Advertisement

Heart Genomics pp 153-177 | Cite as

The Genetic Paradigm of WT1 Gene in Heart Development and Cardiac Repair

  • Xueqing Liu
  • Min Chen
  • Xiaoming Deng
  • Zhaoping Ding
Chapter
Part of the Translational Bioinformatics book series (TRBIO, volume 16)

Abstract

Wilms’ tumor gene (WT1) is known as a tumor repressor gene causatively involved in not only eponymous nephroblastoma as initially described but also in many other incidences of pediatric malignancies. In recent decades, WT1 is also recognized as a master switch that tips the balance of epithelial-to-mesenchymal transition (EMT) that imparts the formation of multiple mesodermal organs in the embryonic development and tissue integrity in adulthood. In this chapter, we review the genetic paradigm and the developmental significance of WT1 and, particularly, recent findings demonstrating how the WT1-expressing cells transcriptionally contribute to the formation of the second heart field and constitute partially the cellular composition of the compact heart, including cardiomyocytes, cardiac fibroblasts, and coronary complex. Drawing on these findings, we highlight the epicardial redeployment of WT1 expression in response to ischemic injury and the reparative role of the fetal reprogramming that confers the formation of multipotent cardiac progenitors that may potentially be utilized for cell-based therapy for ischemic heart disease and heart failure.

Keywords

Wilms’ tumor gene factor 1 Epithelial-to-mesenchymal transition (EMT) Epicardial derive cells (EPDC) Cardiac stem cells Heart development Myocardial infarction Cardiac regeneration 

Notes

Acknowledgment

This study was funded by NSFC 81570244.

References

  1. Abu-Issa R. Heart fields: spatial polarity and temporal dynamics. Anat Rec. 2014;297:175–82.  https://doi.org/10.1002/ar.22831.CrossRefGoogle Scholar
  2. Abu-Issa R, Waldo K, Kirby ML. Heart fields: one, two or more? Dev Biol. 2004;272:281–5.  https://doi.org/10.1016/j.ydbio.2004.05.016.CrossRefPubMedGoogle Scholar
  3. Aguirre A, Sancho-Martinez I, Izpisua Belmonte JC. Reprogramming toward heart regeneration: stem cells and beyond. Cell Stem Cell. 2013;12:275–84.  https://doi.org/10.1016/j.stem.2013.02.008.CrossRefPubMedGoogle Scholar
  4. Asli NS, Xaymardan M, Harvey RP. Epicardial origin of resident mesenchymal stem cells in the adult mammalian heart. J Dev Biol. 2014;2:117–37.  https://doi.org/10.3390/jdb2020117.CrossRefGoogle Scholar
  5. Bharathavikru R, Dudnakova T, Aitken S, Slight J, Artibani M, Hohenstein P, Tollervey D, Hastie N. Transcription factor Wilms’ tumor 1 regulates developmental RNAs through 3′ UTR interaction. Genes Dev. 2017;31:347–52.  https://doi.org/10.1101/gad.291500.116.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bickmore WA, Oghene K, Little MH, Seawright A, van Heyningen V, Hastie ND. Modulation of DNA binding specificity by alternative splicing of the Wilms tumor wt1 gene transcript. Science. 1992;257:235–7.  https://doi.org/10.1126/science.1321494.CrossRefPubMedGoogle Scholar
  7. Bollini S, Smart N, Riley PR. Resident cardiac progenitor cells: at the heart of regeneration. J Mol Cell Cardiol. 2011;50:296–303. Special Issue: Cardiovascular Stem Cells Revisited.  https://doi.org/10.1016/j.yjmcc.2010.07.006.CrossRefPubMedGoogle Scholar
  8. Bollini S, Vieira JMN, Howard S, Dubè KN, Balmer GM, Smart N, Riley PR. Re-activated adult epicardial progenitor cells are a heterogeneous population molecularly distinct from their embryonic counterparts. Stem Cells Dev. 2014;23:1719–30.  https://doi.org/10.1089/scd.2014.0019.CrossRefPubMedGoogle Scholar
  9. Brade T, Pane LS, Moretti A, Chien KR, Laugwitz K-L. Embryonic heart progenitors and cardiogenesis. Cold Spring Harb Perspect Med. 2013;3:a013847.  https://doi.org/10.1101/cshperspect.a013847.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cai C-L, Molkentin JD. The elusive progenitor cell in cardiac regeneration: slip slidin’ away. Circ Res. 2017;120:400–6.  https://doi.org/10.1161/CIRCRESAHA.116.309710.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA, Rose EA, Kral A, Yeger H, Lewis WH, Jones C, Housman DE. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell. 1990;60:509–20.  https://doi.org/10.1016/0092-8674(90)90601-A.CrossRefPubMedGoogle Scholar
  12. Cano E, Carmona R, Muñoz-Chápuli R. Wt1-expressing progenitors contribute to multiple tissues in the developing lung. Am J Physiol Lung Cell Mol Physiol. 2013;305:L322–32.  https://doi.org/10.1152/ajplung.00424.2012.CrossRefPubMedGoogle Scholar
  13. Caricasole A, Duarte A, Larsson SH, Hastie ND, Little M, Holmes G, Todorov I, Ward A. RNA binding by the Wilms tumor suppressor zinc finger proteins. Proc Natl Acad Sci. 1996;93:7562–6.CrossRefGoogle Scholar
  14. Carpenter B, Hill KJ, Charalambous M, Wagner KJ, Lahiri D, James DI, Andersen JS, Schumacher V, Royer-Pokora B, Mann M, Ward A, Roberts SGE. BASP1 is a transcriptional cosuppressor for the Wilms’ tumor suppressor protein WT1. Mol Cell Biol. 2004;24:537–49.  https://doi.org/10.1128/MCB.24.2.537-549.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chau Y-Y, Hastie ND. The role of Wt1 in regulating mesenchyme in cancer, development, and tissue homeostasis. Trends Genet. 2012;28:515–24.  https://doi.org/10.1016/j.tig.2012.04.004.CrossRefPubMedGoogle Scholar
  16. Chau Y-Y, Brownstein D, Mjoseng H, Lee W-C, Buza-Vidas N, Nerlov C, Jacobsen SE, Perry P, Berry R, Thornburn A, Sexton D, Morton N, Hohenstein P, Freyer E, Samuel K, van’t Hof R, Hastie N. Acute multiple organ failure in adult mice deleted for the developmental regulator Wt1. PLoS Genet. 2011;7:e1002404.  https://doi.org/10.1371/journal.pgen.1002404.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ding Z, Temme S, Quast C, Friebe D, Jacoby C, Zanger K, Bidmon H-J, Grapentin C, Schubert R, Flögel U, Schrader J. Epicardium-derived cells formed after myocardial injury display phagocytic activity permitting in vivo labeling and tracking. Stem Cells Transl Med. 2016;5:639–50.  https://doi.org/10.5966/sctm.2015-0159.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dubé KN, Thomas TM, Munshaw S, Rohling M, Riley PR, Smart N. Recapitulation of developmental mechanisms to revascularize the ischemic heart. JCI Insight. 2017;2.  https://doi.org/10.1172/jci.insight.96800.
  19. Dueñas A, Aranega AE, Franco D. More than just a simple cardiac envelope; cellular contributions of the epicardium. Front Cell Dev Biol. 2017;5:44.  https://doi.org/10.3389/fcell.2017.00044.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Duim SN, Smits AM, Kruithof BPT, Goumans M-J. The roadmap of WT1 protein expression in the human fetal heart. J Mol Cell Cardiol. 2016;90:139–45.  https://doi.org/10.1016/j.yjmcc.2015.12.008.CrossRefPubMedGoogle Scholar
  21. Eschenhagen T, Bolli R, Braun T, Field LJ, Fleischmann BK, Frisén J, Giacca M, Hare JM, Houser S, Lee RT, Marbán E, Martin JF, Molkentin JD, Murry CE, Riley PR, Ruiz-Lozano P, Sadek HA, Sussman MA, Hill JA. Cardiomyocyte regeneration: a consensus statement. Circulation. 2017;136:680–6.  https://doi.org/10.1161/CIRCULATIONAHA.117.029343.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Essafi A, Webb A, Berry RL, Slight J, Burn SF, Spraggon L, Velecela V, Martinez-Estrada OM, Wiltshire JH, Roberts SGE, Brownstein D, Davies JA, Hastie ND, Hohenstein P. A Wt1-controlled chromatin switching mechanism underpins tissue-specific Wnt4 activation and repression. Dev Cell. 2011;21:559–74.  https://doi.org/10.1016/j.devcel.2011.07.014.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Flögel U, Su S, Kreideweiß I, Ding Z, Galbarz L, Fu J, Jacoby C, Witzke O, Schrader J. Noninvasive detection of graft rejection by in vivo 19F MRI in the early stage. Am J Transplant. 2011;11:235–44.  https://doi.org/10.1111/j.1600-6143.2010.03372.x.CrossRefPubMedGoogle Scholar
  24. Furtado MB, Costa MW, Pranoto EA, Salimova E, Pinto AR, Lam NT, Park A, Snider P, Chandran A, Harvey RP, Boyd R, Conway SJ, Pearson J, Kaye DM, Rosenthal NA. Cardiogenic genes expressed in cardiac fibroblasts contribute to heart development and repairnovelty and significance. Circ Res. 2014;114:1422–34.  https://doi.org/10.1161/CIRCRESAHA.114.302530.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Groot ACG, Peeters M-PFMV, Mentink MMT, Gourdie RG, Poelmann RE. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res. 1998;82:1043–52.  https://doi.org/10.1161/01.RES.82.10.1043.CrossRefGoogle Scholar
  26. Guadix JA, Orlova VV, Giacomelli E, Bellin M, Ribeiro MC, Mummery CL, Pérez-Pomares JM, Passier R. Human pluripotent stem cell differentiation into functional epicardial progenitor cells. Stem Cell Rep. 2017;9:1754–64.  https://doi.org/10.1016/j.stemcr.2017.10.023.CrossRefGoogle Scholar
  27. Haber DA, Buckler AJ. WT1: a novel tumor suppressor gene inactivated in Wilms’ tumor. New Biol. 1992;4:97–106.PubMedGoogle Scholar
  28. Haber DA, Park S, Maheswaran S, Englert C, Re GG, Hazen-Martin DJ, Sens DA, Garvin AJ. WT1-mediated growth suppression of Wilms tumor cells expressing a WT1 splicing variant. Science. 1993;262:2057–9.  https://doi.org/10.1126/science.8266105.CrossRefPubMedGoogle Scholar
  29. Hamilton TB, Barilla KC, Romaniuk PJ. High affinity binding sites for the Wilms’ tumour suppressor protein WT1. Nucleic Acids Res. 1995;23:277–84.  https://doi.org/10.1093/nar/23.2.277.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hammes A, Guo J-K, Lutsch G, Leheste J-R, Landrock D, Ziegler U, Gubler M-C, Schedl A. Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell. 2001;106:319–29.  https://doi.org/10.1016/S0092-8674(01)00453-6.CrossRefPubMedGoogle Scholar
  31. Hastie ND. Life, sex, and WT1 isoforms—three amino acids can make all the difference. Cell. 2001;106:391–4.  https://doi.org/10.1016/S0092-8674(01)00469-X.CrossRefPubMedGoogle Scholar
  32. Hastie ND. Wilms’ tumour 1 (WT1) in development, homeostasis and disease. Development. 2017;144:2862–72.  https://doi.org/10.1242/dev.153163.CrossRefPubMedGoogle Scholar
  33. Hewitt SM, Fraizer GC, Wu Y-J, Rauscher FJ, Saunders GF. Differential function of Wilms tumor gene WT1 splice isoforms in transcriptional regulation. J Biol Chem. 1996;271:8588–92.  https://doi.org/10.1074/jbc.271.15.8588.CrossRefPubMedGoogle Scholar
  34. Hohenstein P, Hastie ND. The many facets of the Wilms’ tumour gene, WT1. Hum Mol Genet. 2006;15:R196–201.  https://doi.org/10.1093/hmg/ddl196.CrossRefPubMedGoogle Scholar
  35. Huang GN, Thatcher JE, McAnally J, Kong Y, Qi X, Tan W, DiMaio JM, Amatruda JF, Gerard RD, Hill JA, Bassel-Duby R, Olson EN. C/EBP transcription factors mediate epicardial activation during heart development and injury. Science. 2012;338:1599–603.  https://doi.org/10.1126/science.1229765.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kann M, Ettou S, Jung YL, Lenz MO, Taglienti ME, Park PJ, Schermer B, Benzing T, Kreidberg JA. Genome-wide analysis of Wilms’ tumor 1-controlled gene expression in podocytes reveals key regulatory mechanisms. J Am Soc Nephrol. 2015;26:2097–104.  https://doi.org/10.1681/ASN.2014090940.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Keith MCL, Bolli R. “String Theory” of c-kitpos cardiac cells: a new paradigm regarding the nature of these cells that may reconcile apparently discrepant results. Circ Res. 2015;116:1216–30.  https://doi.org/10.1161/CIRCRESAHA.116.305557.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kennedy-Lydon T, Rosenthal N. Cardiac regeneration: all work and no repair? Sci Transl Med. 2017;9:eaad9019.  https://doi.org/10.1126/scitranslmed.aad9019.CrossRefPubMedGoogle Scholar
  39. Kim MK-H, McGarry TJ, Broin PÓ, Flatow JM, Golden AA-J, Licht JD. An integrated genome screen identifies the Wnt signaling pathway as a major target of WT1. Proc Natl Acad Sci. 2009;106:11154–9.  https://doi.org/10.1073/pnas.0901591106.CrossRefPubMedGoogle Scholar
  40. King-Underwood L, Pritchard-Jones K. Wilms’ tumor (WT1) gene mutations occur mainly in acute myeloid leukemia and may confer drug resistance. Blood. 1998;91:2961–8.PubMedGoogle Scholar
  41. Klamt B, Koziell A, Poulat F, Wieacker P, Scambler P, Berta P, Gessler M. Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1 +/−KTS splice isoforms. Hum Mol Genet. 1998;7:709–14.  https://doi.org/10.1093/hmg/7.4.709.CrossRefPubMedGoogle Scholar
  42. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R. WT-1 is required for early kidney development. Cell. 1993;74:679–91.  https://doi.org/10.1016/0092-8674(93)90515-R.CrossRefPubMedGoogle Scholar
  43. Kruithof BPT, van Wijk B, Somi S, Kruithof-de Julio M, Pérez Pomares JM, Weesie F, Wessels A, Moorman AFM, van den Hoff MJB. BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev Biol. 2006;295:507–22.  https://doi.org/10.1016/j.ydbio.2006.03.033.CrossRefPubMedGoogle Scholar
  44. Laflamme MA, Murry CE. Heart regeneration. Nature. 2011;473:326–35., nature10147.  https://doi.org/10.1038/nature10147.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Laity JH, Dyson HJ, Wright PE. Molecular basis for modulation of biological function by alternate splicing of the Wilms’ tumor suppressor protein. Proc Natl Acad Sci. 2000;97:11932–5.  https://doi.org/10.1073/pnas.97.22.11932.CrossRefPubMedGoogle Scholar
  46. Larsson SH, Charlieu J-P, Miyagawa K, Engelkamp D, Rassoulzadegan M, Ross A, Cuzin F, van Heyningen V, Hastie ND. Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing. Cell. 1995;81:391–401.  https://doi.org/10.1016/0092-8674(95)90392-5.CrossRefPubMedGoogle Scholar
  47. Laugwitz K-L, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, Lin L-Z, Cai C-L, Lu MM, Reth M, Platoshyn O, Yuan JX-J, Evans S, Chien KR. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature. 2005;433:647–53.  https://doi.org/10.1038/nature03215.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, Burns CG, Poss KD. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell. 2006;127:607–19.  https://doi.org/10.1016/j.cell.2006.08.052.CrossRefPubMedGoogle Scholar
  49. Lim J, Thiery JP. Epithelial-mesenchymal transitions: insights from development. Development. 2012;139:3471–86.  https://doi.org/10.1242/dev.071209.CrossRefPubMedGoogle Scholar
  50. Limana F, Zacheo A, Mocini D, Mangoni A, Borsellino G, Diamantini A, Mori RD, Battistini L, Vigna E, Santini M, Loiaconi V, Pompilio G, Germani A, Capogrossi MC. Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circ Res. 2007;101:1255–65.  https://doi.org/10.1161/CIRCRESAHA.107.150755.CrossRefPubMedGoogle Scholar
  51. Limana F, Bertolami C, Mangoni A, Di Carlo A, Avitabile D, Mocini D, Iannelli P, De Mori R, Marchetti C, Pozzoli O, Gentili C, Zacheo A, Germani A, Capogrossi MC. Myocardial infarction induces embryonic reprogramming of epicardial c-kit+ cells: role of the pericardial fluid. J Mol Cell Cardiol. 2010;48:609–18.  https://doi.org/10.1016/j.yjmcc.2009.11.008.CrossRefPubMedGoogle Scholar
  52. Limana F, Capogrossi MC, Germani A. The epicardium in cardiac repair: from the stem cell view. Pharmacol Ther Stem Cells. 2011;129:82–96.  https://doi.org/10.1016/j.pharmthera.2010.09.002.CrossRefGoogle Scholar
  53. Little M, Wells C. A clinical overview of WT1 gene mutations. Hum Mutat. 1997;9:209–25. https://doi.org/10.1002/(SICI)1098-1004(1997)9:3<209::AID-HUMU2>3.0.CO;2-2.CrossRefPubMedGoogle Scholar
  54. Liu Z, Wang L, Welch JD, Ma H, Zhou Y, Vaseghi HR, Yu S, Wall JB, Alimohamadi S, Zheng M, Yin C, Shen W, Prins JF, Liu J, Qian L. Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte. Nature. 2017;551:100–4., nature24454.  https://doi.org/10.1038/nature24454.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Martínez-Estrada OM, Lettice LA, Essafi A, Guadix JA, Slight J, Velecela V, Hall E, Reichmann J, Devenney PS, Hohenstein P, Hosen N, Hill RE, Muñoz-Chapuli R, Hastie ND. Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nat Genet. 2010;42:89.  https://doi.org/10.1038/ng.494.CrossRefPubMedGoogle Scholar
  56. Masters M, Riley PR. The epicardium signals the way towards heart regeneration. Stem Cell Res., Heart Regeneration and Rejuvenation. 2014;13:683–92.  https://doi.org/10.1016/j.scr.2014.04.007.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mayo MW, Wang C-Y, Drouin SS, Madrid LV, Marshall AF, Reed JC, Weissman BE, Baldwin AS. WT1 modulates apoptosis by transcriptionally upregulating the bcl-2 proto-oncogene. EMBO J. 1999;18:3990–4003.  https://doi.org/10.1093/emboj/18.14.3990.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Moore AW, McInnes L, Kreidberg J, Hastie ND, Schedl A. YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development. 1999;126:1845–57.PubMedGoogle Scholar
  59. Moore-Morris T, Cattaneo P, Puceat M, Evans SM. Origins of cardiac fibroblasts. J Mol Cell Cardiol. 2016;91:1–5.  https://doi.org/10.1016/j.yjmcc.2015.12.031.CrossRefPubMedGoogle Scholar
  60. Morrison AA, Viney RL, Ladomery MR. The post-transcriptional roles of WT1, a multifunctional zinc-finger protein. Biochim Biophys Acta BBA Rev Cancer. 2008;1785:55–62.  https://doi.org/10.1016/j.bbcan.2007.10.002.CrossRefGoogle Scholar
  61. Niksic M, Slight J, Sanford JR, Caceres JF, Hastie ND. The Wilms’ tumour protein (WT1) shuttles between nucleus and cytoplasm and is present in functional polysomes. Hum Mol Genet. 2004;13:463–71.  https://doi.org/10.1093/hmg/ddh040.CrossRefPubMedGoogle Scholar
  62. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701.  https://doi.org/10.1038/35070587.CrossRefPubMedGoogle Scholar
  63. Parenti R, Salvatorelli L, Musumeci G, Parenti C, Giorlandino A, Motta F, Magro G. Wilms’ tumor 1 (WT1) protein expression in human developing tissues. Acta Histochem., Immunomarkers in human developing and pediatric neoplastic tissues. 2015;117:386–96.  https://doi.org/10.1016/j.acthis.2015.03.009.CrossRefPubMedGoogle Scholar
  64. Park S, Schalling M, Bernard A, Maheswaran S, Shipley GC, Roberts D, Fletcher J, Shipman R, Rheinwald J, Demetri G, Griffin J, Minden M, Housman DE, Haber DA. The Wilms tumour gene WT1 is expressed in murine mesoderm–derived tissues and mutated in a human mesothelioma. Nat Genet. 1993;4:415.  https://doi.org/10.1038/ng0893-415.CrossRefPubMedGoogle Scholar
  65. Patek CE, Little MH, Fleming S, Miles C, Charlieu J-P, Clarke AR, Miyagawa K, Christie S, Doig J, Harrison DJ, Porteous DJ, Brookes AJ, Hooper ML, Hastie ND. A zinc finger truncation of murine WT1 results in the characteristic urogenital abnormalities of Denys– Drash syndrome. Proc Natl Acad Sci. 1999;96:2931–6.  https://doi.org/10.1073/pnas.96.6.2931.CrossRefPubMedGoogle Scholar
  66. Rauscher FJ, Morris JF, Tournay OE, Cook DM, Curran T. Binding of the Wilms’ tumor locus zinc finger protein to the EGR-1 consensus sequence. Science. 1990;250:1259–62.  https://doi.org/10.1126/science.2244209.CrossRefPubMedGoogle Scholar
  67. Rudat C, Kispert A. Wt1 and epicardial fate mapping novelty and significance. Circ Res. 2012;111:165–9.  https://doi.org/10.1161/CIRCRESAHA.112.273946.CrossRefPubMedGoogle Scholar
  68. Scharnhorst V, van der Eb AJ, Jochemsen AG. WT1 proteins: functions in growth and differentiation. Gene. 2001;273:141–61.  https://doi.org/10.1016/S0378-1119(01)00593-5.CrossRefPubMedGoogle Scholar
  69. Scholz H, Kirschner KM. A role for the Wilms’ tumor protein WT1 in organ development. Physiology. 2005;20:54–9.  https://doi.org/10.1152/physiol.00048.2004.CrossRefPubMedGoogle Scholar
  70. Scholz H, Wagner K-D, Wagner N. Role of the Wilms’ tumour transcription factor, Wt1, in blood vessel formation. Pflüg Arch Eur J Physiol. 2009;458:315–23.  https://doi.org/10.1007/s00424-008-0621-3.CrossRefGoogle Scholar
  71. Silberstein GB, Horn KV, Strickland P, Roberts CT, Daniel CW. Altered expression of the WT1 Wilms tumor suppressor gene in human breast cancer. Proc Natl Acad Sci. 1997;94:8132–7.CrossRefGoogle Scholar
  72. Smart N, Riley PR. Derivation of epicardium-derived progenitor cells (EPDCs) from adult epicardium. In: Current protocols in stem cell biology. Wiley; 2007,  https://doi.org/10.1002/9780470151808.sc02c02s8.
  73. Smart N, Riley PR. The epicardium as a candidate for heart regeneration. Futur Cardiol. 2011;8:53–69.  https://doi.org/10.2217/fca.11.87.CrossRefGoogle Scholar
  74. Smart N, Risebro CA, Melville AAD, Moses K, Schwartz RJ, Chien KR, Riley PR. Thymosin β4 induces adult epicardial progenitor mobilization and neovascularization. Nature. 2007;445:177.  https://doi.org/10.1038/nature05383.CrossRefGoogle Scholar
  75. Smart N, Bollini S, Dubé KN, Vieira JM, Zhou B, Davidson S, Yellon D, Riegler J, Price AN, Lythgoe MF, Pu WT, Riley PR. De novo cardiomyocytes from within the activated adult heart after injury. Nature. 2011;474:640–4.  https://doi.org/10.1038/nature10188.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Smart N, Bollini S, Dubé KN, Vieira JM, Zhou B, Riegler J, Price AN, Lythgoe MF, Davidson S, Yellon D, Pu WT, Riley PR. Myocardial regeneration: expanding the repertoire of thymosin β4 in the ischemic heart. Ann N Y Acad Sci. 2012;1269:92–101.  https://doi.org/10.1111/j.1749-6632.2012.06708.x.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Smits AM, Riley PR. Epicardium-derived heart repair. J Dev Biol. 2014;2:84–100.  https://doi.org/10.3390/jdb2020084.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Stoll R, Lee BM, Debler EW, Laity JH, Wilson IA, Dyson HJ, Wright PE. Structure of the Wilms tumor suppressor protein zinc finger domain bound to DNA. J Mol Biol. 2007;372:1227–45.  https://doi.org/10.1016/j.jmb.2007.07.017.CrossRefPubMedGoogle Scholar
  79. Takeichi M, Nimura K, Mori M, Nakagami H, Kaneda Y. The transcription factors Tbx18 and Wt1 control the epicardial epithelial-mesenchymal transition through bi-directional regulation of slug in murine primary epicardial cells. PLoS One. 2013;8:e57829.  https://doi.org/10.1371/journal.pone.0057829.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Temme S, Friebe D, Schmidt T, Poschmann G, Hesse J, Steckel B, Stühler K, Kunz M, Dandekar T, Ding Z, Akhyari P, Lichtenberg A, Schrader J. Genetic profiling and surface proteome analysis of human atrial stromal cells and rat ventricular epicardium-derived cells reveals novel insights into their cardiogenic potential. Stem Cell Res. 2017;25:183–90.  https://doi.org/10.1016/j.scr.2017.11.006.CrossRefPubMedGoogle Scholar
  81. Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.  https://doi.org/10.1016/j.cell.2009.11.007.CrossRefPubMedGoogle Scholar
  82. Tian X, Pu WT, Zhou B. Cellular origin and developmental program of coronary angiogenesis. Circ Res. 2015;116:515–30.  https://doi.org/10.1161/CIRCRESAHA.116.305097.CrossRefPubMedGoogle Scholar
  83. Toska E, Roberts SGE. Mechanisms of transcriptional regulation by WT1 (Wilms’ tumour 1). Biochem J. 2014;461:15–32.  https://doi.org/10.1042/BJ20131587.CrossRefPubMedPubMedCentralGoogle Scholar
  84. van Tuyn J, Atsma DE, Winter EM, van der Velde-van Dijke I, Pijnappels DA, Bax NAM, Knaän-Shanzer S, Gittenberger-de Groot AC, Poelmann RE, van der Laarse A, van der Wall EE, Schalij MJ, de Vries AAF. Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. Stem Cells. 2007;25:271–8.  https://doi.org/10.1634/stemcells.2006-0366.CrossRefGoogle Scholar
  85. van Wijk B, Gunst QD, Moorman AFM, van den Hoff MJB. Cardiac regeneration from activated epicardium. PLoS One. 2012;7:e44692.  https://doi.org/10.1371/journal.pone.0044692.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Velecela V, Lettice LA, Chau Y-Y, Slight J, Berry RL, Thornburn A, Gunst QD, van den Hoff M, Reina M, Martínez FO, Hastie ND, Martínez-Estrada OM. WT1 regulates the expression of inhibitory chemokines during heart development. Hum Mol Genet. 2013;22:5083–95.  https://doi.org/10.1093/hmg/ddt358.CrossRefPubMedGoogle Scholar
  87. Vieira JM, Riley PR. Epicardium-derived cells: a new source of regenerative capacity. Heart. 2011;97:15–9.  https://doi.org/10.1136/hrt.2010.193292.CrossRefPubMedGoogle Scholar
  88. Vieira JM, Howard S, del Campo CV, Bollini S, Dubé KN, Masters M, Barnette DN, Rohling M, Sun X, Hankins LE, Gavriouchkina D, Williams R, Metzger D, Chambon P, Sauka-Spengler T, Davies B, Riley PR. BRG1-SWI/SNF-dependent regulation of the Wt1 transcriptional landscape mediates epicardial activity during heart development and disease. Nat Commun. 2017;8:16034.  https://doi.org/10.1038/ncomms16034.CrossRefPubMedPubMedCentralGoogle Scholar
  89. von Gise A, Pu WT. Endocardial and epicardial epithelial to mesenchymal transitions in heart development and disease. Circ Res. 2012;110:1628–45.  https://doi.org/10.1161/CIRCRESAHA.111.259960.CrossRefGoogle Scholar
  90. von Gise A, Zhou B, Honor LB, Ma Q, Petryk A, Pu WT. WT1 regulates epicardial epithelial to mesenchymal transition through β-catenin and retinoic acid signaling pathways. Dev Biol. 2011;356:421–31.  https://doi.org/10.1016/j.ydbio.2011.05.668.CrossRefGoogle Scholar
  91. Wagner N, Wagner KD, Schley G, Coupland SE, Heimann H, Grantyn R, Scholz H. The Wilms’ tumor suppressor Wt1 is associated with the differentiation of retinoblastoma cells. Cell Growth Differ Mol Biol J Am Assoc Cancer Res. 2002;13:297–305.Google Scholar
  92. Wagner K-D, Wagner N, Schedl A. The complex life of WT1. J Cell Sci. 2003a;116:1653–8.  https://doi.org/10.1242/jcs.00405.CrossRefPubMedGoogle Scholar
  93. Wagner K-D, Wagner N, Wellmann S, Schley G, Bondke A, Theres H, Scholz H. Oxygen-regulated expression of the Wilms’ tumor suppressor Wt1 involves hypoxia-inducible factor-1 (HIF-1). FASEB J. 2003b;17:1364–6.  https://doi.org/10.1096/fj.02-1065fje.CrossRefPubMedGoogle Scholar
  94. Weeke-Klimp A, Bax NAM, Bellu AR, Winter EM, Vrolijk J, Plantinga J, Maas S, Brinker M, Mahtab EAF, Gittenberger-de Groot AC, van Luyn MJA, Harmsen MC, Lie-Venema H. Epicardium-derived cells enhance proliferation, cellular maturation and alignment of cardiomyocytes. J Mol Cell Cardiol. 2010;49:606–16.  https://doi.org/10.1016/j.yjmcc.2010.07.007.CrossRefPubMedGoogle Scholar
  95. Wessels A, Pérez-Pomares JM. The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol. 2004;276A:43–57.  https://doi.org/10.1002/ar.a.10129.CrossRefGoogle Scholar
  96. Wilhelm D, Englert C. The Wilms tumor suppressor WT1 regulates early gonad development by activation of Sf1. Genes Dev. 2002;16:1839–51.  https://doi.org/10.1101/gad.220102.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Winter EM, Grauss RW, Hogers B, van Tuyn J, van der Geest R, Lie-Venema H, Steijn RV, Maas S, DeRuiter MC, deVries A a F, Steendijk P, Doevendans PA, van der Laarse A, Poelmann RE, Schalij MJ, Atsma DE, Groot ACG. Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart. Circulation. 2007;116:917–27.  https://doi.org/10.1161/CIRCULATIONAHA.106.668178.CrossRefPubMedGoogle Scholar
  98. Witty AD, Mihic A, Tam RY, Fisher SA, Mikryukov A, Shoichet MS, Li R-K, Kattman SJ, Keller G. Generation of the epicardial lineage from human pluripotent stem cells. Nat Biotechnol. 2014;32:1026.  https://doi.org/10.1038/nbt.3002.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Wu SM, Fujiwara Y, Cibulsky SM, Clapham DE, Lien C, Schultheiss TM, Orkin SH. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell. 2006;127:1137–50.  https://doi.org/10.1016/j.cell.2006.10.028.CrossRefPubMedGoogle Scholar
  100. Wu SM, Chien KR, Mummery C. Origins and fates of cardiovascular progenitor cells. Cell. 2008;132:537–43.  https://doi.org/10.1016/j.cell.2008.02.002.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Ye Y, Raychaudhuri B, Gurney A, Campbell CE, Williams BR. Regulation of WT1 by phosphorylation: inhibition of DNA binding, alteration of transcriptional activity and cellular translocation. Regulation of WT1 by phosphorylation: inhibition of DNA binding, alteration of transcriptional activity and cellular translocation. EMBO J. 1996;15:5606–15.CrossRefGoogle Scholar
  102. Zhang Y, Mignone J, MacLellan WR. Cardiac regeneration and stem cells. Physiol Rev. 2015;95:1189–204.  https://doi.org/10.1152/physrev.00021.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Zhao J, Cao H, Tian L, Huo W, Zhai K, Wang P, Ji G, Ma Y. Efficient differentiation of TBX18+/WT1+ epicardial-like cells from human pluripotent stem cells using small molecular compounds. Stem Cells Dev. 2016;26:528–40.  https://doi.org/10.1089/scd.2016.0208.CrossRefPubMedGoogle Scholar
  104. Zhou B, Pu WT. More than a cover: epicardium as a novel source of cardiac progenitor cells. Regen Med. 2008;3:633–5.  https://doi.org/10.2217/17460751.3.5.633.CrossRefPubMedGoogle Scholar
  105. Zhou B, Pu WT. Genetic Cre-loxP assessment of epicardial cell fate using Wt1-driven Cre alleles. Circ Res. 2012a;111:e276–80.  https://doi.org/10.1161/CIRCRESAHA.112.275784.CrossRefPubMedPubMedCentralGoogle Scholar
  106. Zhou B, Pu WT. Isolation and characterization of embryonic and adult epicardium and epicardium-derived cells. In: Cardiovascular development, methods in molecular biology. Totowa: Humana Press; 2012b. pp. 155–168.  https://doi.org/10.1007/978-1-61779-523-7_15.Google Scholar
  107. Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, Jiang D, von Gise A, Ikeda S, Chien KR, Pu WT. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008;454:109.  https://doi.org/10.1038/nature07060.CrossRefPubMedPubMedCentralGoogle Scholar
  108. Zhou B, von Gise A, Ma Q, Hu YW, Pu WT. Genetic fate mapping demonstrates contribution of epicardium-derived cells to the annulus fibrosis of the mammalian heart. Dev Biol. 2010;338:251–61.  https://doi.org/10.1016/j.ydbio.2009.12.007.CrossRefPubMedGoogle Scholar
  109. Zhou B, Honor LB, He H, Ma Q, Oh J-H, Butterfield C, Lin R-Z, Melero-Martin JM, Dolmatova E, Duffy HS, von Gise A, Zhou P, Hu YW, Wang G, Zhang B, Wang L, Hall JL, Moses MA, McGowan FX, Pu WT. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J Clin Invest. 2011;121:1894–904.  https://doi.org/10.1172/JCI45529.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Zhou B, Honor LB, Ma Q, Oh J-H, Lin R-Z, Melero-Martin JM, von Gise A, Zhou P, Hu T, He L, Wu KH, Zhang H, Zhang Y, Pu WT. Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes. J Mol Cell Cardiol. 2012;52:43–7.  https://doi.org/10.1016/j.yjmcc.2011.08.020.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Xueqing Liu
    • 1
  • Min Chen
    • 2
  • Xiaoming Deng
    • 3
  • Zhaoping Ding
    • 3
    • 4
  1. 1.Department of CardiologyDanyang People’s HospitalDanyangChina
  2. 2.Department of Physiology, School of MedicineJiangsu UniversityZhenjiangChina
  3. 3.Department of Anesthesiology, Changhai HospitalSecond Military Medical UniversityShanghaiChina
  4. 4.Institute of Molecular CardiologyHeinrich-Heine University DüsseldorfDüsseldorfGermany

Personalised recommendations