Circular RNAs pp 275-285 | Cite as

Circular RNAs in Metabolic Diseases

  • Tianhui Wang
  • Wen Pan
  • Jun Hu
  • Zhongrong Zhang
  • Guoping Li
  • Yajun Liang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1087)


Metabolic diseases include diabetes mellitus (DM), obesity, metabolic syndrome, and non-alcoholic fatty liver disease (NAFLD). Circular RNA is a new type of RNA that is different from traditional linear RNA and has a closed loop structure. However, the function of circular RNA is not yet well elucidated in metabolic diseases. Only a few studies have reported about the relationship between circular RNA and metabolic diseases such as DM and NAFLD. This chapter presents a brief review of epidemiology, pathophysiology, or treatment of DM and NAFLD and then discusses the relationship between circular RNA and DM or NAFLD. Besides, this chapter further provides an updated discussion of the most relevant discoveries regarding circular RNA and their potential applications in molecular diagnostics, nucleic acid therapy, and biomarkers.


Circular RNA Metabolic diseases 


  1. 1.
    Sanger HL, Klotz G, Riesner D et al (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA 73(11):3852–3856CrossRefGoogle Scholar
  2. 2.
    Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157CrossRefGoogle Scholar
  3. 3.
    Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338CrossRefGoogle Scholar
  4. 4.
    Afonina ZA, Myasnikov AG, Shirokov VA et al (2014) Formation of circular polyribosomes on eukaryotic mRNA without cap-structure and poly(A)-tail: a cryo electron tomography study. Nucleic Acids Res 42(14):9461–9469CrossRefGoogle Scholar
  5. 5.
    Jopling CL, Schutz S, Sarnow P (2008) Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe 4(1):77–85CrossRefGoogle Scholar
  6. 6.
    Zhao Y, Alexandrov PN, Jaber V et al (2016) Deficiency in the ubiquitin conjugating enzyme UBE2A in Alzheimer’s Disease (AD) is linked to deficits in a natural circular miRNA-7 sponge (circRNA; ciRS-7). Genes (Basel) 7(12)CrossRefGoogle Scholar
  7. 7.
    Liu Q, Zhang X, Hu X et al (2016) Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a MiR-136 ‘Sponge’ in human cartilage degradation. Sci Rep 6:22572CrossRefGoogle Scholar
  8. 8.
    Shan K, Liu C, Liu BH et al (2017) Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus. Circulation 136(17):1629–1642CrossRefGoogle Scholar
  9. 9.
    Wang K, Long B, Liu F et al (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 37(33):2602–2611CrossRefGoogle Scholar
  10. 10.
    Rottiers V, Naar AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13(4):239–250CrossRefGoogle Scholar
  11. 11.
    Perry RJ, Peng L, Barry NA et al (2016) Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature 534(7606):213–217CrossRefGoogle Scholar
  12. 12.
    Afdhal NH (2012) Management of nonalcoholic fatty liver disease: a 60-year-old man with probable nonalcoholic fatty liver disease: weight reduction, liver biopsy, or both? JAMA 308(6):608–616CrossRefGoogle Scholar
  13. 13.
    Fernandez-Hernando C, Ramirez CM, Goedeke L et al (2013) MicroRNAs in metabolic disease. Arterioscler Thromb Vasc Biol 33(2):178–185CrossRefGoogle Scholar
  14. 14.
    Cho NH, Shaw JE, Karuranga S et al (2018) IDF diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281CrossRefGoogle Scholar
  15. 15.
    Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants (2016). The Lancet 387(10027):1513–1530.Google Scholar
  16. 16.
    Benjamin EJ, Virani SS, Callaway CW et al (2018) Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation 137:e67–e492CrossRefGoogle Scholar
  17. 17.
    Chatterjee S, Khunti K, Davies MJ (2017) Type 2 diabetes. The Lancet 389(10085):2239–2251CrossRefGoogle Scholar
  18. 18.
    Koekkoek PS, Kappelle LJ, van den Berg E et al (2015) Cognitive function in patients with diabetes mellitus: guidance for daily care. Lancet Neurol 14(3):329–340CrossRefGoogle Scholar
  19. 19.
    Collier A, Ghosh S, Hair M et al (2015) Impact of socioeconomic status and gender on glycaemic control, cardiovascular risk factors and diabetes complications in type 1 and 2 diabetes: a population based analysis from a Scottish region. Diabetes Metab 41(2):145–151CrossRefGoogle Scholar
  20. 20.
    Augustin K, Khabbush A, Williams S et al (2018) Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol 17(1):84–93CrossRefGoogle Scholar
  21. 21.
    Kaczorowska M, Ryterska K, Ossowski P et al (2016) Metabolic risk factors of coronary heart disease in relation to anthropometric measures in nonalcoholic fatty liver disease patients following dietary intervention. Pomeranian J Life Sci 62(2):8–14CrossRefGoogle Scholar
  22. 22.
    Organization WH Definition, Diagnosis and classification of diabetes mellitus and its complications part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultationGoogle Scholar
  23. 23.
    Ghaemi N, Hasanabadi H, Ashrafzadeh F et al (2018) Peripheral neuropathy in children and adolescents with insulin-dependent diabetes Mellitus. Iran J Child Neurol 12(2):83–90PubMedPubMedCentralGoogle Scholar
  24. 24.
    Packer M (2018) Heart failure: the most important, preventable, and treatable cardiovascular complication of type 2 diabetes. Diabetes Care 41(1):11–13CrossRefGoogle Scholar
  25. 25.
    Shanbhogue VV, Hansen S, Frost M et al (2017) Bone disease in diabetes: another manifestation of microvascular disease? Lancet Diabetes Endocrinol 5(10):827–838CrossRefGoogle Scholar
  26. 26.
    Kahn SE, Cooper ME, Del Prato S (2014) Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383(9922):1068–1083CrossRefGoogle Scholar
  27. 27.
    Kobayashi M, Zochodne DW (2018) Diabetic neuropathy and the sensory neuron: new aspects of pathogenesis and their treatment implications. J Diabetes Investig.Google Scholar
  28. 28.
    Kanwar YS, Sun L, Xie P et al (2011) A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 6:395–423CrossRefGoogle Scholar
  29. 29.
    Schwartz SS, Epstein S, Corkey BE et al (2016) The time is right for a new classification system for diabetes: rationale and Implications of the beta-cell-centric classification schema. Diabetes Care 39(2):179–186CrossRefGoogle Scholar
  30. 30.
    Ashcroft FM, Rorsman P (2012) Diabetes mellitus and the beta cell: the last ten years. Cell 148(6):1160–1171CrossRefGoogle Scholar
  31. 31.
    Schwartz SS, Epstein S, Corkey BE et al (2017) A unified pathophysiological construct of diabetes and its complications. Trends Endocrinol Metab 28(9):645–655CrossRefGoogle Scholar
  32. 32.
    Poy MN, Eliasson L, Krutzfeldt J et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432(7014):226–230CrossRefGoogle Scholar
  33. 33.
    Lovis P, Gattesco S, Regazzi R (2008) Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol Chem 389(3):305–312CrossRefGoogle Scholar
  34. 34.
    Frost RJA, Olson EN (2011) Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc. Natl Acad Sci 108(52):21075–21080CrossRefGoogle Scholar
  35. 35.
    Pullen TJ, da Silva Xavier G, Kelsey G et al (2011) miR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol Cell Biol 31(15):3182–3194CrossRefGoogle Scholar
  36. 36.
    Trajkovski M, Hausser J, Soutschek J et al (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474(7353):649–653CrossRefGoogle Scholar
  37. 37.
    Davalos A, Goedeke L, Smibert P et al (2011) miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci USA 108(22):9232–9237CrossRefGoogle Scholar
  38. 38.
    Zhang J, Zhang L, Fan R et al (2013) The polymorphism in the let-7 targeted region of the Lin28 gene is associated with increased risk of type 2 diabetes mellitus. Mol Cell Endocrinol 375(1–2):53–57CrossRefGoogle Scholar
  39. 39.
    Lightell DJ Jr, Moss SC, Woods TC (2018) Upregulation of miR-221 and -222 in response to increased extracellular signal-regulated kinases 1/2 activity exacerbates neointimal hyperplasia in diabetes mellitus. Atherosclerosis 269:71–78CrossRefGoogle Scholar
  40. 40.
    Long Y, Zhan Q, Yuan M et al (2017) The expression of microRNA-223 and FAM5C in cerebral infarction patients with diabetes mellitus. Cardiovasc Toxicol 17(1):42–48CrossRefGoogle Scholar
  41. 41.
    Xie H, Ren X, Xin S et al (2016) Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget 7(18):26680–26691PubMedPubMedCentralGoogle Scholar
  42. 42.
    Han D, Li J, Wang H et al (2017) Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology 66(4):1151–1164CrossRefGoogle Scholar
  43. 43.
    Zhou B, Yu JW (2017) A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-beta1. Biochem Biophys Res Commun 487(4):769–775CrossRefGoogle Scholar
  44. 44.
    Heit JJ, Karnik SK, Kim SK (2006) Intrinsic regulators of pancreatic beta-cell proliferation. Annu Rev Cell Dev Biol 22:311–338CrossRefGoogle Scholar
  45. 45.
    Stoll L, Sobel J, Rodriguez-Trejo A et al (2018) Circular RNAs as novel regulators of beta-cell functions in normal and disease conditions. Mol Metab 9:69–83CrossRefGoogle Scholar
  46. 46.
    Xu H, Guo S, Li W et al (2015) The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep 5:12453CrossRefGoogle Scholar
  47. 47.
    Henry NL, Hayes DF (2012) Cancer biomarkers. Mol Oncol 6(2):140–146CrossRefGoogle Scholar
  48. 48.
    Parrizas M, Novials A (2016) Circulating microRNAs as biomarkers for metabolic disease. Best Pract Res Clin Endocrinol Metab 30(5):591–601CrossRefGoogle Scholar
  49. 49.
    Guil S, Esteller M (2015) RNA-RNA interactions in gene regulation: the coding and noncoding players. Trends Biochem Sci 40(5):248–256CrossRefGoogle Scholar
  50. 50.
    Hur K, Toiyama Y, Okugawa Y et al (2017) Circulating microRNA-203 predicts prognosis and metastasis in human colorectal cancer. Gut 66(4):654–665CrossRefGoogle Scholar
  51. 51.
    Karakas M, Schulte C, Appelbaum S et al (2017) Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease-results from the large AtheroGene study. Eur Heart J 38(7):516–523PubMedGoogle Scholar
  52. 52.
    Sun L, Jiang R, Li J et al (2017) MicoRNA-425-5p is a potential prognostic biomarker for cervical cancer. Ann Clin Biochem 54(1):127–133CrossRefGoogle Scholar
  53. 53.
    Li Y, Zheng Q, Bao C et al (2015) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25(8):981–984CrossRefGoogle Scholar
  54. 54.
    Bonizzato A, Gaffo E, Te Kronnie G et al (2016) CircRNAs in hematopoiesis and hematological malignancies. Blood Cancer J 6(10):e483CrossRefGoogle Scholar
  55. 55.
    Bahn JH, Zhang Q, Li F et al (2015) The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem 61(1):221–230CrossRefGoogle Scholar
  56. 56.
    Enuka Y, Lauriola M, Feldman ME et al (2016) Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res 44(3):1370–1383CrossRefGoogle Scholar
  57. 57.
    Yang F, Liu D-Y, Guo J-T et al (2017) Circular RNA circ-LDLRAD3 as a biomarker in diagnosis of pancreatic cancer. World J Gastroenterol 23(47):8345–8354CrossRefGoogle Scholar
  58. 58.
    Chen S, Li T, Zhao Q et al (2017) Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer. Clin Chim Acta 466:167–171CrossRefGoogle Scholar
  59. 59.
    Xu L, Zhang M, Zheng X et al (2017) The circular RNA ciRS-7 (Cdr1as) acts as a risk factor of hepatic microvascular invasion in hepatocellular carcinoma. J Cancer Res Clin Oncol 143(1):17–27CrossRefGoogle Scholar
  60. 60.
    Li P, Chen S, Chen H et al (2015) Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta 444:132–136CrossRefGoogle Scholar
  61. 61.
    Zhao Z, Li X, Gao C et al (2017) Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease. Sci Rep 7:39918CrossRefGoogle Scholar
  62. 62.
    Westholm JO, Miura P, Olson S et al (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9(5):1966–1980CrossRefGoogle Scholar
  63. 63.
    Zhao Z, Li X, Jian D et al (2017) Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus. Acta Diabetol 54(3):237–245CrossRefGoogle Scholar
  64. 64.
    Li X, Zhao Z, Jian D et al (2017) Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus. Diab Vasc Dis Res 14(6):510–515CrossRefGoogle Scholar
  65. 65.
    Tang CM, Zhang M, Huang L et al (2017) CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep 7:40342CrossRefGoogle Scholar
  66. 66.
    Sena CM, Pereira AM, Seica R (2013) Endothelial dysfunction – a major mediator of diabetic vascular disease. Biochim Biophys Acta 1832(12):2216–2231CrossRefGoogle Scholar
  67. 67.
    Zhang SJ, Chen X, Li CP et al (2017) Identification and characterization of circular RNAs as a new class of putative biomarkers in diabetes retinopathy. Invest Ophthalmol Vis Sci 58(14):6500–6509CrossRefGoogle Scholar
  68. 68.
    Chen J, Cui L, Yuan J et al (2017) Circular RNA WDR77 target FGF-2 to regulate vascular smooth muscle cells proliferation and migration by sponging miR-124. Biochem Biophys Res Commun 494(1-2):126–132CrossRefGoogle Scholar
  69. 69.
    Bhala N, Angulo P, van der Poorten D et al (2011) The natural history of nonalcoholic fatty liver disease with advanced fibrosis or cirrhosis: an international collaborative study. Hepatology 54(4):1208–1216CrossRefGoogle Scholar
  70. 70.
    Vanni E, Bugianesi E, Kotronen A et al (2010) From the metabolic syndrome to NAFLD or vice versa? Dig Liver Dis 42(5):320–330CrossRefGoogle Scholar
  71. 71.
    Portillo-Sanchez P, Bril F, Maximos M et al (2015) High prevalence of nonalcoholic fatty liver disease in atients with type 2 diabetes Mellitus and normal plasma aminotransferase levels. J Clin Endocrinol Metab 100(6):2231–2238CrossRefGoogle Scholar
  72. 72.
    Henao-Mejia J, Elinav E, Jin C et al (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482(7384):179–185CrossRefGoogle Scholar
  73. 73.
    Adams LA, Waters OR, Knuiman MW et al (2009) NAFLD as a risk factor for the development of diabetes and the metabolic syndrome: an eleven-year follow-up study. Am J Gastroenterol 104(4):861–867CrossRefGoogle Scholar
  74. 74.
    Pappachan JM, Babu S, Krishnan B et al (2017) Non-alcoholic fatty liver disease: a clinical update. J Clin Transl Hepatol 5(4):384–393PubMedPubMedCentralGoogle Scholar
  75. 75.
    Carr RM, Oranu A, Khungar V (2016) Nonalcoholic fatty liver disease: pathophysiology and management. Gastroenterol Clin North Am 45(4):639–652CrossRefGoogle Scholar
  76. 76.
    Vernon G, Baranova A, Younossi ZM (2011) Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 34(3):274–285CrossRefGoogle Scholar
  77. 77.
    Angulo P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346(16):1221–1231CrossRefGoogle Scholar
  78. 78.
    Farrell GC, Larter CZ (2006) Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 43(2 Suppl 1):S99–s112CrossRefGoogle Scholar
  79. 79.
    Birkenfeld AL, Shulman GI (2014) Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 59(2):713–723CrossRefGoogle Scholar
  80. 80.
    Rinella ME (2015) Nonalcoholic fatty liver disease: a systematic review. JAMA 313(22):2263–2273CrossRefGoogle Scholar
  81. 81.
    Hsu SH, Wang B, Kota J et al (2012) Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest 122(8):2871–2883CrossRefGoogle Scholar
  82. 82.
    Auguet T, Aragones G, Berlanga A et al (2016) miR33a/miR33b* and miR122 as Possible Contributors to Hepatic Lipid Metabolism in Obese Women with Nonalcoholic Fatty Liver Disease. Int J Mol Sci 17(10)CrossRefGoogle Scholar
  83. 83.
    Yamada H, Suzuki K, Ichino N et al (2013) Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta 424:99–103CrossRefGoogle Scholar
  84. 84.
    Xu Y, Zalzala M, Xu J et al (2015) A metabolic stress-inducible miR-34a-HNF4alpha pathway regulates lipid and lipoprotein metabolism. Nat Commun 6:7466CrossRefGoogle Scholar
  85. 85.
    Miller AM, Gilchrist DS, Nijjar J et al (2013) MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice. PLoS One 8(8):e72324CrossRefGoogle Scholar
  86. 86.
    Gastaldelli A (2017) Insulin resistance and reduced metabolic flexibility: cause or consequence of NAFLD? Clin Sci (Lond) 131(22):2701–2704CrossRefGoogle Scholar
  87. 87.
    Musso G, Cassader M, Gambino R (2016) Non-alcoholic steatohepatitis: emerging molecular targets and therapeutic strategies. Nat Rev Drug Discov 15(4):249–274CrossRefGoogle Scholar
  88. 88.
    Harrison SA, Rinella ME, Abdelmalek MF et al (2018) NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 391(10126):1174–1185CrossRefGoogle Scholar
  89. 89.
    Armstrong MJ, Gaunt P, Aithal GP et al (2016) Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387(10019):679–690CrossRefGoogle Scholar
  90. 90.
    Guo J, Zhou Y, Cheng Y et al (2018) Metformin-induced changes of the coding transcriptome and non-coding RNAs in the livers of non-alcoholic fatty liver disease mice. Cell Physiol Biochem 45(4):1487–1505CrossRefGoogle Scholar
  91. 91.
    Guo XY, He CX, Wang YQ et al (2017) Circular RNA profiling and bioinformatic modeling identify its regulatory role in hepatic steatosis. Biomed Res Int 2017:5936171Google Scholar
  92. 92.
    Tanaka N, Aoyama T, Kimura S et al (2017) Targeting nuclear receptors for the treatment of fatty liver disease. Pharmacol Ther 179:142–157CrossRefGoogle Scholar
  93. 93.
    Samuel VT, Shulman GI (2018) Nonalcoholic fatty liver disease as a Nexus of metabolic and hepatic diseases. Cell Metab 27(1):22–41CrossRefGoogle Scholar
  94. 94.
    Huang K, Du M, Tan X et al (2017) PARP1-mediated PPARalpha poly(ADP-ribosyl)ation suppresses fatty acid oxidation in non-alcoholic fatty liver disease. J Hepatol 66(5):962–977CrossRefGoogle Scholar
  95. 95.
    Guo XY, Sun F, Chen JN et al (2018) circRNA_0046366 inhibits hepatocellular steatosis by normalization of PPAR signaling. World J Gastroenterol 24(3):323–337CrossRefGoogle Scholar
  96. 96.
    Guo XY, Chen JN, Sun F et al (2017) circRNA_0046367 Prevents hepatoxicity of lipid peroxidation: an inhibitory role against hepatic steatosis. Oxid Med Cell Longev 2017:3960197CrossRefGoogle Scholar
  97. 97.
    Zhao R, Zhou J, Dong X et al (2018) Circular RNA expression alteration in exosomes from the brain extracellular space after traumatic brain injury in mice. J NeurotraumaGoogle Scholar
  98. 98.
    Lasda E, Parker R (2016) Circular RNAs co-precipitate with extracellular vesicles: a possible mechanism for circRNA clearance. PLoS One 11(2):e0148407CrossRefGoogle Scholar
  99. 99.
    Sridharan K, Gogtay NJ (2016) Therapeutic nucleic acids: current clinical status. Br J Clin Pharmacol 82(3):659–672CrossRefGoogle Scholar
  100. 100.
    Bouchie A (2013) First microRNA mimic enters clinic. Nat Biotechnol 31(7):577CrossRefGoogle Scholar
  101. 101.
    van der Ree MH, de Vree JM, Stelma F et al (2017) Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: a phase 1B, double-blind, randomised controlled trial. Lancet 389(10070):709–717CrossRefGoogle Scholar
  102. 102.
    Beg MS, Brenner AJ, Sachdev J et al (2017) Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs 35(2):180–188CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Tianhui Wang
    • 1
    • 2
  • Wen Pan
    • 1
  • Jun Hu
    • 3
  • Zhongrong Zhang
    • 1
  • Guoping Li
    • 4
  • Yajun Liang
    • 1
    • 2
  1. 1.Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life ScienceShanghai UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory of Bio-Energy Crops, School of Life SciencesShanghai UniversityShanghaiChina
  3. 3.Department of Pediatric SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
  4. 4.Cardiovascular Division of the Massachusetts General HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations