Advertisement

Heart Genomics pp 337-374 | Cite as

Gene Therapy and Genomic Application in Heart Disease

  • Feng Zhu
  • Kai Huang
Chapter
Part of the Translational Bioinformatics book series (TRBIO, volume 16)

Abstract

Heart disease is a leading cause of mortality all over the world. The mortality for all cardiovascular diseases was 262 per 100,000 persons, accounting for 1 of every 3 deaths in China (Weiwei et al. 2016). Pharmacologic drugs for heart diseases have multiple systemic side effects and limitations, and there is an unmet need for improving clinical outcomes without side effects. Interventional cardiovascular therapy including percutaneous coronary intervention (PCI), pacemaker implantation, and cardiac ablation has improved the prognosis for patients with heart diseases. However, large numbers of patients with heart diseases are still left with significant morbidity despite those therapies. This limitation in available therapies has prompted extensive investigation of new treatments. The improved understanding of the molecular basis of the heart diseases and the development of gene transferring vehicles and delivering systems have given researchers the tools to target-specific genes and pathways which play a role in heart diseases. The first clinical trial of gene therapy for heart disease was initiated more than two decades ago. Through the use of a vector, a new copy of a gene or relevant nucleotide sequence is inserted into a patient’s heart tissue to either compensate or correct for the deleted or defective version that is causing the disease or enhance an existing version. The development of gene therapy in heart disease depends on the development of gene delivering systems, achievement of highly efficient, long-term and targeted expression to heart tissue, as well as design of gene transferring vectors that are safe for human administration.

Notes

Acknowledgment

The authors would like to acknowledge financial support from the National Natural Science Foundation, China (No. 81570348).

References

  1. Adams D, et al. Trial design and rationale for APOLLO, a phase 3, placebo-controlled study of patisiran in patients with hereditary ATTR amyloidosis with polyneuropathy. BMC Neurol. 2017;17(1):181.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Askari AT, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003;362(9385):697–703.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Asmann YW, et al. TREAT: a bioinformatics tool for variant annotations and visualizations in targeted and exome sequencing data. Bioinformatics. 2012;28(2):277–8.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Asokan A, Schaffer DV, Samulski RJ. The AAV vector toolkit: poised at the clinical crossroads. Mol Ther. 2012;20(4):699–708.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Authors/Task Force members, et al. ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J., 2014. 2014;35(39):2733–79.CrossRefGoogle Scholar
  6. Ayers GM, et al. Amiodarone instilled into the canine pericardial sac migrates transmurally to produce electrophysiologic effects and suppress atrial fibrillation. J Cardiovasc Electrophysiol. 1996;7(8):713–21.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bamshad MJ, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12(11):745–55.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Barrangou R. The roles of CRISPR-Cas systems in adaptive immunity and beyond. Curr Opin Immunol. 2015;32:36–41.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bernstein E, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409(6818):363–6.CrossRefGoogle Scholar
  10. Billinger M, et al. Physiologically assessed coronary collateral flow and adverse cardiac ischemic events: a follow-up study in 403 patients with coronary artery disease. J Am Coll Cardiol. 2002;40(9):1545–50.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bitinaite J, et al. FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A. 1998;95(18):10570–5.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bleul CC, et al. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med. 1996;184(3):1101–9.CrossRefGoogle Scholar
  13. Boekstegers P, et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Ther. 2000;7(3):232–40.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Brooks AR, et al. Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. J Gene Med. 2004;6(4):395–404.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Buxbaum JN, Reixach N. Transthyretin: the servant of many masters. Cell Mol Life Sci. 2009;66(19):3095–101.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chandrasegaran S, Smith J. Chimeric restriction enzymes: what is next? Biol Chem. 1999;380(7–8):841–8.PubMedPubMedCentralGoogle Scholar
  17. Cheng YC, et al. VarioWatch: providing large-scale and comprehensive annotations on human genomic variants in the next generation sequencing era. Nucleic Acids Res. 2012;40(Web Server issue):W76–81.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chung ES, et al. Changes in ventricular remodelling and clinical status during the year following a single administration of stromal cell-derived factor-1 non-viral gene therapy in chronic ischaemic heart failure patients: the STOP-HF randomized phase II trial. Eur Heart J. 2015;36(33):2228–38.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Coelho T, et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med. 2013;369(9):819–29.CrossRefGoogle Scholar
  20. Collet JP, et al. Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet. 2009;373(9660):309–17.PubMedCrossRefPubMedCentralGoogle Scholar
  21. de Groote P, et al. Association between beta-1 and beta-2 adrenergic receptor gene polymorphisms and the response to beta-blockade in patients with stable congestive heart failure. Pharmacogenet Genomics. 2005;15(3):137–42.PubMedCrossRefPubMedCentralGoogle Scholar
  22. de Magalhaes JP, Finch CE, Janssens G. Next-generation sequencing in aging research: emerging applications, problems, pitfalls and possible solutions. Ageing Res Rev. 2010;9(3):315–23.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974;71(10):3971–5.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dominissini D, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485(7397):201–6.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Dunbar CE, et al. Gene therapy comes of age. Science. 2018;359(6372):pii: eaan4672.CrossRefGoogle Scholar
  26. Edelberg JM, et al. Molecular enhancement of porcine cardiac chronotropy. Heart. 2001;86(5):559–62.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Emani SM, et al. Catheter-based intracoronary myocardial adenoviral gene delivery: importance of intraluminal seal and infusion flow rate. Mol Ther 2003;8:306–313.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Firth HV, et al. DECIPHER: database of chromosomal imbalance and phenotype in humans using Ensembl resources. Am J Hum Genet. 2009;84(4):524–33.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fu W, et al. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature. 2013;493(7431):216–20.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Fuchs S, et al. A randomized, double-blind, placebo-controlled, multicenter, pilot study of the safety and feasibility of catheter-based intramyocardial injection of AdVEGF121 in patients with refractory advanced coronary artery disease. Catheter Cardiovasc Interv. 2006;68(3):372–8.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gao M, et al. Increased expression of adenylylcyclase type VI proportionately increases beta-adrenergic receptor-stimulated production of cAMP in neonatal rat cardiac myocytes. Proc Natl Acad Sci U S A. 1998;95(3):1038–43.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Greenberg B, et al. Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet. 2016;387(10024):1178–86.PubMedCrossRefGoogle Scholar
  33. Greenblatt MS, et al. Locus-specific databases and recommendations to strengthen their contribution to the classification of variants in cancer susceptibility genes. Hum Mutat. 2008;29(11):1273–81.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Grines CL, et al. Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris. Circulation. 2002;105(11):1291–7.PubMedCrossRefGoogle Scholar
  35. Grines CL, et al. A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J Am Coll Cardiol. 2003;42(8):1339–47.PubMedCrossRefGoogle Scholar
  36. Gudbjartsson DF, et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature. 2007;448(7151):353–7.PubMedCrossRefGoogle Scholar
  37. Hacein-Bey-Abina S, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302(5644):415–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hajjar RJ, et al. Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. J Card Fail. 2008;14(5):355–67.PubMedCrossRefGoogle Scholar
  39. Hammond HK, et al. Intracoronary gene transfer of adenylyl cyclase 6 in patients with heart failure: a randomized clinical trial. JAMA Cardiol. 2016;1(2):163–71.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hansen JF. Coronary collateral circulation: clinical significance and influence on survival in patients with coronary artery occlusion. Am Heart J. 1989;117(2):290–5.PubMedCrossRefGoogle Scholar
  41. Hartiala J, et al. The genetic architecture of coronary artery disease: current knowledge and future opportunities. Curr Atheroscler Rep. 2017;19(2):6.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hartikainen J, et al. Adenoviral intramyocardial VEGF-DDeltaNDeltaC gene transfer increases myocardial perfusion reserve in refractory angina patients: a phase I/IIa study with 1-year follow-up. Eur Heart J. 2017;38(33):2547–55.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hastie E, Samulski RJ. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success – a personal perspective. Hum Gene Ther. 2015;26(5):257–65.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hawkins PN, et al. Evolving landscape in the management of transthyretin amyloidosis. Ann Med. 2015;47(8):625–38.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hayward C, Patel H, Lyon A. Gene therapy in heart failure. SERCA2a as a therapeutic target. Circ J. 2014;78(11):2577–87.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hedman M, et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation. 2003;107(21):2677–83.CrossRefGoogle Scholar
  47. Henry TD, et al. Effects of Ad5FGF-4 in patients with angina: an analysis of pooled data from the AGENT-3 and AGENT-4 trials. J Am Coll Cardiol. 2007;50(11):1038–46.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet. 2005;6(2):95–108.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Holmes MV, et al. CYP2C19 genotype, clopidogrel metabolism, platelet function, and cardiovascular events: a systematic review and meta-analysis. JAMA. 2011;306(24):2704–14.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327(5962):167–70.CrossRefGoogle Scholar
  51. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262–78.PubMedPubMedCentralCrossRefGoogle Scholar
  52. International Warfarin Pharmacogenetics Consortium, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360(8):753–64.CrossRefGoogle Scholar
  53. Ishikawa K, et al. Gene delivery methods in cardiac gene therapy. J Gene Med. 2011;13(10):566–72.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Jamuar SS, Tan EC. Clinical application of next-generation sequencing for Mendelian diseases. Hum Genomics. 2015;9:10.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jaski BE, et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID trial), a first-in-human phase 1/2 clinical trial. J Card Fail. 2009;15(3):171–81.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Johnson JA, Cavallari LH. Pharmacogenetics and cardiovascular disease – implications for personalized medicine. Pharmacol Rev. 2013;65(3):987–1009.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013;14(1):49–55.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kaski JC, Consuegra-Sanchez L. Evaluation of ASPIRE trial: a phase III pivotal registration trial, using intracoronary administration of Generx (Ad5FGF4) to treat patients with recurrent angina pectoris. Expert Opin Biol Ther. 2013;13(12):1749–53.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Kastrup J, et al. Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris A randomized double-blind placebo-controlled study: the Euroinject One trial. J Am Coll Cardiol. 2005;45(7):982–8.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kathiresan S, Srivastava D. Genetics of human cardiovascular disease. Cell. 2012;148(6):1242–57.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Katz MG, et al. Gene delivery technologies for cardiac applications. Gene Ther. 2012;19(6):659–69.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kettlewell S, et al. S100A1 increases the gain of excitation-contraction coupling in isolated rabbit ventricular cardiomyocytes. J Mol Cell Cardiol. 2005;39(6):900–10.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Khurana R, et al. Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation. 2005;112(12):1813–24.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kimura H. Histone modifications for human epigenome analysis. J Hum Genet. 2013;58(7):439–45.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Koransky ML, Robbins RC, Blau HM. VEGF gene delivery for treatment of ischemic cardiovascular disease. Trends Cardiovasc Med. 2002;12(3):108–14.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kornowski R, et al. Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. Results in normal and ischemic porcine models. J Am Coll Cardiol. 2000;35(4):1031–9.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Kranias EG, Hajjar RJ. Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circ Res. 2012;110(12):1646–60.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lai NC, et al. Intracoronary delivery of adenovirus encoding adenylyl cyclase VI increases left ventricular function and cAMP-generating capacity. Circulation. 2000;102(19):2396–401.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Lai NC, et al. Intracoronary adenovirus encoding adenylyl cyclase VI increases left ventricular function in heart failure. Circulation. 2004;110(3):330–6.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Laitinen M, et al. Catheter-mediated vascular endothelial growth factor gene transfer to human coronary arteries after angioplasty. Hum Gene Ther. 2000;11(2):263–70.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Landrum MJ, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016;44(D1):D862–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Lappalainen I, et al. DbVar and DGVa: public archives for genomic structural variation. Nucleic Acids Res. 2013;41(Database issue):D936–41.PubMedPubMedCentralGoogle Scholar
  73. Laufer BI, Singh SM. Strategies for precision modulation of gene expression by epigenome editing: an overview. Epigenetics Chromatin. 2015;8:34.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lavu M, Gundewar S, Lefer DJ. Gene therapy for ischemic heart disease. J Mol Cell Cardiol. 2011;50(5):742–50.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Lee CJ, et al. Promoter-specific lentivectors for long-term, cardiac-directed therapy of Fabry disease. J Cardiol. 2011;57(1):115–22.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Lek M, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Li Y, Tollefsbol TO. DNA methylation detection: bisulfite genomic sequencing analysis. Methods Mol Biol. 2011;791:11–21.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Li X, Xiong X, Yi C. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods. 2016;14(1):23–31.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Licht K, Jantsch MF. Rapid and dynamic transcriptome regulation by RNA editing and RNA modifications. J Cell Biol. 2016;213(1):15–22.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Loebstein R, et al. A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance. Blood. 2007;109(6):2477–80.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Lorden ER, Levinson HM, Leong KW. Integration of drug, protein, and gene delivery systems with regenerative medicine. Drug Deliv Transl Res. 2015;5(2):168–86.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Losordo DW, et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation. 2002;105(17):2012–8.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Ma Y, et al. Generating rats with conditional alleles using CRISPR/Cas9. Cell Res. 2014;24(1):122–5.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Ma H, et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2017;548(7668):413–9.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Maeder ML, Gersbach CA. Genome-editing technologies for gene and cell therapy. Mol Ther. 2016;24(3):430–46.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Mahfouz MM, et al. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci U S A. 2011;108(6):2623–8.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Makarov V, et al. AnnTools: a comprehensive and versatile annotation toolkit for genomic variants. Bioinformatics. 2012;28(5):724–5.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Marcaida MJ, et al. Homing endonucleases: from basics to therapeutic applications. Cell Mol Life Sci. 2010;67(5):727–48.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Mardis ER. Next-generation sequencing platforms. Annu Rev Anal Chem (Palo Alto, Calif). 2013;6:287–303.CrossRefGoogle Scholar
  90. Maron BJ. Sudden death in young athletes. N Engl J Med. 2003;349(11):1064–75.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Maron BJ, et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA study. Coronary artery risk development in (young) adults. Circulation. 1995;92(4):785–9.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Meder B, et al. A genome-wide association study identifies 6p21 as novel risk locus for dilated cardiomyopathy. Eur Heart J. 2014;35(16):1069–77.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Mega JL, et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360(4):354–62.CrossRefGoogle Scholar
  94. Mega JL, et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA. 2010;304(16):1821–30.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Meier P, et al. Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation. 2007;116(9):975–83.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Mittelman D, et al. Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells. Proc Natl Acad Sci U S A. 2009;106(24):9607–12.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Most P, et al. Cardiac adenoviral S100A1 gene delivery rescues failing myocardium. J Clin Invest. 2004;114(11):1550–63.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Mundade R, et al. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond. Cell Cycle. 2014;13(18):2847–52.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Nair JK, et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 2014;136(49):16958–61.CrossRefGoogle Scholar
  100. Nayak S, Herzog RW. Progress and prospects: immune responses to viral vectors. Gene Ther. 2010;17(3):295–304.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Nielsen JB, et al. Genome-wide study of atrial fibrillation identifies seven risk loci and highlights biological pathways and regulatory elements involved in cardiac development. Am J Hum Genet. 2018;102(1):103–15.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Nikpay M, et al. A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121–30.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Nishimasu H, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 2014;156(5):935–49.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Paillard F. Promoter attenuation in gene therapy: causes and remedies. Hum Gene Ther. 1997;8(17):2009–10.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Pardo B, Gomez-Gonzalez B, Aguilera A. DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship. Cell Mol Life Sci. 2009;66(6):1039–56.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Pare G, et al. Effects of CYP2C19 genotype on outcomes of clopidogrel treatment. N Engl J Med. 2010;363(18):1704–14.CrossRefGoogle Scholar
  107. Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet. 2009;10(10):669–80.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Parkhomchuk D, et al. Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res. 2009;37(18):e123.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Penn MS, et al. An open-label dose escalation study to evaluate the safety of administration of nonviral stromal cell-derived factor-1 plasmid to treat symptomatic ischemic heart failure. Circ Res. 2013;112(5):816–25.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Pereira NL, et al. Pharmacogenetics of clopidogrel: an unresolved issue. Circ Cardiovasc Genet. 2016;9(2):185–8.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Perrino C, et al. Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position paper of the European Society of Cardiology Working Group on cellular biology of the heart. Cardiovasc Res. 2017;113(7):725–36.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Phan HM, et al. New signaling pathways associated with increased cardiac adenylyl cyclase 6 expression: implications for possible congestive heart failure therapy. Trends Cardiovasc Med. 2007;17(7):215–21.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Pleger ST, et al. Stable myocardial-specific AAV6-S100A1 gene therapy results in chronic functional heart failure rescue. Circulation. 2007;115(19):2506–15.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Pleger ST, et al. Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci Transl Med. 2011;3(92):92ra64.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Porteus MH, Carroll D. Gene targeting using zinc finger nucleases. Nat Biotechnol. 2005;23(8):967–73.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Pyzocha NK, et al. RNA-guided genome editing of mammalian cells. Methods Mol Biol. 2014;1114:269–77.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Qi LS, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–83.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Raake P, et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins: comparison with surgical and percutaneous intramyocardial gene delivery. J Am Coll Cardiol. 2004;44(5):1124–9.PubMedCrossRefPubMedCentralGoogle Scholar
  119. Rapezzi C, et al. Transthyretin-related amyloidoses and the heart: a clinical overview. Nat Rev Cardiol. 2010;7(7):398–408.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Reilly JP, et al. Long-term (2-year) clinical events following transthoracic intramyocardial gene transfer of VEGF-2 in no-option patients. J Interv Cardiol. 2005;18(1):27–31.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Richards S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Ripa RS, et al. Intramyocardial injection of vascular endothelial growth factor-A165 plasmid followed by granulocyte-colony stimulating factor to induce angiogenesis in patients with severe chronic ischaemic heart disease. Eur Heart J. 2006;27(15):1785–92.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Rolland M, Kerlan C, Jacquot E. The acquisition of molecular determinants involved in potato virus Y necrosis capacity leads to fitness reduction in tobacco plants. J Gen Virol. 2009;90(Pt 1):244–52.PubMedCrossRefPubMedCentralGoogle Scholar
  124. Rosengart TK, et al. Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation. 1999;100(5):468–74.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Rubanyi GM. Mechanistic, technical, and clinical perspectives in therapeutic stimulation of coronary collateral development by angiogenic growth factors. Mol Ther. 2013;21(4):725–38.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Ruel M, et al. Concomitant treatment with oral L-arginine improves the efficacy of surgical angiogenesis in patients with severe diffuse coronary artery disease: the endothelial modulation in angiogenic therapy randomized controlled trial. J Thorac Cardiovasc Surg. 2008;135(4):762–70. 770 e1PubMedCrossRefPubMedCentralGoogle Scholar
  127. Samocha KE, et al. A framework for the interpretation of de novo mutation in human disease. Nat Genet. 2014;46(9):944–50.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Sattianayagam PT, et al. Cardiac phenotype and clinical outcome of familial amyloid polyneuropathy associated with transthyretin alanine 60 variant. Eur Heart J. 2012;33(9):1120–7.PubMedCrossRefPubMedCentralGoogle Scholar
  129. Schotten U, et al. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev. 2011;91(1):265–325.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Schumacher B, et al. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation. 1998;97(7):645–50.PubMedCrossRefPubMedCentralGoogle Scholar
  131. SEARCH Collaborative Group, et al. SLCO1B1 variants and statin-induced myopathy – a genomewide study. N Engl J Med. 2008;359(8):789–99.CrossRefGoogle Scholar
  132. Shareef MA, Anwer LA, Poizat C. Cardiac SERCA2A/B: therapeutic targets for heart failure. Eur J Pharmacol. 2014;724:1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  133. Sherry ST, Ward M, Sirotkin K. dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res. 1999;9(8):677–9.PubMedPubMedCentralGoogle Scholar
  134. Shetty AC, et al. SeqAnt: a web service to rapidly identify and annotate DNA sequence variations. BMC Bioinformatics. 2010;11:471.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Shim G, et al. Therapeutic gene editing: delivery and regulatory perspectives. Acta Pharmacol Sin. 2017;38(6):738–53.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Sikkel MB, et al. SERCA2a gene therapy in heart failure: an anti-arrhythmic positive inotrope. Br J Pharmacol. 2014;171(1):38–54.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Silva G, et al. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther. 2011;11(1):11–27.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Simon T, et al. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med. 2009;360(4):363–75.PubMedCrossRefPubMedCentralGoogle Scholar
  139. Slagle CE, Conlon FL. Emerging field of cardiomics: high-throughput investigations into transcriptional regulation of cardiovascular development and disease. Trends Genet. 2016;32(11):707–16.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Snyder RO. Adeno-associated virus-mediated gene delivery. J Gene Med. 1999;1(3):166–75.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Stark K, et al. Genetic association study identifies HSPB7 as a risk gene for idiopathic dilated cardiomyopathy. PLoS Genet. 2010;6(10):e1001167.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Steg PG, et al. Impact of collateral flow to the occluded infarct-related artery on clinical outcomes in patients with recent myocardial infarction: a report from the randomized occluded artery trial. Circulation. 2010;121(25):2724–30.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Stenson PD, et al. The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet. 2014;133(1):1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  144. Stewart DJ, et al. Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Ther. 2006;13(21):1503–11.PubMedCrossRefPubMedCentralGoogle Scholar
  145. Stewart DJ, et al. VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol Ther. 2009;17(6):1109–15.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Suhr OB, et al. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study. Orphanet J Rare Dis. 2015;10:109.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Sylven C, et al. Catheter-based transendocardial myocardial gene transfer. J Interv Cardiol. 2002;15(1):7–13.PubMedCrossRefPubMedCentralGoogle Scholar
  148. Takata M, et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 1998;17(18):5497–508.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Thorolfsdottir RB, et al. A missense variant in PLEC increases risk of atrial fibrillation. J Am Coll Cardiol. 2017;70(17):2157–68.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Tian T, et al. Progress in the molecular genetics of hypertrophic cardiomyopathy: a mini-review. Gerontology. 2013;59(3):199–205.PubMedCrossRefPubMedCentralGoogle Scholar
  151. Vale PR, et al. Catheter-based myocardial gene transfer utilizing nonfluoroscopic electromechanical left ventricular mapping. J Am Coll Cardiol. 1999;34(1):246–54.PubMedCrossRefPubMedCentralGoogle Scholar
  152. Vale PR, et al. Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation. 2001;103(17):2138–43.PubMedCrossRefPubMedCentralGoogle Scholar
  153. Villard E, et al. A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur Heart J. 2011;32(9):1065–76.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.PubMedPubMedCentralCrossRefGoogle Scholar
  155. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Weber C, et al. Therapeutic safety of high myocardial expression levels of the molecular inotrope S100A1 in a preclinical heart failure model. Gene Ther. 2014;21(2):131–8.PubMedCrossRefPubMedCentralGoogle Scholar
  157. Weiwei C, et al. Outline of the report on cardiovascular diseases in China, 2014. Eur Heart J Suppl. 2016;18(Suppl F):F2–F11.PubMedCrossRefGoogle Scholar
  158. Williams PD, Kingston PA. Plasmid-mediated gene therapy for cardiovascular disease. Cardiovasc Res. 2011;91(4):565–76.PubMedCrossRefGoogle Scholar
  159. Yla-Herttuala S. Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther. 2012;20(10):1831–2.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Zamore PD, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 2000;101(1):25–33.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Feng Zhu
    • 1
    • 2
  • Kai Huang
    • 1
    • 2
  1. 1.Clinic Center of Human Gene Research, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Cardiology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations