Skip to main content

Functional Analysis of Circular RNAs

  • Chapter
  • First Online:
Circular RNAs

Abstract

Circular RNAs characterize a class of widespread and diverse endogenous RNAs which are non-coding RNAs that are made by back-splicing events and have covalently closed loops with no polyadenylated tails. Various indications specify that circular RNAs (circRNAs) are plentiful in the human transcriptome. However, their participation in biological processes remains mostly undescribed. To date thousands of circRNAs have been revealed in organisms ranging from Drosophila melanogaster to Homo sapiens. Functional studies specify that these transcripts control expression of protein-coding linear transcripts and thus encompass a key component of gene expression regulation. This chapter provide a comprehensive overview on functional validation of circRNAs. Furthermore, we discuss the recent modern methodologies for the functional validation of circRNAs such as RNA interference (RNAi) gene silencing assay, luciferase reporter assays, circRNA gain-of-function investigation via overexpression of circular transcript assay, RT-q-PCR quantification, and other latest applicable assays. The methods described in this chapter are demonstrated on the cellular model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nigro JM, Cho KR, Fearon ER et al (1991) Scrambled exons. Cell 64(3):607–613

    Article  CAS  Google Scholar 

  2. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461

    Article  CAS  Google Scholar 

  3. Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20(12):1829–1842

    Article  CAS  Google Scholar 

  4. Cocquerelle C, Mascrez B, Hetuin D et al (1993) Mis-splicing yields circular RNA molecules. FASEB J 7(1):155–160

    Article  CAS  Google Scholar 

  5. Li Y, Zheng QP, Bao CY et al (2015) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25(8):981–984

    Article  CAS  Google Scholar 

  6. Glazar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. RNA 20(11):1666–1670

    Article  CAS  Google Scholar 

  7. Rybak-Wolf A, Stottmeister C, Glazar P et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885

    Article  CAS  Google Scholar 

  8. Westholm JO, Miura P, Olson S et al (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9(5):1966–1980

    Article  CAS  Google Scholar 

  9. Conn SJ, Pillman KA, Toubia J et al (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160(6):1125–1134

    Article  CAS  Google Scholar 

  10. Kramer MC, Liang D, Tatomer DC et al (2015) Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev 29(20):2168–2182

    Article  CAS  Google Scholar 

  11. Koopman P, Munsterberg A, Capel B et al (1990) Expression of a candidate sex-determining gene during mouse testis differentiation. Nature 348(6300):450–452

    Article  CAS  Google Scholar 

  12. Cocquerelle C, Daubersies P, Majerus MA et al (1992) Splicing with inverted order of exons occurs proximal to large introns. EMBO J 11(3):1095–1098

    Article  CAS  Google Scholar 

  13. Guo J (2014) Transcription: the epicenter of gene expression. J Zhejiang Univ Sci B 15(5):409–411

    Article  Google Scholar 

  14. Salzman J, Gawad C, Wang PL et al (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7(2):e30733

    Article  CAS  Google Scholar 

  15. Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338

    Article  CAS  Google Scholar 

  16. Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–U130

    Article  CAS  Google Scholar 

  17. Lu T, Cui L, Zhou Y et al (2015) Transcriptome-wide investigation of circular RNAs in rice. RNA 21(12):2076–2087

    Article  CAS  Google Scholar 

  18. Saad FA, Vitiello L, Merlini L et al (1992) A 3′ consensus splice mutation in the human dystrophin gene detected by a screening for intra-exonic deletions. Hum Mol Genet 1(5):345–346

    Article  CAS  Google Scholar 

  19. Bailleul B (1996) During in vivo maturation of eukaryotic nuclear mRNA, splicing yields excised exon circles. Nucleic Acids Res 24(6):1015–1019

    Article  CAS  Google Scholar 

  20. Hansen TB, Wiklund ED, Bramsen JB et al (2011) miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 30(21):4414–4422

    Article  CAS  Google Scholar 

  21. Zaphiropoulos PG (1997) Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis. Mol Cell Biol 17(6):2985–2993

    Article  CAS  Google Scholar 

  22. Houseley JM, Garcia-Casado Z, Pascual M et al (2006) Noncanonical RNAs from transcripts of the Drosophila muscleblind gene. J Hered 97(3):253–260

    Article  CAS  Google Scholar 

  23. Li XF, Lytton J (1999) A circularized sodium-calcium exchanger exon 2 transcript. J Biol Chem 274(12):8153–8160

    Article  CAS  Google Scholar 

  24. Hooper JE (2014) A survey of software for genome-wide discovery of differential splicing in RNA-Seq data. Hum Genomics 8:3

    Article  Google Scholar 

  25. Kulpa D, Topping R, Telesnitsky A (1997) Determination of the site of first strand transfer during Moloney murine leukemia virus reverse transcription and identification of strand transfer-associated reverse transcriptase errors. EMBO J 16(4):856–865

    Article  CAS  Google Scholar 

  26. Agabian N (1990) Trans splicing of nuclear pre-mRNAs. Cell 61(7):1157–1160

    Article  CAS  Google Scholar 

  27. Capel B, Swain A, Nicolis S et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5):1019–1030

    Article  CAS  Google Scholar 

  28. Awan AR, Manfredo A, Pleiss JA (2013) Lariat sequencing in a unicellular yeast identifies regulated alternative splicing of exons that are evolutionarily conserved with humans. Proc Natl Acad Sci U S A 110(31):12762–12767

    Article  CAS  Google Scholar 

  29. Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157

    Article  CAS  Google Scholar 

  30. Sanger HL, Klotz G, Riesner D et al (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A 73(11):3852–3856

    Article  CAS  Google Scholar 

  31. Ruskin B, Krainer AR, Maniatis T et al (1984) Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 38(1):317–331

    Article  CAS  Google Scholar 

  32. Tabak HF, Van der Horst G, Smit J et al (1988) Discrimination between RNA circles, interlocked RNA circles and lariats using two-dimensional polyacrylamide gel electrophoresis. Nucleic Acids Res 16(14A):6597–6605

    Article  CAS  Google Scholar 

  33. Li Z, Huang C, Bao C et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264

    Article  CAS  Google Scholar 

  34. Liang D, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28(20):2233–2247

    Article  Google Scholar 

  35. Wang K, Long B, Liu F et al (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 37(33):2602–2611

    Article  CAS  Google Scholar 

  36. Zheng QP, Bao CY, Guo WJ et al (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215

    Article  CAS  Google Scholar 

  37. Liu Q, Zhang X, Hu XQ et al (2016) Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a MiR-136 ‘Sponge’ in human cartilage degradation. Sci Rep 6:22572

    Article  CAS  Google Scholar 

  38. Xie H, Ren X, Xin S et al (2016) Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget 7(18):26680–26691

    PubMed  PubMed Central  Google Scholar 

  39. Thomas LF, Saetrom P (2014) Circular RNAs are depleted of polymorphisms at microRNA binding sites. Bioinformatics 30(16):2243–2246

    Article  CAS  Google Scholar 

  40. Zhang Y, Xue W, Li X et al (2016) The biogenesis of nascent circular RNAs. Cell Rep 15(3):611–624

    Article  CAS  Google Scholar 

  41. Zhang XO, Wang HB, Zhang Y et al (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–147

    Article  CAS  Google Scholar 

  42. Ashwal-Fluss R, Meyer M, Pamudurti NR et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66

    Article  CAS  Google Scholar 

  43. Holt CE, Schuman EM (2013) The central dogma decentralized: new perspectives on RNA function and local translation in neurons. Neuron 80(3):648–657

    Article  CAS  Google Scholar 

  44. Denzler R, Agarwal V, Stefano J et al (2014) Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell 54(5):766–776

    Article  CAS  Google Scholar 

  45. Du WW, Yang W, Chen Y et al (2017) Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 38(18):1402–1412

    Google Scholar 

  46. Du WW, Yang W, Liu E et al (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44(6):2846–2858

    Article  Google Scholar 

  47. Chen CY, Sarnow P (1995) Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268(5209):415–417

    Article  CAS  Google Scholar 

  48. Panda AC, Abdelmohsen K, Gorospe M (2017) RT-qPCR detection of senescence-associated circular RNAs. Methods Mol Biol 1534:79–87

    Article  CAS  Google Scholar 

  49. Orlando C, Pinzani P, Pazzagli M (1998) Developments in quantitative PCR. Clin Chem Lab Med 36(5):255–269

    Article  CAS  Google Scholar 

  50. Valasek MA, Repa JJ (2005) The power of real-time PCR. Adv Physiol Educ 29(3):151–159

    Article  Google Scholar 

  51. Wong M, Medrano J (2005) Real-time PCR for mRNA quantitation. BioTechniques 39(1):75–85

    Article  CAS  Google Scholar 

  52. Bachmayr-Heyda A, Reiner AT, Auer K et al (2015) Correlation of circular RNA abundance with proliferation–exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep 5:8057

    Article  CAS  Google Scholar 

  53. Tajadini M, Panjehpour M, Javanmard SH (2014) Comparison of SYBR green and TaqMan methods in quantitative real-time polymerase chain reaction analysis of four adenosine receptor subtypes. Adv Biomed Res 3:85

    Article  Google Scholar 

  54. Hansen TB, Kjems J, Damgaard CK (2013) Circular RNA and miR-7 in Cancer. Cancer Res 73(18):5609–5612

    Article  CAS  Google Scholar 

  55. Zhang Y, Zhang XO, Chen T et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806

    Article  CAS  Google Scholar 

  56. Suzuki H, Tsukahara T (2014) A view of pre-mRNA splicing from RNase R resistant RNAs. Int J Mol Sci 15(6):9331–9342

    Article  CAS  Google Scholar 

  57. Suzuki H, Zuo YH, Wang JH et al (2006) Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34(8):e63

    Article  Google Scholar 

  58. Li Y, Chen B, Huang S (2018) Identification of circRNAs for miRNA targets by Argonaute2 RNA immunoprecipitation and luciferase screening assays. Methods Mol Biol 1724:209–218

    Article  Google Scholar 

  59. Zeng X, Lin W, Guo M et al (2017) A comprehensive overview and evaluation of circular RNA detection tools. PLoS Comput Biol 13(6):e1005420

    Article  Google Scholar 

Download references

Acknowledgements

Shanmugapriya was supported by the Graduate Research Assistance Scheme from Universiti Sains Malaysia, Malaysia.

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shanmugapriya et al. (2018). Functional Analysis of Circular RNAs. In: Xiao, J. (eds) Circular RNAs. Advances in Experimental Medicine and Biology, vol 1087. Springer, Singapore. https://doi.org/10.1007/978-981-13-1426-1_8

Download citation

Publish with us

Policies and ethics