Kramerova I, Kudryashova E, Haykinson MJ, Spencer MJ (2015) The E3 ubiquitin ligase TRIM32 regulates myoblast proliferation by controlling turnover of NDRG2. Hum Mol Genet 24(10):2873–2883CrossRefGoogle Scholar
  45. 45.
    Mulder E, Clement G, Linnarsson D, Paloski WH, Wuyts FP, Zange J, Frings-Meuthen P, Johannes B, Shushakov V, Grunewald M, Maassen N, Buehlmeier J, Rittweger J (2015) Musculoskeletal effects of 5 days of bed rest with and without locomotion replacement training. Eur J Appl Physiol 115:727–738CrossRefGoogle Scholar
  46. 46.
    Olguín HC, Pisconti A (2012) Marking the tempo for myogenesis: Pax7 and the regulation of muscle stem cell fate decisions. J Cell Mol Med 16(5):1013–1025CrossRefGoogle Scholar
  47. 47.
    Palade J, Djordjevic D, Hutchins ED, George RM, Cornelius JA, Rawls A, Ho JWK, Kusumi K, Wilson-Rawls J (2018) Identification of satellite cells from anole lizard skeletal muscle and demonstration of expanded musculoskeletal potential. Dev Biol 433(2):344–356CrossRefGoogle Scholar
  48. 48.
    Pallafacchina G, Blaauw B, Schiaffino S (2013) Role of satellite cells in muscle growth and maintenance of muscle mass. Nutr Metab Cardiovasc Dis 23(1):S12–S18CrossRefGoogle Scholar
  49. 49.
    Park CH, Ju TJ, Kim YW, Dan JM, Kim JY, Kim YD, Seo JS, Park SY (2013) Hemin, heme oxygenase-1 inducer, attenuates immobilization-induced skeletal muscle atrophy in mice. Life Sci 92(12):740–746CrossRefGoogle Scholar
  50. 50.
    Pearson DA, Wares CM, Mayer KA, Runyon MS, Studnek JR, Ward SL, Kraft KM, Heffner AC (2015) Troponin marker for acute coronary occlusion and patient outcome following cardiac arrest. West J Emerg Med 16(7):1007–1013CrossRefGoogle Scholar
  51. 51.
    Philpott DJ, Sorbara MT, Robertson SJ, Croitoru K, Girardin SE (2014, Jan) NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol 14(1):9–23. doi: Epub 2013 Dec 13. Review. Erratum in Nat Rev Immunol. 2014; 14(2):131.CrossRefGoogle Scholar
  52. 52.
    Pinheiro-Dardis CM, Gutierres VO, Assis RP, Peviani SM, Delfino GB, Durigan JLQ, Salvini TF, Baviera AM, Brunetti IL (2018) Insulin treatment reverses the increase in atrogin-1 expression in atrophied skeletal muscles of diabetic rats with acute joint inflammation. Ther Clin Risk Manag 14:275–286CrossRefGoogle Scholar
  53. 53.
    Schellekens WJ, van Hees HW, Vaneker M, Linkels M, Dekhuijzen PN, Scheffer GJ, van der Hoeven JG, Heunks LM (2012) Toll-like receptor 4 signaling in ventilator-induced diaphragm atrophy. Anesthesiology 117(2):329–338CrossRefGoogle Scholar
  54. 54.
    Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M (2013) Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280:4294–4314CrossRefGoogle Scholar
  55. 55.
    Song R, Peng W, Zhang Y, Lv F, Wu HK, Guo J, Cao Y, Pi Y, Zhang X, Jin L, Zhang M, Jiang P, Liu F, Meng S, Zhang X, Jiang P, Cao CM, Xiao RP (2013) Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders. Nature 494:375–379CrossRefGoogle Scholar
  56. 56.
    Song J, Saeman MR, Baer LA, Cai AR, Wade CE, Wolf SE (2017) Exercise altered the skeletal muscle MicroRNAs and gene expression profiles in burn rats with Hindlimb unloading. J Burn Care Res 38:11–19CrossRefGoogle Scholar
  57. 57.
    Sou YS, Tanida I, Komatsu M, Ueno T, Kominami E (2006) Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16. J Biol Chem 281(6):3017–3024CrossRefGoogle Scholar
  58. 58.
    Stevens-Lapsley JE, Ye F, Liu M, Borst SE, Conover C, Yarasheski KE, Walter GA, Sweeney HL, Vandenborne K (2010) Impact of viral-mediated IGF-I gene transfer on skeletal muscle following cast immobilization. Am J Physiol Endocrinol Metab 299:E730–E740CrossRefGoogle Scholar
  59. 59.
    Valimberti I, Tiberti M, Lambrughi M, Sarcevic B, Papaleo E (2015) E2 superfamily of ubiquitin-conjugating enzymes: constitutively active or activated through phosphorylation in the catalytic cleft. Sci Rep 5:14849CrossRefGoogle Scholar
  60. 60.
    Vélez EJ, Azizi S, Verheyden D, Salmerón C, Lutfi E, Sánchez-Moya A, Navarro I, Gutiérrez J, Capilla E (2017) Proteolytic systems’ expression during myogenesis and transcriptional regulation by amino acids in gilthead sea bream cultured muscle cells. PLoS One 12(12):e0187339CrossRefGoogle Scholar
  61. 61.
    Wiles B, Miao M, Coyne E, Larose L, Cybulsky AV, Wing SS (2015) USP19 deubiquitinating enzyme inhibits muscle cell differentiation by suppressing unfolded-protein response signaling. Mol Biol Cell 26(5):913–923CrossRefGoogle Scholar
  62. 62.
    Wilson EM, Rotwein P (2007) Selective control of skeletal muscle differentiation by Akt1. J Biol Chem 282:5106–5110CrossRefGoogle Scholar
  63. 63.
    Wing SS (2013) Deubiquitinases in skeletal muscle atrophy. Int J Biochem Cell Biol 45(10):2130–2135CrossRefGoogle Scholar
  64. 64.
    Wing SS, Lecker SH, Jagoe RT (2011) Proteolysis in illness-associated skeletal muscle atrophy: from pathways to networks. Crit Rev Clin Lab Sci 48(2):49–70CrossRefGoogle Scholar
  65. 65.
    Xiang P, Chen T, Mou Y, Wu H, Xie P, Lu G, Gong X, Hu Q, Zhang Y, Ji H (2015) NZ suppresses TLR4/NF-κB signalings and NLRP3 inflammasome activation in LPS-induced RAW264.7 macrophages. Inflamm Res 64(10):799–808CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Rania Khalil
    • 1
  1. 1.Biochemistry DepartmentDelta University for Science and TechnologyGamasaaEgypt

Personalised recommendations