Circular RNAs pp 259-273 | Cite as

Circular RNAs in Organ Fibrosis

  • Jianhua Yao
  • Qiying Dai
  • Zhuyuan Liu
  • Lei Zhou
  • Jiahong XuEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1087)


Fibrosis refers to a process involving the accumulation of extracellular matrix components. It could happen in chronic organ injury or during the recovery of acute organ injury. The severity of fibrosis interferes with the function of the organ involved. Numerous studies have been carried out to explore the mechanism of fibrosis, including parenchyma injury, fibrillar ECM accumulation, fibroblast activation, microvasculature rarefaction, and a mononuclear infiltrate. Unfortunately, its underlying mechanism is at largely unknown. The studying of noncoding RNAs has provided novel insight for circRNA-miRNA-mRNA in learning disease progress. Emerging evidence has shown that circRNA is related to fibrosis activity and could potentially be a monitoring factor for fibrosis or, more excitingly, could be a target for treatment. In this chapter, we will first present the basic mechanism of organ fibrosis. Then we will focus on the recent studies about how circRNA dysregulation contributes to organ fibrosis. Finally, the advantages and potential challenges of circRNA-based therapeutics for the treatment of fibroproliferative diseases will be discussed.


circRNA Fibrosis 



This work was supported by the grants from National Natural Science Foundation of China (81370280 and 81570332 to LZ, 81470515 and 81670362 to JH Xu), Shanghai Medical Guide Project from Shanghai Science and Technology Committee (134119a3000 to Jiahong Xu), and the grant from Jiangsu Province’s Key Provincial Talents Program (ZDRCA2016019 to LZ).

Competing Financial Interests

The authors declare no competing financial interests.


  1. 1.
    Murakami M (1991) Study of the mechanism of supporting cells repairing the organ of Corti in terms of cell kinetics–nuclear DNA synthesis of supporting cell of the organ of Corti in the cochlea damaged by nitromin administration. Nihon Jibiinkoka Gakkai Kaiho 94(3):386–395PubMedCrossRefGoogle Scholar
  2. 2.
    Muller I, Vogl T, Pappritz K et al (2017) Pathogenic role of the damage-associated molecular patterns S100A8 and S100A9 in coxsackievirus B3-induced myocarditis. Circ Heart Fail 10(11)Google Scholar
  3. 3.
    Guerrero-Juarez CF, Plikus MV (2017) Gli-fully halting the progression of fibrosis. Cell Stem Cell 20(6):735–736PubMedCrossRefGoogle Scholar
  4. 4.
    Nightingale S, Stormon MO, O’Loughlin EV et al (2017) Early posthepatoportoenterostomy predictors of native liver survival in biliary atresia. J Pediatr Gastroenterol Nutr 64(2):203–209PubMedCrossRefGoogle Scholar
  5. 5.
    Schwab ME (2002) Increasing plasticity and functional recovery of the lesioned spinal cord. Prog Brain Res 137:351–359PubMedCrossRefGoogle Scholar
  6. 6.
    Tampe B, Steinle U, Tampe D et al (2017) Low-dose hydralazine prevents fibrosis in a murine model of acute kidney injury-to-chronic kidney disease progression. Kidney Int 91(1):157–176PubMedCrossRefGoogle Scholar
  7. 7.
    Zoubek ME, Trautwein C, Strnad P (2017) Reversal of liver fibrosis: from fiction to reality. Best Pract Res Clin Gastroenterol 31(2):129–141PubMedCrossRefGoogle Scholar
  8. 8.
    Friedman SL, Sheppard D, Duffield JS et al (2013) Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med 5(167):167sr161CrossRefGoogle Scholar
  9. 9.
    Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 117(3):524–529PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Fani F, Regolisti G, Delsante M et al (2017) Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury. J Nephrol. PubMedCrossRefGoogle Scholar
  11. 11.
    Fischereder M, Schroppel B (2009) The role of chemokines in acute renal allograft rejection and chronic allograft injury. Front Biosci (Landmark Ed) 14:1807–1814CrossRefGoogle Scholar
  12. 12.
    Gomez H, Kellum JA, Ronco C (2017) Metabolic reprogramming and tolerance during sepsis-induced AKI. Nat Rev Nephrol 13(3):143–151PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Kusano KF, Pola R, Murayama T et al (2005) Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat Med 11(11):1197–1204PubMedCrossRefGoogle Scholar
  14. 14.
    Li X, Shu R, Filippatos G et al (2004) Apoptosis in lung injury and remodeling. J Appl Physiol (1985) 97(4):1535–1542CrossRefGoogle Scholar
  15. 15.
    Mehrotra P, Collett JA, Gunst SJ et al (2018) Th17 cells contribute to pulmonary fibrosis and inflammation during chronic kidney disease progression after acute ischemia. Am J Physiol Regul Integr Comp Physiol 314(2):R265–R273PubMedCrossRefGoogle Scholar
  16. 16.
    Niroomand F, Kubler W (1994) Hibernating, stunning and ischemic preconditioning of the myocardium: therapeutic implications. Clin Investig 72(10):731–736PubMedCrossRefGoogle Scholar
  17. 17.
    Popovic B, Sutic I, Skocibusic N et al (2015) Cholestasis and Inflammation of the Pancreas in family medicine. Acta Med Croatica 69(4):319–326PubMedGoogle Scholar
  18. 18.
    Ranganathan P, Jayakumar C, Ramesh G (2013) Proximal tubule-specific overexpression of netrin-1 suppresses acute kidney injury-induced interstitial fibrosis and glomerulosclerosis through suppression of IL-6/STAT3 signaling. Am J Physiol Renal Physiol 304(8):F1054–F1065PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Tewes S, Gueler F, Chen R et al (2017) Functional MRI for characterization of renal perfusion impairment and edema formation due to acute kidney injury in different mouse strains. PLoS One 12(3):e0173248PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Xiao Y, Yang N, Zhang Q et al (2014) Pentraxin 3 inhibits acute renal injury-induced interstitial fibrosis through suppression of IL-6/Stat3 pathway. Inflammation 37(5):1895–1901PubMedCrossRefGoogle Scholar
  21. 21.
    Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18(7):1028–1040PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Westholm JO, Miura P, Olson S et al (2014) Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 9(5):1966–1980PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Salzman J, Gawad C, Wang PL et al (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7(2):e30733PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Yang L, Zou M, Fu B et al (2013) Genome-wide identification, characterization, and expression analysis of lineage-specific genes within zebrafish. BMC Genomics 14:65PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kelly S, Greenman C, Cook PR et al (2015) Exon Skipping Is Correlated with Exon Circularization. J Mol Biol 427(15):2414–2417PubMedCrossRefGoogle Scholar
  26. 26.
    Nigro JM, Cho KR, Fearon ER et al (1991) Scrambled exons. Cell 64(3):607–613PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Cocquerelle C, Daubersies P, Majerus MA et al (1992) Splicing with inverted order of exons occurs proximal to large introns. EMBO J 11(3):1095–1098PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Capel B, Swain A, Nicolis S et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5):1019–1030PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Cocquerelle C, Mascrez B, Hetuin D et al (1993) Mis-splicing yields circular RNA molecules. FASEB J 7(1):155–160PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Pasman Z, Been MD, Garcia-Blanco MA (1996) Exon circularization in mammalian nuclear extracts. RNA 2(6):603–610PubMedPubMedCentralGoogle Scholar
  31. 31.
    Salzman J, Chen RE, Olsen MN et al (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Liang D, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28(20):2233–2247PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Starke S, Jost I, Rossbach O et al (2015) Exon circularization requires canonical splice signals. Cell Rep 10(1):103–111PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Burd CE, Jeck WR, Liu Y et al (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6(12):e1001233PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Lukiw WJ (2013) Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet 4:307PubMedPubMedCentralGoogle Scholar
  38. 38.
    Bachmayr-Heyda A, Reiner AT, Auer K et al (2015) Correlation of circular RNA abundance with proliferation--exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep 5:8057PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Rybak-Wolf A, Stottmeister C, Glazar P et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885CrossRefPubMedGoogle Scholar
  40. 40.
    You X, Vlatkovic I, Babic A et al (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603–610PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Suzuki H, Zuo Y, Wang J et al (2006) Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34(8):e63PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Barrett SP, Salzman J (2016) Circular RNAs: analysis, expression and potential functions. Development 143(11):1838–1847PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Guo JU, Agarwal V, Guo H et al (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15(7):409PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Veno MT, Hansen TB, Veno ST et al (2015) Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol 16:245PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Bellemare J, Roberge CJ, Bergeron D et al (2005) Epidermis promotes dermal fibrosis: role in the pathogenesis of hypertrophic scars. J Pathol 206(1):1–8PubMedCrossRefGoogle Scholar
  47. 47.
    Holvoet T, Devriese S, Castermans K et al (2017) Treatment of intestinal fibrosis in experimental inflammatory bowel disease by the pleiotropic actions of a local rho kinase inhibitor. Gastroenterology 153(4):1054–1067PubMedCrossRefGoogle Scholar
  48. 48.
    Alcalde O, Cabrera Gomez S, Valles Gras E et al (2017) Rheumatoid arthritis with severe atrial fibrosis and multiple atrial arrhythmias: chronic atrial myocarditis? Rev Esp Cardiol (Engl Ed). CrossRefGoogle Scholar
  49. 49.
    Abdul N, Dixon D, Walker A et al (2015) Fibrosis is a common outcome following total knee arthroplasty. Sci Rep 5:16469PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Ramos F, Robledo C, Izquierdo-Garcia FM et al (2016) Bone marrow fibrosis in myelodysplastic syndromes: a prospective evaluation including mutational analysis. Oncotarget 7(21):30492–30503PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Dvorak HF, Harvey VS, McDonagh J (1984) Quantitation of fibrinogen influx and fibrin deposition and turnover in line 1 and line 10 guinea pig carcinomas. Cancer Res 44(8):3348–3354PubMedGoogle Scholar
  52. 52.
    Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659PubMedCrossRefGoogle Scholar
  53. 53.
    Iwano M, Plieth D, Danoff TM et al (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110(3):341–350PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Jian XC, Liu SF, Shen ZH et al (1988) Histomorphology of oral submucous fibrosis. Report of 24 cases. Chin Med J (Engl) 101(7):505–509Google Scholar
  55. 55.
    Zhang SS, Gong ZJ, Xiong W et al (2016) A rat model of oral submucous fibrosis induced by bleomycin. Oral Surg Oral Med Oral Pathol Oral Radiol 122(2):216–223PubMedCrossRefGoogle Scholar
  56. 56.
    Harwood IR, Greene LM, Kozakowski-Koch JA et al (1992) New peripherally inserted midline catheter: a better alternative for intravenous antibiotic therapy in patients with cystic fibrosis. Pediatr Pulmonol 12(4):233–239PubMedCrossRefGoogle Scholar
  57. 57.
    Jiao LR, Seifalian AM, Habib N et al (1999) The effect of mechanically enhancing portal venous inflow on hepatic oxygenation, microcirculation, and function in a rabbit model with extensive hepatic fibrosis. Hepatology 30(1):46–52PubMedCrossRefGoogle Scholar
  58. 58.
    Perry KA, Banarjee A, Liu J et al (2013) Gastric ischemic conditioning increases neovascularization and reduces inflammation and fibrosis during gastroesophageal anastomotic healing. Surg Endosc 27(3):753–760PubMedCrossRefGoogle Scholar
  59. 59.
    Tucker RD, Gibbs GE, Christensen MB (1979) Cystic fibrosis serum effect on the short circuit current of rat jejunum. Pediatr Res 13(12):1371–1374PubMedCrossRefGoogle Scholar
  60. 60.
    Poling J, Gajawada P, Lorchner H et al (2012) The Janus face of OSM-mediated cardiomyocyte dedifferentiation during cardiac repair and disease. Cell Cycle 11(3):439–445PubMedCrossRefGoogle Scholar
  61. 61.
    Hano H, Takasaki S (2003) Three-dimensional observations on the alterations of lobular architecture in chronic hepatitis with special reference to its angioarchitecture for a better understanding of the formal pathogenesis of liver cirrhosis. Virchows Arch 443(5):655–663PubMedCrossRefGoogle Scholar
  62. 62.
    Forbes MS, Thornhill BA, Chevalier RL (2011) Proximal tubular injury and rapid formation of atubular glomeruli in mice with unilateral ureteral obstruction: a new look at an old model. Am J Physiol Renal Physiol 301(1):F110–F117PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Akram KM, Lomas NJ, Spiteri MA et al (2013) Club cells inhibit alveolar epithelial wound repair via TRAIL-dependent apoptosis. Eur Respir J 41(3):683–694PubMedCrossRefGoogle Scholar
  64. 64.
    Aravinthan A, Scarpini C, Tachtatzis P et al (2013) Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease. J Hepatol 58(3):549–556PubMedCrossRefGoogle Scholar
  65. 65.
    Rowe RG, Lin Y, Shimizu-Hirota R et al (2011) Hepatocyte-derived Snail1 propagates liver fibrosis progression. Mol Cell Biol 31(12):2392–2403PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Roberts AB, Anzano MA, Lamb LC et al (1982) Isolation from murine sarcoma cells of novel transforming growth factors potentiated by EGF. Nature 295(5848):417–419PubMedCrossRefGoogle Scholar
  67. 67.
    Border WA, Okuda S, Languino LR et al (1990) Suppression of experimental glomerulonephritis by antiserum against transforming growth factor beta 1. Nature 346(6282):371–374PubMedCrossRefGoogle Scholar
  68. 68.
    Denis M (1994) Neutralization of transforming growth factor-beta 1 in a mouse model of immune-induced lung fibrosis. Immunology 82(4):584–590PubMedPubMedCentralGoogle Scholar
  69. 69.
    Kuwahara F, Kai H, Tokuda K et al (2002) Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation 106(1):130–135PubMedCrossRefGoogle Scholar
  70. 70.
    Roberts AB, Sporn MB, Assoian RK et al (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83(12):4167–4171PubMedCrossRefGoogle Scholar
  71. 71.
    Crosas-Molist E, Fabregat I (2015) Role of NADPH oxidases in the redox biology of liver fibrosis. Redox Biol 6:106–111PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kendall RT, Feghali-Bostwick CA (2014) Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol 5:123PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401PubMedCrossRefGoogle Scholar
  74. 74.
    Kalluri R, Zeisberg E (2006) Controlling angiogenesis in heart valves. Nat Med 12(10):1118–1119PubMedCrossRefGoogle Scholar
  75. 75.
    Kalluri R, Zeisberg M (2003) Exploring the connection between chronic renal fibrosis and bone morphogenic protein-7. Histol Histopathol 18(1):217–224PubMedGoogle Scholar
  76. 76.
    Moore-Morris T, Cattaneo P, Puceat M et al (2016) Origins of cardiac fibroblasts. J Mol Cell Cardiol 91:1–5PubMedCrossRefGoogle Scholar
  77. 77.
    Zeisberg EM, Kalluri R (2010) Origins of cardiac fibroblasts. Circ Res 107(11):1304–1312PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Dufourcq P, Louis H, Dandre F et al (1997) Phenotypic modification of arterial smooth muscle cells in response to medial dissection. Coron Artery Dis 8(3–4):163–170PubMedCrossRefGoogle Scholar
  79. 79.
    Shujia J, Haider HK, Idris NM et al (2008) Stable therapeutic effects of mesenchymal stem cell-based multiple gene delivery for cardiac repair. Cardiovasc Res 77(3):525–533PubMedCrossRefGoogle Scholar
  80. 80.
    Tanaka Y, Nouchi T, Yamane M et al (1991) Phenotypic modulation in lipocytes in experimental liver fibrosis. J Pathol 164(3):273–278PubMedCrossRefGoogle Scholar
  81. 81.
    Grupp C, Lottermoser J, Cohen DI et al (1997) Transformation of rat inner medullary fibroblasts to myofibroblasts in vitro. Kidney Int 52(5):1279–1290PubMedCrossRefGoogle Scholar
  82. 82.
    Maxwell PH, Osmond MK, Pugh CW et al (1993) Identification of the renal erythropoietin-producing cells using transgenic mice. Kidney Int 44(5):1149–1162PubMedCrossRefGoogle Scholar
  83. 83.
    Paliege A, Rosenberger C, Bondke A et al (2010) Hypoxia-inducible factor-2alpha-expressing interstitial fibroblasts are the only renal cells that express erythropoietin under hypoxia-inducible factor stabilization. Kidney Int 77(4):312–318PubMedCrossRefGoogle Scholar
  84. 84.
    Camelliti P, Devlin GP, Matthews KG et al (2004) Spatially and temporally distinct expression of fibroblast connexins after sheep ventricular infarction. Cardiovasc Res 62(2):415–425PubMedCrossRefGoogle Scholar
  85. 85.
    Camelliti P, Green CR, Kohl P (2006) Structural and functional coupling of cardiac myocytes and fibroblasts. Adv Cardiol 42:132–149PubMedCrossRefGoogle Scholar
  86. 86.
    Camelliti P, Green CR, LeGrice I et al (2004) Fibroblast network in rabbit sinoatrial node: structural and functional identification of homogeneous and heterogeneous cell coupling. Circ Res 94(6):828–835PubMedCrossRefGoogle Scholar
  87. 87.
    Tveito A, Lines G, Artebrant R et al (2011) Existence of excitation waves for a collection of cardiomyocytes electrically coupled to fibroblasts. Math Biosci 230(2):79–86PubMedCrossRefGoogle Scholar
  88. 88.
    Chang HY, Chi JT, Dudoit S et al (2002) Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA 99(20):12877–12882PubMedCrossRefGoogle Scholar
  89. 89.
    Sugimoto H, Mundel TM, Kieran MW et al (2006) Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 5(12):1640–1646PubMedCrossRefGoogle Scholar
  90. 90.
    Iwano M, Fischer A, Okada H et al (2001) Conditional abatement of tissue fibrosis using nucleoside analogs to selectively corrupt DNA replication in transgenic fibroblasts. Mol Ther 3(2):149–159PubMedCrossRefGoogle Scholar
  91. 91.
    Bayreuther K, Francz PI, Rodemann HP (1992) Fibroblasts in normal and pathological terminal differentiation, aging, apoptosis and transformation. Arch Gerontol Geriatr 15(Suppl 1):47–74PubMedCrossRefGoogle Scholar
  92. 92.
    Bayreuther K, Francz PI, Rodemann HP (1995) Fibroblasts in normal and pathological terminal differentiation, aging, apoptosis and transformation. Ontogenez 26(1):22–37PubMedGoogle Scholar
  93. 93.
    Bayreuther K, Rodemann HP, Francz PI et al (1988) Differentiation of fibroblast stem cells. J Cell Sci Suppl 10:115–130PubMedCrossRefGoogle Scholar
  94. 94.
    Bayreuther K, Rodemann HP, Hommel R et al (1988) Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc Natl Acad Sci USA 85(14):5112–5116PubMedCrossRefGoogle Scholar
  95. 95.
    Bucala R, Spiegel LA, Chesney J et al (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1(1):71–81PubMedPubMedCentralGoogle Scholar
  96. 96.
    Lin SL, Kisseleva T, Brenner DA et al (2008) Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173(6):1617–1627PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Ronnov-Jessen L, Petersen OW (1996) A function for filamentous alpha-smooth muscle actin: retardation of motility in fibroblasts. J Cell Biol 134(1):67–80PubMedCrossRefGoogle Scholar
  98. 98.
    Ronnov-Jessen L, Petersen OW, Koteliansky VE et al (1995) The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 95(2):859–873PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ronnov-Jessen L, Petersen OW (1993) Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest 68(6):696–707PubMedGoogle Scholar
  100. 100.
    Boutet A, De Frutos CA, Maxwell PH et al (2006) Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. EMBO J 25(23):5603–5613PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Broekema M, Harmsen MC, van Luyn MJ et al (2007) Bone marrow-derived myofibroblasts contribute to the renal interstitial myofibroblast population and produce procollagen I after ischemia/reperfusion in rats. J Am Soc Nephrol 18(1):165–175PubMedCrossRefGoogle Scholar
  102. 102.
    Humphreys BD, Lin SL, Kobayashi A et al (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176(1):85–97PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Kim KK, Wei Y, Szekeres C et al (2009) Epithelial cell alpha3beta1 integrin links beta-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis. J Clin Invest 119(1):213–224PubMedGoogle Scholar
  104. 104.
    Kisseleva T, Uchinami H, Feirt N et al (2006) Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol 45(3):429–438PubMedCrossRefGoogle Scholar
  105. 105.
    Li J, Qu X, Yao J et al (2010) Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes 59(10):2612–2624PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Osterreicher CH, Penz-Osterreicher M, Grivennikov SI et al (2011) Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. Proc Natl Acad Sci USA 108(1):308–313PubMedCrossRefGoogle Scholar
  107. 107.
    Quaggin SE, Kapus A (2011) Scar wars: mapping the fate of epithelial-mesenchymal-myofibroblast transition. Kidney Int 80(1):41–50PubMedCrossRefGoogle Scholar
  108. 108.
    Rock JR, Barkauskas CE, Cronce MJ et al (2011) Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci USA 108(52):E1475–E1483PubMedCrossRefGoogle Scholar
  109. 109.
    Zeisberg EM, Potenta SE, Sugimoto H et al (2008) Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 19(12):2282–2287PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Zeisberg M, Yang C, Martino M et al (2007) Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 282(32):23337–23347PubMedCrossRefGoogle Scholar
  111. 111.
    Zhou B, von Gise A, Ma Q et al (2010) Genetic fate mapping demonstrates contribution of epicardium-derived cells to the annulus fibrosis of the mammalian heart. Dev Biol 338(2):251–261PubMedCrossRefGoogle Scholar
  112. 112.
    Distler O, Distler JH, Scheid A et al (2004) Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ Res 95(1):109–116PubMedCrossRefGoogle Scholar
  113. 113.
    Higgins DF, Kimura K, Bernhardt WM et al (2007) Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 117(12):3810–3820PubMedPubMedCentralGoogle Scholar
  114. 114.
    Moon JO, Welch TP, Gonzalez FJ et al (2009) Reduced liver fibrosis in hypoxia-inducible factor-1alpha-deficient mice. Am J Physiol Gastrointest Liver Physiol 296(3):G582–G592PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Corpechot C, Barbu V, Wendum D et al (2002) Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology 35(5):1010–1021PubMedCrossRefGoogle Scholar
  116. 116.
    Ioannou M, Pyrpasopoulou A, Simos G et al (2013) Upregulation of VEGF expression is associated with accumulation of HIF-1alpha in the skin of naive scleroderma patients. Mod Rheumatol 23(6):1245–1248PubMedCrossRefGoogle Scholar
  117. 117.
    Maeshima Y, Makino H (2010) Angiogenesis and chronic kidney disease. Fibrogenesis Tissue Repair 3:13PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Yoon YS, Uchida S, Masuo O et al (2005) Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation 111(16):2073–2085PubMedCrossRefGoogle Scholar
  119. 119.
    Worda M, Sgonc R, Dietrich H et al (2003) In vivo analysis of the apoptosis-inducing effect of anti-endothelial cell antibodies in systemic sclerosis by the chorionallantoic membrane assay. Arthritis Rheum 48(9):2605–2614PubMedCrossRefGoogle Scholar
  120. 120.
    Rieder F, Kessler SP, West GA et al (2011) Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis. Am J Pathol 179(5):2660–2673PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Zeisberg EM, Potenta S, Xie L et al (2007) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67(21):10123–10128PubMedCrossRefGoogle Scholar
  122. 122.
    Zeisberg EM, Tarnavski O, Zeisberg M et al (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13(8):952–961PubMedCrossRefGoogle Scholar
  123. 123.
    Eisenberg LM, Markwald RR (1995) Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res 77(1):1–6PubMedCrossRefGoogle Scholar
  124. 124.
    Liebner S, Cattelino A, Gallini R et al (2004) Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol 166(3):359–367PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Nakajima Y, Yamagishi T, Hokari S et al (2000) Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP). Anat Rec 258(2):119–127PubMedCrossRefGoogle Scholar
  126. 126.
    Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11(11):723–737PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Wynn TA (2011) Integrating mechanisms of pulmonary fibrosis. J Exp Med 208(7):1339–1350PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Wynn TA, Barron L, Thompson RW et al (2011) Quantitative assessment of macrophage functions in repair and fibrosis. Curr Protoc Immunol Chapter 14:Unit14.22Google Scholar
  129. 129.
    Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115(2):209–218PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Bataller R, Sancho-Bru P, Gines P et al (2005) Liver fibrogenesis: a new role for the renin-angiotensin system. Antioxid Redox Signal 7(9-10):1346–1355PubMedCrossRefGoogle Scholar
  131. 131.
    Seki E, Schwabe RF (2015) Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology 61(3):1066–1079PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Chen Y, Yuan B, Wu Z et al (2017) Microarray profiling of circular RNAs and the potential regulatory role of hsa_circ_0071410 in the activated human hepatic stellate cell induced by irradiation. Gene 629:35–42PubMedCrossRefGoogle Scholar
  133. 133.
    Kong P, Christia P, Frangogiannis NG (2014) The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 71(4):549–574PubMedCrossRefGoogle Scholar
  134. 134.
    Goyal BR, Mehta AA (2013) Diabetic cardiomyopathy: pathophysiological mechanisms and cardiac dysfuntion. Hum Exp Toxicol 32(6):571–590PubMedCrossRefGoogle Scholar
  135. 135.
    Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98(5):596–605PubMedCrossRefGoogle Scholar
  136. 136.
    Suys BE, Katier N, Rooman RP et al (2004) Female children and adolescents with type 1 diabetes have more pronounced early echocardiographic signs of diabetic cardiomyopathy. Diabetes Care 27(8):1947–1953PubMedCrossRefGoogle Scholar
  137. 137.
    Aneja A, Tang WH, Bansilal S et al (2008) Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 121(9):748–757PubMedCrossRefGoogle Scholar
  138. 138.
    Tarquini R, Lazzeri C, Pala L et al (2011) The diabetic cardiomyopathy. Acta Diabetol 48(3):173–181PubMedCrossRefGoogle Scholar
  139. 139.
    Dzeshka MS, Lip GY, Snezhitskiy V et al (2015) Cardiac fibrosis in patients With atrial fibrillation: mechanisms and clinical implications. J Am Coll Cardiol 66(8):943–959PubMedCrossRefGoogle Scholar
  140. 140.
    Tveito A, Lines GT, Edwards AG et al (2012) Slow Calcium-Depolarization-Calcium waves may initiate fast local depolarization waves in ventricular tissue. Prog Biophys Mol Biol 110(2–3):295–304PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Tang CM, Zhang M, Huang L et al (2017) CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep 7:40342PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Zhou B, Yu JW (2017) A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-beta1. Biochem Biophys Res Commun 487(4):769–775PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Barkauskas CE, Noble PW (2014) Cellular mechanisms of tissue fibrosis. 7. New insights into the cellular mechanisms of pulmonary fibrosis. Am J Physiol Cell Physiol 306(11):C987–C996PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Noble PW, Barkauskas CE, Jiang D (2012) Pulmonary fibrosis: patterns and perpetrators. J Clin Invest 122(8):2756–2762PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Churg A, Wright JL, Tazelaar HD (2011) Acute exacerbations of fibrotic interstitial lung disease. Histopathology 58(4):525–530PubMedCrossRefGoogle Scholar
  146. 146.
    Tazelaar HD, Wright JL, Churg A (2011) Desquamative interstitial pneumonia. Histopathology 58(4):509–516PubMedCrossRefGoogle Scholar
  147. 147.
    Wright JL, Tazelaar HD, Churg A (2011) Fibrosis with emphysema. Histopathology 58(4):517–524PubMedCrossRefGoogle Scholar
  148. 148.
    Mathai SK, Gulati M, Peng X et al (2010) Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype. Lab Invest 90(6):812–823PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Carneiro PJ, Clevelario AL, Padilha GA et al (2017) Bosutinib therapy ameliorates lung inflammation and fibrosis in experimental silicosis. Front Physiol 8:159PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Miao R, Ding B, Zhang Y et al (2016) Proteomic profiling differences in serum from silicosis and chronic bronchitis patients: a comparative analysis. J Thorac Dis 8(3):439–450PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Rosengarten D, Fox BD, Fireman E et al (2017) Survival following lung transplantation for artificial stone silicosis relative to idiopathic pulmonary fibrosis. Am J Ind Med 60(3):248–254PubMedCrossRefGoogle Scholar
  152. 152.
    Zhao MM, Cui JZ, Cui Y et al (2013) Therapeutic effect of exogenous bone marrowderived mesenchymal stem cell transplantation on silicosis via paracrine mechanisms in rats. Mol Med Rep 8(3):741–746PubMedCrossRefGoogle Scholar
  153. 153.
    Gungen AC, Aydemir Y, Coban H et al (2016) Lung cancer in patients diagnosed with silicosis should be investigated. Respir Med Case Rep 18:93–95PubMedPubMedCentralGoogle Scholar
  154. 154.
    Yang X, Wang J, Zhou Z et al (2018) Silica-induced initiation of circular ZC3H4 RNA/ZC3H4 pathway promotes the pulmonary macrophage activation. FASEB J.
  155. 155.
    Kawaratani H, Moriya K, Namisaki T et al (2017) Therapeutic strategies for alcoholic liver disease: focusing on inflammation and fibrosis (Review). Int J Mol Med 40(2):263–270PubMedCrossRefGoogle Scholar
  156. 156.
    Nogueira A, Pires MJ, Oliveira PA (2017) Pathophysiological mechanisms of renal fibrosis: a review of animal models and therapeutic strategies. In Vivo 31(1):1–22PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Owens GM (2017) Strategies to manage costs in idiopathic pulmonary fibrosis. Am J Manag Care 23(11 Suppl):S191–S196PubMedGoogle Scholar
  158. 158.
    Stasi C, Milani S (2017) Evolving strategies for liver fibrosis staging: non-invasive assessment. World J Gastroenterol 23(2):191–196PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Friedman SL (2004) Mechanisms of disease: mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol 1(2):98–105PubMedCrossRefGoogle Scholar
  160. 160.
    Bayomi HS, Elsherbiny NM, El-Gayar AM et al (2013) Evaluation of renal protective effects of inhibiting TGF-beta type I receptor in a cisplatin-induced nephrotoxicity model. Eur Cytokine Netw 24(4):139–147PubMedGoogle Scholar
  161. 161.
    Xu Y, Lou Z, Lee SH (2017) Arctigenin represses TGF-beta-induced epithelial mesenchymal transition in human lung cancer cells. Biochem Biophys Res Commun 493(2):934–939PubMedCrossRefGoogle Scholar
  162. 162.
    Munjal C, Opoka AM, Osinska H et al (2014) TGF-beta mediates early angiogenesis and latent fibrosis in an Emilin1-deficient mouse model of aortic valve disease. Dis Model Mech 7(8):987–996PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Katz LH, Likhter M, Jogunoori W et al (2016) TGF-beta signaling in liver and gastrointestinal cancers. Cancer Lett 379(2):166–172PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Rao S, Zaidi S, Banerjee J et al (2017) Transforming growth factor-beta in liver cancer stem cells and regeneration. Hepatol Commun 1(6):477–493PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Kiryu H, Terai G, Imamura O et al (2011) A detailed investigation of accessibilities around target sites of siRNAs and miRNAs. Bioinformatics 27(13):1788–1797PubMedCrossRefGoogle Scholar
  166. 166.
    Samuel P, Pink RC, Brooks SA et al (2016) miRNAs and ovarian cancer: a miRiad of mechanisms to induce cisplatin drug resistance. Expert Rev Anticancer Ther 16(1):57–70PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Scimeca JC, Verron E (2017) The multiple therapeutic applications of miRNAs for bone regenerative medicine. Drug Discov Today 22(7):1084–1091PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Chen Y, Li C, Tan C et al (2017) Circular RNA in human disease and their potential clinic significance. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 34(1):133–137PubMedPubMedCentralGoogle Scholar
  169. 169.
    Park WS, Miyano-Kurosaki N, Abe T et al (1999) Properties of circular dumbbell RNA/DNA chimeric oligonucleotides containing antisense phosphodiester oligonucleotides. Nucleic Acids Symp Ser doi 42:225–226CrossRefGoogle Scholar
  170. 170.
    Yamakawa H, Abe T, Saito T et al (1998) Properties of nicked and circular dumbbell RNA/DNA chimeric oligonucleotides containing antisense phosphodiester oligodeoxynucleotides. Bioorg Med Chem 6(7):1025–1032PubMedCrossRefGoogle Scholar
  171. 171.
    Zuo H, Suzuki S, Sotoda M et al (2006) New technique for visualizing cerebral vessels in MR angiographic images using three-dimensional discrete wavelet transform. Igaku Butsuri 26(2):65–74PubMedGoogle Scholar
  172. 172.
    Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17(4):205–211PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Greene J, Baird AM, Brady L et al (2017) Circular RNAs: biogenesis, function and role in human diseases. Front Mol Biosci 4:38PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Qin M, Liu G, Huo X et al (2016) Hsa_circ_0001649: a circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomark 16(1):161–169PubMedCrossRefGoogle Scholar
  175. 175.
    Bao C, Lyu D, Huang S (2016) Circular RNA expands its territory. Mol Cell Oncol 3(2):e1084443PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jianhua Yao
    • 1
  • Qiying Dai
    • 2
    • 3
  • Zhuyuan Liu
    • 3
  • Lei Zhou
    • 3
  • Jiahong Xu
    • 4
    Email author
  1. 1.Department of Cardiology, Shanghai Tenth People’s HospitalTongji University School of MedicineShanghaiChina
  2. 2.MetroWest Medical CenterFraminghamUSA
  3. 3.Department of CardiologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
  4. 4.Department of Cardiology, Shanghai Tongji HospitalTongji University School of MedicineShanghaiChina

Personalised recommendations