Advertisement

Sensor-Based Soft Tissue Balancing in Total Knee Arthroplasty

  • Jimmy Chow
  • Tsun Yee Law
  • Martin Roche
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1093)

Abstract

Total knee arthroplasty (TKA) is a highly successful procedure with utilization expected to grow substantially over the coming decades. However, the revision burden has not concurrently improved, with over 30% of revisions related to technical imperfections (Mulhall KJ, Ghomrawi HM, Scully S, Callaghan JJ, Saleh KJ, Clin Orthop Relat Res 446:45, 2006; Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM, Clin Orthop Relat Res 404:7, 2002; Wylde V, Hewlett S, Learmonth ID, Dieppe P, Pain 152(3):566, 2011). Accurate alignment and soft tissue balancing have been identified as important factors in mitigating these risks. Historically, accuracy relating to soft tissue balance has relied upon surgeon experience and subjective tactile feel. This chapter will explore the utilization of intraoperative sensors related to soft tissue balancing in total knee arthroplasty.

Keywords

Total knee arthroplasty (TKA) Intraoperative sensor Soft tissue balance Sensor-assisted surgery Surgical robotics 

References

  1. 1.
    Mulhall KJ, Ghomrawi HM, Scully S, Callaghan JJ, Saleh KJ (2006) Current etiologies and modes of failure in total knee arthroplasty revision. Clin Orthop Relat Res 446:45CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM (2002) Insall Award paper. Why are total knee arthroplasties failing today? Clin Orthop Relat Res 404:7CrossRefGoogle Scholar
  3. 3.
    Wylde V, Hewlett S, Learmonth ID, Dieppe P (2011) Persistent pain after joint replacement: prevalence, sensory qualities, and postoperative determinants. Pain 152(3):566CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Gustke KA, Golladay GJ, Roche MW, Jerry GJ, Elson LC, Anderson CR (2014) Increased satisfaction after total knee replacement using sensor-guided technology. Bone Joint J 96-b(10):1333CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Khan M, Osman K, Green G, Haddad FS (2016) The epidemiology of failure in total knee arthroplasty: avoiding your next revision. Bone Joint J 98-b(1 Suppl A):105CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Le DH, Goodman SB, Maloney WJ, Huddleston JI (2014) Current modes of failure in TKA: infection, instability, and stiffness predominate. Clin Orthop Relat Res 472(7):2197CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Lombardi AV Jr, Berend KR, Ng VY (2011) Neutral mechanical alignment: a requirement for successful TKA: affirms. Orthopedics 34(9):e504PubMedPubMedCentralGoogle Scholar
  8. 8.
    Peters CL, Jimenez C, Erickson J, Anderson MB, Pelt CE (2013) Lessons learned from selective soft-tissue release for gap balancing in primary total knee arthroplasty: an analysis of 1216 consecutive total knee arthroplasties: AAOS exhibit selection. J Bone Joint Surg Am 95(20):e152CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Roth JD, Howell SM, Hull ML (2017) An improved tibial force sensor to compute contact forces and contact locations in vitro after total knee arthroplasty. J Biomech Eng 139(4)CrossRefGoogle Scholar
  10. 10.
    Jarvelin J, Hakkinen U, Rosenqvist G, Remes V (2012) Factors predisposing to claims and compensations for patient injuries following total hip and knee arthroplasty. Acta Orthop 83(2):190CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Gustke KA, Golladay GJ, Roche MW, Elson LC, Anderson CR (2014) Primary TKA patients with quantifiably balanced soft-tissue achieve significant clinical gains sooner than unbalanced patients. Adv Orthop 2014:628695CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Inacio MCS, Paxton EW, Graves SE, Namba RS, Nemes S (1797) Projected increase in total knee arthroplasty in the United States – an alternative projection model. Osteoarthr Cartil 25(11):2017Google Scholar
  13. 13.
    Kurtz S, Ong K, Lau E, Mowat F, Halpern M (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 89(4):780PubMedPubMedCentralGoogle Scholar
  14. 14.
    Chow JC, Breslauer L (2017) The use of intraoperative sensors significantly increases the patient-reported rate of improvement in primary Total knee arthroplasty. Orthopedics 40(4):e648CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Elmallah RK, Mistry JB, Cherian JJ, Chughtai M, Bhave A, Roche MW, Mont MA (2016) Can we really “feel” a balanced Total knee arthroplasty? J Arthroplast 31(9 Suppl):102CrossRefGoogle Scholar
  16. 16.
    D'Lima DD, Patil S, Steklov N, Colwell CW Jr (2007) An ABJS best paper: dynamic intraoperative ligament balancing for total knee arthroplasty. Clin Orthop Relat Res 463:208PubMedPubMedCentralGoogle Scholar
  17. 17.
    Golladay GJ (2017) Is a surgeon-defined balanced knee following total knee arthroplasty really balanced? In: ISTAGoogle Scholar
  18. 18.
    MacDessi S (2017) Accuracy of manual surgeon defined assessment of soft tissue balance in TKA in comparison to Verasense sensor-guided measures – can we detect an unbalanced knee? In: AOAGoogle Scholar
  19. 19.
    Gustke KA, Golladay GJ, Roche MW, Elson LC, Anderson CR (2017) A targeted approach to ligament balancing using kinetic sensors. J Arthroplast 32(7):2127CrossRefGoogle Scholar
  20. 20.
    Geller JA, Lakra A, Murtaugh T (2017) The use of electronic sensor device to augment ligament balancing leads to a lower rate of Arthrofibrosis after total knee arthroplasty. J Arthroplast 32(5):1502CrossRefGoogle Scholar
  21. 21.
    Allen MM, Pagnano MW (2016) Neutral mechanical alignment: is it necessary? Bone Joint J 98-b(1 Suppl A):81CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Verstraete MA, Meere PA, Salvadore G, Victor J, Walker PS (2017) Contact forces in the tibiofemoral joint from soft tissue tensions: implications to soft tissue balancing in total knee arthroplasty. J Biomech 58:195CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Su EP, Su SL, Della Valle AG (2010) Stiffness after TKR: how to avoid repeat surgery. Orthopedics 33(9):658PubMedPubMedCentralGoogle Scholar
  24. 24.
    Gustke KA, Golladay GJ, Roche MW, Elson LC, Anderson CR (2014) A new method for defining balance: promising short-term clinical outcomes of sensor-guided TKA. J Arthroplast 29(5):955CrossRefGoogle Scholar
  25. 25.
    Roche M, Elson L, Anderson C (2014) Dynamic soft tissue balancing in total knee arthroplasty. Orthop Clin North Am 45(2):157CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Chow J, Wang K, Elson L, Anderson C, Roche M (2017) Effects of cementing on ligament balance during total knee arthroplasty. Orthopedics 40(3):e455CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Olcott CW, Scott RD (2000) A comparison of 4 intraoperative methods to determine femoral component rotation during total knee arthroplasty. J Arthroplast 15(1):22CrossRefGoogle Scholar
  28. 28.
    Camarata DA (2014) Soft tissue balance in total knee arthroplasty with a force sensor. Orthop Clin North Am 45(2):175CrossRefPubMedCentralGoogle Scholar
  29. 29.
    D'Angelo F, Puricelli M, Binda T, Surace MF, Floridi C, Cherubino P (2015) The use of an electronic system for soft tissue balancing in primary Total knee arthroplasties: clinical and radiological evaluation. Surg Technol Int 26:261PubMedPubMedCentralGoogle Scholar
  30. 30.
    Verdonk PC, Pernin J, Pinaroli A, Ait Si Selmi T, Neyret P (2009) Soft tissue balancing in varus total knee arthroplasty: an algorithmic approach. Knee Surg Sports Traumatol Arthrosc 17(6):660CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Clarke HD, Fuchs R, Scuderi GR, Scott WN, Insall JN (2005) Clinical results in valgus total knee arthroplasty with the “pie crust” technique of lateral soft tissue releases. J Arthroplast 20(8):1010CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Hedley Orthopaedic InstitutePhoenixUSA
  2. 2.Holy Cross Orthopedic InstituteFort LauderdaleUSA

Personalised recommendations