Advertisement

Heart Genomics pp 281-292 | Cite as

Progress of Epigenetic Changes in Heart Failure

  • Peng Yu
  • Ming Liu
  • Hong Jiang
Chapter
Part of the Translational Bioinformatics book series (TRBIO, volume 16)

Abstract

Cardiac function requires sophisticated regulatory networks to orchestrate environmental adaptation. These regulatory networks in heart remodeling to maintain its function are composed of transcriptional control and signaling systems. Epigenetic processes play vital roles in the process. These include DNA and histone modification and classes of regulatory RNAs, such as microRNAs and long noncoding RNAs. Here, we review this emerging landscape to summarize their functions and roles in cardiac remodeling and to assist in exploring this previously hidden layer of gene regulation that may underpin heart adaptation in remodeling.

Keywords

Heart failure Epigenetics DNA modification Histone modification Noncoding RNAs 

References

  1. Anand P, Brown JD, Lin CY, Qi J, Zhang R, Artero PC, Alaiti MA, Bullard J, Alazem K, Margulies KB, Cappola TP, Lemieux M, Plutzky J, Bradner JE, Haldar SM. BET bromodomains mediate transcriptional pause release in heart failure. Cell. 2013;154:569–82.CrossRefGoogle Scholar
  2. Antos CL, McKinsey TA, Dreitz M, Hollingsworth LM, Zhang CL, Schreiber K, Rindt H, Gorczynski RJ, Olson EN. Dose-dependent blockade to cardiomyocyte hypertrophy by histone deacetylase inhibitors. J Biol Chem. 2003;278:28930–7.CrossRefGoogle Scholar
  3. Bär C, Chatterjee S, Thum T. Long noncoding RNAs in cardiovascular pathology, diagnosis, and therapy. Circulation. 2016;134:1484–99.CrossRefGoogle Scholar
  4. Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell. 2013;152:1298–307.CrossRefGoogle Scholar
  5. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P. Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation. 2017;135:e146–603.CrossRefGoogle Scholar
  6. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128:669–81.CrossRefGoogle Scholar
  7. Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A, Rubartelli A, Agresti A, Bianchi ME. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003;22:5551–60.CrossRefGoogle Scholar
  8. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Hoydal M, Autore C, Russo MA, Dorn GN, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13:613–8.CrossRefGoogle Scholar
  9. Cloos PA, Christensen J, Agger K, Helin K. Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev. 2008;22:1115–40.CrossRefGoogle Scholar
  10. Coppede F. Epigenetic biomarkers of colorectal cancer: focus on DNA methylation. Cancer Lett. 2014;342:238–47.CrossRefGoogle Scholar
  11. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel AC, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE. Mitsiades CS. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146:904–17.CrossRefGoogle Scholar
  12. Divakaran V, Mann DL. The emerging role of MicroRNAs in cardiac remodeling and heart failure. Circ Res. 2008;103:1072–83.CrossRefGoogle Scholar
  13. Duisters RF, Tijsen AJ, Schroen B, Leenders JJ, Lentink V, van der Made I, Herias V, van Leeuwen RE, Schellings MW, Barenbrug P, Maessen JG, Heymans S, Pinto YM, Creemers EE. miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res. 2009;104:170–8. 6p–178pCrossRefGoogle Scholar
  14. Duygu B, Poels EM, Da CMP. Genetics and epigenetics of arrhythmia and heart failure. Front Genet. 2013;4:219.CrossRefGoogle Scholar
  15. Evankovich J, Cho SW, Zhang R, Cardinal J, Dhupar R, Zhang L, Klune JR, Zlotnicki J, Billiar T, Tsung A. High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity. J Biol Chem. 2010;285:39888–97.CrossRefGoogle Scholar
  16. Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature. 2011;473:398–402.CrossRefGoogle Scholar
  17. Franklin S, Chen H, Mitchell-Jordan S, Ren S, Wang Y, Vondriska TM. Quantitative analysis of the chromatin proteome in disease reveals remodeling principles and identifies high mobility group protein B2 as a regulator of hypertrophic growth. Mol Cell Proteomics. 2012;11:M111–14258.CrossRefGoogle Scholar
  18. Gallo P, Latronico MV, Gallo P, Grimaldi S, Borgia F, Todaro M, Jones P, Gallinari P, De Francesco R, Ciliberto G, Steinkuhler C, Esposito G, Condorelli G. Inhibition of class I histone deacetylase with an apicidin derivative prevents cardiac hypertrophy and failure. Cardiovasc Res. 2008;80:416–24.CrossRefGoogle Scholar
  19. Greco CM, Condorelli G. Epigenetic modifications and noncoding RNAs in cardiac hypertrophy and failure. Nat Rev Cardiol. 2015;12:488–97.CrossRefGoogle Scholar
  20. Greco CM, Kunderfranco P, Rubino M, Larcher V, Carullo P, Anselmo A, Kurz K, Carell T, Angius A, Latronico MV, Papait R, Condorelli G. DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy. Nat Commun. 2016;7:12418.CrossRefGoogle Scholar
  21. Haldar SM, McKinsey TA. BET-ting on chromatin-based therapeutics for heart failure. J Mol Cell Cardiol. 2014;74:98–102.CrossRefGoogle Scholar
  22. Han P, Li W, Lin C, Yang J, Shang C, Nurnberg ST, Jin KK, Xu W, Lin C, Lin C, Xiong Y, Chien H, Zhou B, Ashley E, Bernstein D, Chen P, Chen HV, Quertermous T, Chang C. A long noncoding RNA protects the heart from pathological hypertrophy. Nature. 2014;514:102–6.CrossRefGoogle Scholar
  23. Hang CT, Yang J, Han P, Cheng H, Shang C, Ashley E, Zhou B, Chang C. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature. 2010;466:62–7.CrossRefGoogle Scholar
  24. He L, Tian X, Zhang H, Hu T, Huang X, Zhang L, Wang Z, Zhou B. BAF200 is required for heart morphogenesis and coronary artery development. PLoS One. 2014;9:e109493.CrossRefGoogle Scholar
  25. Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD, Golub TR, Pieske B, Pu WT. Altered microRNA expression in human heart disease. Physiol Genomics. 2007;31:367–73.CrossRefGoogle Scholar
  26. Ikeda S, He A, Kong SW, Lu J, Bejar R, Bodyak N, Lee KH, Ma Q, Kang PM, Golub TR, Pu WT. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol. 2009;29:2193–204.CrossRefGoogle Scholar
  27. Kaneda R, Takada S, Yamashita Y, Choi YL, Nonaka-Sarukawa M, Soda M, Misawa Y, Isomura T, Shimada K, Mano H. Genome-wide histone methylation profile for heart failure. Genes Cells. 2009;14:69–77.CrossRefGoogle Scholar
  28. Kee HJ, Sohn IS, Nam KI, Park JE, Qian YR, Yin Z, Ahn Y, Jeong MH, Bang YJ, Kim N, Kim JK, Kim KK, Epstein JA, Kook H. Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation. 2006;113:51–9.CrossRefGoogle Scholar
  29. Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S, Abo R, Tabebordbar M, Lee RT, Burge CB, Boyer LA. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell. 2013;152:570–83.CrossRefGoogle Scholar
  30. Kong Y, Tannous P, Lu G, Berenji K, Rothermel BA, Olson EN, Hill JA. Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation. 2006;113:2579–88.CrossRefGoogle Scholar
  31. Kook H, Lepore JJ, Gitler AD, Lu MM, Wing-Man YW, Mackay J, Zhou R, Ferrari V, Gruber P, Epstein JA. Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. J Clin Invest. 2003;112:863–71.CrossRefGoogle Scholar
  32. Kouzarides T. Histone methylation in transcriptional control. Curr Opin Genet Dev. 2002;12:198–209.CrossRefGoogle Scholar
  33. Latronico MV, Condorelli G. MicroRNAs and cardiac pathology. Nat Rev Cardiol. 2009;6:419–29.CrossRefGoogle Scholar
  34. Mann DL. High-resolution chromatin mapping in heart failure. Circulation. 2017;136:1626–8.CrossRefGoogle Scholar
  35. Mann DL, Bristow MR. Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation. 2005;111:2837–49.CrossRefGoogle Scholar
  36. McKinsey TA, Olson EN. Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest. 2005;115:538–46.CrossRefGoogle Scholar
  37. Meder B, Haas J, Sedaghat-Hamedani F, Kayvanpour E, Frese K, Lai A, Nietsch R, Scheiner C, Mester S, Bordalo DM, Amr A, Dietrich C, Pils D, Siede D, Hund H, Bauer A, Holzer DB, Ruhparwar A, Mueller-Hennessen M, Weichenhan D, Plass C, Weis T, Backs J, Wuerstle M, Keller A, Katus HA, Posch AE. Epigenome-wide association study identifies cardiac gene patterning and a novel class of biomarkers for heart failure. Circulation. 2017;136:1528–44.CrossRefGoogle Scholar
  38. Mehta G, Kumarasamy S, Wu J, Walsh A, Liu L, Williams K, Joe B, de la Serna IL. MITF interacts with the SWI/SNF subunit, BRG1, to promote GATA4 expression in cardiac hypertrophy. J Mol Cell Cardiol. 2015;88:101–10.CrossRefGoogle Scholar
  39. Ounzain S, Micheletti R, Beckmann T, Schroen B, Alexanian M, Pezzuto I, Crippa S, Nemir M, Sarre A, Johnson R, Dauvillier J, Burdet F, Ibberson M, Guigo R, Xenarios I, Heymans S, Pedrazzini T. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart- specific long non-coding RNAs. Eur Heart J. 2015;36:353–68.CrossRefGoogle Scholar
  40. Pai AA, Bell JT, Marioni JC, Pritchard JK, Gilad Y. A Genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues. PLoS Genet. 2011;7:e1001316.CrossRefGoogle Scholar
  41. Papait R, Condorelli G. Epigenetics in heart failure. Ann N Y Acad Sci. 2010;1188:159–64.CrossRefGoogle Scholar
  42. Papait R, Greco C, Kunderfranco P, Latronico MVG, Condorelli G. Epigenetics: a new mechanism of regulation of heart failure? Basic Res Cardiol. 2013;108:361.CrossRefGoogle Scholar
  43. Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, McLoughlin EM, Brudno Y, Mahapatra S, Kapranov P, Tahiliani M, Daley GQ, Liu XS, Ecker JR, Milos PM, Agarwal S, Rao A. Genome- wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature. 2011;473:394–7.CrossRefGoogle Scholar
  44. Patrick DM, Montgomery RL, Qi X, Obad S, Kauppinen S, Hill JA, van Rooij E, Olson EN. Stress- dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J Clin Invest. 2010;120:3912–6.CrossRefGoogle Scholar
  45. Rau CD, Vondriska TM. DNA methylation and human heart failure. Circulation. 2017;136:1545–7.CrossRefGoogle Scholar
  46. Roncarati R, Viviani AC, Losi MA, Papa L, Cavarretta E, Da CMP, Contaldi C, Saccani JG, Franzone A, Galastri L, Latronico MV, Imbriaco M, Esposito G, De Windt L, Betocchi S, Condorelli G. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2014;63:920–7.CrossRefGoogle Scholar
  47. Rosa-Garrido M, Chapski DJ, Schmitt AD, Kimball TH, Karbassi E, Monte E, Balderas E, Pellegrini M, Shih T, Soehalim E, Liem D, Ping P, Galjart NJ, Ren S, Wang Y, Ren B, Vondriska TM. High- resolution mapping of chromatin conformation in cardiac myocytes reveals structural remodeling of the epigenome in heart failure. Circulation. 2017;136:1613–25.CrossRefGoogle Scholar
  48. Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison CA, Slocombe PM, Smith M. Nucleotide sequence of bacteriophage phi X174 DNA. Nature. 1977;265:687–95.CrossRefGoogle Scholar
  49. Schuster SC. Next-generation sequencing transforms today’s biology. Nat Methods. 2008;5:16–8.CrossRefGoogle Scholar
  50. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14:204–20.CrossRefGoogle Scholar
  51. Thum T, Condorelli G. Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ Res. 2015;116:751–62.CrossRefGoogle Scholar
  52. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JT, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–4.CrossRefGoogle Scholar
  53. Turner BM. Defining an epigenetic code. Nat Cell Biol. 2007;9:2–6.CrossRefGoogle Scholar
  54. van Berlo JH. Chromatin remodeling permits cardiac hypertrophy to develop. J Mol Cell Cardiol. 2015;89:119–21.CrossRefGoogle Scholar
  55. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316:575–9.CrossRefGoogle Scholar
  56. Viereck J, Kumarswamy R, Foinquinos A, Xiao K, Avramopoulos P, Kunz M, Dittrich M, Maetzig T, Zimmer K, Remke J, Just A, Fendrich J, Scherf K, Bolesani E, Schambach A, Weidemann F, Zweigerdt R, de Windt LJ, Engelhardt S, Dandekar T, Batkai S, Thum T. Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med. 2016;8:322r–6r.CrossRefGoogle Scholar
  57. Wang X, Hayes JJ. Acetylation mimics within individual core histone tail domains indicate distinct roles in regulating the stability of higher-order chromatin structure. Mol Cell Biol. 2008;28:227–36.CrossRefGoogle Scholar
  58. Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res. 2014;114:1377–88.CrossRefGoogle Scholar
  59. Wang Z, Zhang XJ, Ji YX, Zhang P, Deng KQ, Gong J, Ren S, Wang X, Chen I, Wang H, Gao C, Yokota T, Ang YS, Li S, Cass A, Vondriska TM, Li G, Deb A, Srivastava D, Yang HT, Xiao X, Li H, Wang Y. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med. 2016;22:1131–9.CrossRefGoogle Scholar
  60. Watson CJ, Gupta SK, O’Connell E, Thum S, Glezeva N, Fendrich J, Gallagher J, Ledwidge M, Grote- Levi L, McDonald K, Thum T. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur J Heart Fail. 2015;17:405–15.CrossRefGoogle Scholar
  61. Zhang QJ, Chen HZ, Wang L, Liu DP, Hill JA, Liu ZP. The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J Clin Invest. 2011;121:2447–56.CrossRefGoogle Scholar
  62. Zhang L, Liu M, Jiang H, Yu Y, Yu P, Tong R, Wu J, Zhang S, Yao K, Zou Y, Ge J. Extracellular high- mobility group box 1 mediates pressure overload-induced cardiac hypertrophy and heart failure. J Cell Mol Med. 2016;20:459–70.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Shanghai Institute of Cardiovascular Diseases, Clinical Science Institute, Zhongshan HospitalShanghai Medical College of Fudan UniversityShanghaiChina
  2. 2.Department of General Practice, Zhongshan HospitalShanghai Medical College of Fudan UniversityShanghaiChina

Personalised recommendations