Advertisement

Multi-object Model-Based Multi-atlas Segmentation Constrained Grid Cut for Automatic Segmentation of Lumbar Vertebrae from CT Images

  • Weimin Yu
  • Wenyong Liu
  • Liwen Tan
  • Shaoxiang Zhang
  • Guoyan Zheng
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1093)

Abstract

In this chapter, we present a multi-object model-based multi-atlas segmentation constrained grid cut method for automatic segmentation of lumbar vertebrae from a given lumbar spinal CT image. More specifically, our automatic lumbar vertebrae segmentation method consists of two steps: affine atlas-target registration-based label fusion and bone-sheetness assisted multi-label grid cut which has the inherent advantage of automatic separation of the five lumbar vertebrae from each other. We evaluate our method on 21 clinical lumbar spinal CT images with the associated manual segmentation and conduct a leave-one-out study. Our method achieved an average Dice coefficient of 93.9 ± 1.0% and an average symmetric surface distance of 0.41 ± 0.08 mm.

Keywords

Multi-object model-based multi-atlas segmentation Grid cut CT Lumbar vertebrae Affine registration Label fusion Image-guided spinal surgery 

References

  1. 1.
    Aslan M, Ali A, Chen D, Arnold B, Farag A, Xiang P (2010) 3D vertebrae segmentation using graph cuts with shape prior constraints. In: Proceedings of the ICIP 2010, pp 2193–2196, Hong Kong, ChinaGoogle Scholar
  2. 2.
    Balmain Sports Medicine (2014) Common lumbar spine injuries. https://www.balmainsportsmed.com.au/injury-library/injury-information/lumber-and-spine.html. [Online; Accessed 09 Oct 2017]
  3. 3.
    Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans Pattern Anal Mach Intell 26(9):1124–1137CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Chen H, Shen C, Qin J et al (2015) Automatic localization and identification of vertebrae in spine ct via a joint learning model with deep neural network. In: Proceedings of the MICCAI 2015, pp 515–522, Munich, GermanyGoogle Scholar
  5. 5.
    Chu C, Belavy D et al (2015) Fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images via a learning-based method. PLoS One 10(11):e0143327CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Damopoulos D, Glocker B, Zheng G (2017) Automatic localization of the lumbar vertebral landmarks in CT images with context features. In: Proceedings of the 2017 MICCAI-MSKI workshop, pp 56–68, Quebec City, CanadaGoogle Scholar
  7. 7.
    Descoteaux M, Audette M, Chinzei K, Siddiqi K (2005) Bone enhancement filtering: application to sinus bone segmentation and simulation of pituitary surgery. In: Proceedings of the MICCAI 2005, pp 9–16, Palm Springs, USAGoogle Scholar
  8. 8.
    Ibragimov B, Likar B, Pernus F, Vrtovec T (2014) Shape representation for efficient landmark-based segmentation in 3-D. IEEE Trans Med Imaging 33(4):861–874S. https://doi.org/10.1109/TMI.2013.2296976 CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Jamriška O, Sýkora D, Hornung A (2012) Cache-efficient graph cuts on structured grids. In: Proceedings of the CVPR 2012, pp 3673–3680, Rhode Island, USAGoogle Scholar
  10. 10.
    Kadoury S, Labelle H, Paragios N (2013) Spine segmentation in medical images using manifold embeddings and higher-order MRFs. IEEE Trans Med Imaging 32(7):1227–1238. https://doi.org/10.1109/TMI.2013.2244903 CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Klein S, Staring M, Murphy K, Viergever M, Pluim J (2010) Elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29(1):196–205CrossRefGoogle Scholar
  12. 12.
    Korez R, Ibragimov B, Likar B, Pernus F, Vrtovec T (2015) A framework for automated spine and vertebrae interpolation-based detection and model-based segmentation. IEEE Trans Med Imaging 34:1649–1662CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Krčah M, Székely G, Blanc R (2011) Fully automatic and fast segmentation of the femur bone from 3D-CT images with no shape prior. In: Proceedings of the ISBI 2011, pp 2087–2090, Chicago, USAGoogle Scholar
  14. 14.
    Lim P, Bagci U, Bai L (2013) Introducing willmore flow into level set segmentation of spinal vertebrae. IEEE Trans Biomed Eng 60(1):115–122CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Sekuboyina A, Kukacka J, Kirschke J, Menze B, Valentinitsch A (2017) Attention-driven deep learning for pathological spine segmentation. In: Proceedfing of 2017 MICCAI-MSKI workshop, pp 104–115, Quebec City, CanadaGoogle Scholar
  16. 16.
    \(\check{S}\) tern D, Likar B, Pernus F, Vrtovec T (2011) Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images. Phys Med Biol 56:7505–7522. https://doi.org/doi:10.1088/0031-9155/56/23/011 CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Yao J, Burns J, Forsberg D et al (2016) A multi-center milestone study of clinical vertebral CT segmentation. Comput Med Imaging Graph 49: 16–28CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Weimin Yu
    • 1
  • Wenyong Liu
    • 2
    • 3
  • Liwen Tan
    • 4
  • Shaoxiang Zhang
    • 4
  • Guoyan Zheng
    • 1
  1. 1.Institute for Surgical Technology and BiomechanicsUniversity of BernBernSwitzerland
  2. 2.School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
  3. 3.Beihang Advanced Innovation Centre for Biomedical EngineeringBeihang UniversityBeijingChina
  4. 4.The Institute of Digital MedicineThird Military Medical UniversityChongqingChina

Personalised recommendations