Advertisement

Genetic Diversity, Molecular Markers, and Population Genetics of Human Lymphatic Filarial Parasites

  • S. L. Hoti
  • R. Dhamodharan
Chapter

Abstract

One of the most disfiguring diseases is lymphatic filariasis (LF) which is a major public health problem in tropical world. The disease is caused majorly by Wuchereria bancrofti and to smaller extent by Brugia malayi and B. timori. It is transmitted by mosquito vectors belonging to genera Culex, Anopheles, Aedes, and/or Mansonia. Currently, LF is targeted for elimination with mass drug administration of a combination of diethylcarbamazine/ivermectin and albendazole as a tool. Several rounds of MDA have already been administered in endemic communities, and questions have arisen pertaining to the continuance of parasite prevalence in some areas despite repeated rounds of MDA. This could be due to variations in the parasite strains that may not be responding to the anti-filarial drug administered. These variations could be the result of various factors such as geographic isolation, infra-population or refugia, environmental factors, and drug pressure. The long-term administration of the drug in the elimination program itself might have led to this phenomenon, or wide geographic distribution spanning continents might have affected variation. Investigating genetic variations among these variants may reveal the differential response to the anti-filarial drugs, and such studies are important for devising the drug administration strategies. In summary, there is a need to understand the genetic variation among the parasite populations in different LF endemic areas for which there is a need to develop appropriate markers. This review discusses the biological, physiological, and genetic variations among LF parasites.

Notes

Acknowledgment

Author Ramasamy Dhamodharan is recipient of BK21 Plus Postdoctoral Research Fellowship, South Korea.

References

  1. Abbasi I, Hamburger J, Githure J, Ochola JJ, Agure R, Koech DK, Ramzy R, Gad A, Williams SA (1996) Detection of Wuchereria bancrofti DNA in patients’ sputum by the polymerase chain reaction. Trans R Soc Trop Med Hyg 90:531–532PubMedCrossRefPubMedCentralGoogle Scholar
  2. Anderson TJ, Jaenike J (1997) Host specificity, evolutionary relationships and macrogeographic differentiation among Ascaris populations from humans and pigs. Parasitology 115(Pt 3):325–342PubMedCrossRefPubMedCentralGoogle Scholar
  3. Anderson TJ, Blouin MS, Beech RN (1998) Population biology of parasitic nematodes: applications of genetic markers. Adv Parasitol 41:219–283PubMedCrossRefPubMedCentralGoogle Scholar
  4. Athisaya Mary K, Hoti SL, Krishnamoorthy K, Das PK, Rahmah N (2011) Detection of filarial specific IgG4 antibodies in individuals residing in endemic areas using panLFRAPID test card. J Parasit Dis 35:77–79PubMedPubMedCentralCrossRefGoogle Scholar
  5. Avise JC, Nelson WS, Sibley CG (1994) DNA sequence support for a close phylogenetic relationship between some storks and new world vultures. Proc Natl Acad Sci USA 91(11):5173–5177PubMedCrossRefPubMedCentralGoogle Scholar
  6. Awadzi K, Boakye DA, Edwards G, Opoku NO, Attah SK, Osei-Atweneboana MY, Lazdins-Helds JK, Ardrey AE, Addy ET et al (2004) An investigation of persistent microfilaridermias despite multiple treatments with ivermectin, in two onchocerciasis-endemic foci in Ghana. Ann Trop Med Parasitol 98:231–249CrossRefGoogle Scholar
  7. Bandi C, Anderson TJ, Genchi C, Blaxter ML (1998) Phylogeny of Wolbachia in filarial nematodes. Proc Biol Sci 265(1413):2407–2413PubMedPubMedCentralCrossRefGoogle Scholar
  8. Basu PC (1958) A note on malaria and filariasis in Andaman and Nicobar. Bull Nat Soc India Mal Mosq Dis 6:193Google Scholar
  9. Bhandari Y, Dabir P, Nandhakumar K, Dayananda KM, Shouche YS, Reddy MV (2005) Analysis of polymorphism of 18S rRNA gene in Wuchereria bancrofti microfilariae. Microbiol Immunol 49(10):909–914PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bisht R, Hoti SL, Thangadurai R, Das PK (2006) Isolation of Wuchereria bancrofti microfilariae from archived stained blood slides for use in genetic studies and amplification of parasite and endosymbiont genes. Acta Trop 99(1):1–5PubMedCrossRefPubMedCentralGoogle Scholar
  11. Blaxter M, Aslett M, Guiliano D, Daub J (1999) Parasitic helminth genomics. Filarial Genome Project. Parasitology 118(Suppl):S39–S51PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bockarie MJ, Pedersen EM, White GB, Michael E (2009) Role of vector control in the global program to eliminate lymphatic filariasis. Annu Rev Entomol 54:469–487PubMedCrossRefPubMedCentralGoogle Scholar
  13. Brattig NW, Rathjens U, Ernst M, Geisinger F, Renz A, Tischendorf FW (2000) Lipopolysaccharide-like molecules derived from Wolbachia endobacteria of the filaria Onchocerca volvulus are candidate mediators in the sequence of inflammatory and antiinflammatory responses of human monocytes. Microbes Infect 2(10):1147–1157PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cameron ML, Levy P, Nutman T, Vanamala CR, Narayanan PR, Rajan TV (1988) Use of restriction fragment length polymorphisms (RFLPs) to distinguish between nematodes of pathogenic significance. Parasitology 96(Pt 2):381–390PubMedCrossRefPubMedCentralGoogle Scholar
  15. Casiraghi M, Anderson TJ, Bandi C, Bazzocchi C, Genchi C (2001) A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of Wolbachia endosymbionts. Parasitology 122(Pt 1):93–103PubMedCrossRefPubMedCentralGoogle Scholar
  16. Casiraghi M, McCall JW, Simoncini L, Kramer LH, Sacchi L, Genchi C, Werren JH, Bandi C (2002) Tetracycline treatment and sex-ratio distortion: a role for Wolbachia in the moulting of filarial nematodes? Int J Parasitol 32(12):1457–1468PubMedCrossRefPubMedCentralGoogle Scholar
  17. Casiraghi M, Bain O, Guerrero R, Martin C, Pocacqua V, Gardner SL, Franceschi A, Bandi C (2004) Mapping the presence of Wolbachia pipientis on the phylogeny of filarial nematodes: evidence for symbiont loss during evolution. Int J Parasitol 34:191–203PubMedCrossRefPubMedCentralGoogle Scholar
  18. Casiraghi M, Bordenstein SR, Baldo L, Lo N, Beninati T, Wernegreen JJ, Werren JH, Bandi C (2005) Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology 151:4015–4022PubMedCrossRefPubMedCentralGoogle Scholar
  19. Choi EH, Zimmerman PA, Foster CB, Zhu S, Kumaraswami V, Nutman TB, Chanock SJ (2001) Genetic polymorphisms in molecules of innate immunity and susceptibility to infection with Wuchereria bancrofti in South India. Genes Immun 2(5):248–253PubMedCrossRefPubMedCentralGoogle Scholar
  20. Dame JB, Yowell CA, Courtney CH, Lindgren WG (1991) Cloning and characterization of the ribosomal RNA gene repeat from Ostertagia ostertagi. Mol Biochem Parasitol 45(2):275–280PubMedCrossRefPubMedCentralGoogle Scholar
  21. Das D, Kumar S, Sahoo PK, Dash AP (2005) A survey of bancroftian filariasis for microfilariae & circulating antigenaemia in two villages of Madhya Pradesh. Indian J Med Res 121:771–775PubMedPubMedCentralGoogle Scholar
  22. Das MK, Dhamodharan R, Hoti SL, Dash AP (2011) Molecular differentiation of nocturnally periodic and diurnally sub-periodic Wuchereria bancrofti by Randomly Amplified Polymorphic DNA (RAPD). World J Microbiol Biotechnol 27:1525–1530PubMedCrossRefPubMedCentralGoogle Scholar
  23. de Souza DK, Osei-Poku J, Blum J, Baidoo H, Brown CA, Lawson BW, Wilson MD, Bockarie MJ, Boakye DA (2014) The epidemiology of lymphatic filariasis in Ghana, explained by the possible existence of two strains of Wuchereria bancrofti. Pan Afr Med J 17:133.  https://doi.org/10.11604/pamj.2014.17.133.3370
  24. Dhamodharan R, Das MK, Hoti SL, Das PK, Dash AP (2008) Genetic variability of diurnally sub-periodic Wuchereria bancrofti in Nicobarese tribe of Nicobar group of islands, Andaman and Nicobar Islands, India. Parasitol Res 103(1):59–66PubMedCrossRefPubMedCentralGoogle Scholar
  25. Dhamodharan R, Hoti S, Sivapragasam G, Das M (2011) Cloning and sequence analysis of partial genomic DNA coding for HtrA-type serine protease of Wolbachia from human lymphatic filarial parasite, Wuchereria bancrofti. Trop Parasitol 1:76–82PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dhamodharan R, Hoti SL, Sankari T (2012) Characterization of cofactor-independent phosphoglycerate mutase isoform-1 (Wb-iPGM) gene: a drug and diagnostic target from human lymphatic filarial parasite, Wuchereria bancrofti. Infect Genet Evol 12:957–965PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dreyer G, Addiss D, Williamson J, Noroes J (2006) Efficacy of co-administered diethylcarbamazine and albendazole against adult Wuchereria bancrofti. Trans R Soc Trop Med Hyg 100(12):1118–1125PubMedCrossRefPubMedCentralGoogle Scholar
  28. Fernando SD, Rodrigo C, Rajapakse S (2011) Current evidence on the use of antifilarial agents in the management of bancroftian filariasis. J Trop Med:175941Google Scholar
  29. Ferri E, Bain O, Barbuto M, Martin C, Lo N, Uni S, Landmann F, Baccei SG, Guerrero R et al (2011) New insights into the evolution of Wolbachia infections in filarial nematodes inferred from a large range of screened species. PLoS One 6:e20843PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fischer P, Liu X, Lizotte-Waniewski M, Kamal IH, Ramzy RM, Williams SA (1999) Development of a quantitative, competitive polymerase chain reaction--enzyme-linked immunosorbent assay for the detection of Wuchereria bancrofti DNA. Parasitol Res 85:176–183PubMedCrossRefPubMedCentralGoogle Scholar
  31. Fischer P, Wibowo H, Pischke S, Ruckert P, Liebau E, Ismid IS, Supali T (2002) PCR-based detection and identification of the filarial parasite Brugia timori from Alor Island, Indonesia. Ann Trop Med Parasitol 96:809–821PubMedCrossRefPubMedCentralGoogle Scholar
  32. Fisher MC, Viney ME (1996) Microsatellites of the parasitic nematode Strongyloides ratti. Mol Biochem Parasitol 80(2):221–224PubMedCrossRefPubMedCentralGoogle Scholar
  33. Fong MY, Noordin R, Lau YL, Cheong FW, Yunus MH, Idris ZM (2013) Comparative analysis of ITS1 nucleotide sequence reveals distinct genetic difference between Brugia malayi from northeast Borneo and Thailand. Parasitology 140:39–45PubMedCrossRefPubMedCentralGoogle Scholar
  34. Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, Posfai J, Vincze T, Ingram J, Moran L, Lapidus A, Omelchenko M, Kyrpides N, Ghedin E, Wang S, Goltsman E, Joukov V, Ostrovskaya O, Tsukerman K, Mazur M, Comb D, Koonin E, Slatko B (2005) The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3(4):e121PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gasser RB, Newton SE (2000) Genomic and genetic research on bursate nematodes: significance, implications and prospects. Int J Parasitol 30(4):509–534PubMedCrossRefPubMedCentralGoogle Scholar
  36. Gasser RB, LeGoff L, Petit G, Bain O (1996) Rapid delineation of closely-related filarial parasites using genetic markers in spacer rDNA. Acta Trop 62(3):143–150PubMedCrossRefPubMedCentralGoogle Scholar
  37. Ghedin E, Wang S, Foster JM, Slatko BE (2004) First sequenced genome of a parasitic nematode. Trends Parasitol 20:151–153PubMedCrossRefPubMedCentralGoogle Scholar
  38. Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, Crabtree J, Allen JE, Delcher AL, Guiliano DB et al (2007) Draft genome of the filarial nematode parasite Brugia malayi. Science 317(5845):1756–1760PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gogarten JP, Olendzenski L, Hilario E, Simon C, Holsinger KE (1996) Dating the Cenancester of organisms. Science 274(5293):1750b–1751bPubMedCrossRefPubMedCentralGoogle Scholar
  40. Gomez-Escobar N, Gregory WF, Britton C, Murray L, Corton C, Hall N, Daub J, Blaxter ML, Maizels RM (2002) Abundant larval transcript-1 and -2 genes from Brugia malayi: diversity of genomic environments but conservation of 5′ promoter sequences functional in Caenorhabditis elegans. Mol Biochem Parasitol 125(1–2):59–71PubMedCrossRefPubMedCentralGoogle Scholar
  41. Grant WN (1994) Genetic variation in parasitic nematodes and its implications. Int J Parasitol 24(6):821–830PubMedCrossRefPubMedCentralGoogle Scholar
  42. Gregory WF, Blaxter ML, Maizels RM (1997) Differentially expressed, abundant trans-spliced cDNAs from larval Brugia malayi. Mol Biochem Parasitol 87(1):85–95PubMedCrossRefPubMedCentralGoogle Scholar
  43. Henkle-Duhrsen K, Eckelt VH, Wildenburg G, Blaxter M, Walter RD (1998) Gene structure, activity and localization of a catalase from intracellular bacteria in Onchocerca volvulus. Mol Biochem Parasitol 96(1–2):69–81PubMedCrossRefGoogle Scholar
  44. Hirzmann J, Schnaufer A, Hintz M, Conraths F, Stirm S, Zahner H, Hobom G (1995) Brugia spp. and Litomosoides carinii: identification of a covalently cross-linked microfilarial sheath matrix protein (shp2). Mol Biochem Parasitol 70:95–106PubMedCrossRefPubMedCentralGoogle Scholar
  45. Hise AG, Hazlett FE, Bockarie MJ, Zimmerman PA, Tisch DJ, Kazura JW (2003) Polymorphisms of innate immunity genes and susceptibility to lymphatic filariasis. Genes Immun 4(7):524–527PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hoekstra R, Criado-Fornelio A, Fakkeldij J, Bergman J, Roos MH (1997) Microsatellites of the parasitic nematode Haemonchus contortus: polymorphism and linkage with a direct repeat. Mol Biochem Parasitol 89(1):97–107PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hoerauf A, Nissen-Pahle K, Schmetz C, Henkle-Duhrsen K, Blaxter ML, Buttner DW, Gallin MY, Al-Qaoud KM, Lucius R, Fleischer B (1999) Tetracycline therapy targets intracellular bacteria in the filarial nematode Litomosoides sigmodontis and results in filarial infertility. J Clin Invest 103(1):11–18PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hoerauf A, Volkmann L, Hamelmann C, Adjei O, Autenrieth IB, Fleischer B, Buttner DW (2000) Endosymbiotic bacteria in worms as targets for a novel chemotherapy in filariasis. Lancet 355(9211):1242–1243PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hoerauf A, Specht S, Buttner M, Pfarr K, Mand S, Fimmers R, Marfo-Debrekyei Y, Konadu P, Debrah AY et al (2008) Wolbachia endobacteria depletion by doxycycline as antifilarial therapy has macrofilaricidal activity in onchocerciasis: a randomized placebo-controlled study. Med Microbiol Immunol 197:295–311CrossRefGoogle Scholar
  50. Hotez P, Ottesen E, Fenwick A, Molyneux D (2006) The neglected tropical diseases: the ancient afflictions of stigma and poverty and the prospects for their control and elimination. Adv Exp Med Biol 582:23–33PubMedCrossRefPubMedCentralGoogle Scholar
  51. Hoti SL, Subramaniyan K, Das PK (2003) Detection of codon for amino acid 200 in isotype 1 beta-tubulin gene of Wuchereria bancrofti isolates, implicated in resistance to benzimidazoles in other nematodes. Acta Trop 88(1):77–81PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hoti SL, Thangadurai R, Patra KP, Das PK (2007) Polymorphism of gp15/400 allergen gene of Wuchereria bancrofti from different regions of India endemic for lymphatic filariasis. Infect Genet Evol 7(2):213–218PubMedCrossRefPubMedCentralGoogle Scholar
  53. Hoti SL, Thangadurai R, Dhamodharan R, Das PK (2008) Genetic heterogeneity of Wuchereria bancrofti populations at spatially hierarchical levels in Pondicherry and surrounding areas, South India. Infect Genet Evol 8(5):644–652PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hoti SL, Dhamodharan R, Subramaniyan K, Das PK (2009) An allele specific PCR assay for screening for drug resistance among Wuchereria bancrofti populations in India. Indian J Med Res 130:193–199PubMedPubMedCentralGoogle Scholar
  55. Itoh M, Gunawardena NK, Qiu XG, Weerasooriya MV, Kimura E (1998) The use of whole blood absorbed on filter paper to detect Wuchereria bancrofti circulating antigen. Trans R Soc Trop Med Hyg 92:513–515PubMedPubMedCentralCrossRefGoogle Scholar
  56. Jain R, Rivera MC, Lake JA (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA 96(7):3801–3806PubMedCrossRefPubMedCentralGoogle Scholar
  57. Jaoko WG, Michael E, Meyrowitsch DW, Estambale BB, Malecela MN, Simonsen PE (2007) Immunoepidemiology of Wuchereria bancrofti infection: parasite transmission intensity, filaria-specific antibodies, and host immunity in two east African communities. Infect Immun 75:5651–5662PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kalra NL (1974) Filariasis among aborigines of Andaman and Nicobar islands. J Commun Dis 6:40–56Google Scholar
  59. Keddie EM, Higazi T, Unnasch TR (1998) The mitochondrial genome of Onchocerca volvulus: sequence, structure and phylogenetic analysis. Mol Biochem Parasitol 95(1):111–127PubMedCrossRefPubMedCentralGoogle Scholar
  60. Keiser PB, Reynolds SM, Awadzi K, Ottesen EA, Taylor MJ, Nutman TB (2002) Bacterial endosymbionts of Onchocerca volvulus in the pathogenesis of posttreatment reactions. J Infect Dis 185(6):805–811PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lavrov DV, Brown WM (2001) Trichinella spiralis mtDNA: a nematode mitochondrial genome that encodes a putative ATP8 and normally structured tRNAS and has a gene arrangement relatable to those of coelomate metazoans. Genetics 157:621–637PubMedPubMedCentralGoogle Scholar
  62. Leslie JF, Cain GD, Meffe GK, Vrijenhoek RC (1982) Enzyme polymorphism in Ascaris suum (Nematoda). J Parasitol 68(4):576–587PubMedCrossRefPubMedCentralGoogle Scholar
  63. Maizels RM, Kurniawan-Atmadja A (2002) Variation and polymorphism in helminth parasites. Parasitology 125(Suppl):S25–S37PubMedPubMedCentralGoogle Scholar
  64. Maizels RM, Gomez-Escobar N, Gregory WF, Murray J, Zang X (2001) Immune evasion genes from filarial nematodes. Int J Parasitol 31(9):889–898PubMedPubMedCentralCrossRefGoogle Scholar
  65. Makova KD, Nekrutenko A, Baker RJ (2000) Evolution of microsatellite alleles in four species of mice (genus Apodemus). J Mol Evol 51(2):166–172PubMedCrossRefPubMedCentralGoogle Scholar
  66. Manson-Bahr P EC, Bell DR (1995) Manson’s tropical diseases, 20th edn. ELBS Pub, pp 350–355, 1425–1435Google Scholar
  67. McCarthy JS, Zhong M, Gopinath R, Ottesen EA, Williams SA, Nutman TB (1996) Evaluation of a polymerase chain reaction-based assay for diagnosis of Wuchereria bancrofti infection. J Infect Dis 173(6):1510–1514PubMedCrossRefPubMedCentralGoogle Scholar
  68. McNulty SN, Mullin AS, Vaughan JA, Tkach VV, Weil GJ, Fischer PU (2012) Comparing the mitochondrial genomes of Wolbachia-dependent and independent filarial nematode species. BMC Genomics 13:145PubMedPubMedCentralCrossRefGoogle Scholar
  69. McNulty SN, Mitreva M, Weil GJ, Fischer PU (2013) Inter and intra-specific diversity of parasites that cause lymphatic filariasis. Infect Genet Evol 14:137–146PubMedCrossRefPubMedCentralGoogle Scholar
  70. McReynolds LA, DeSimone SM, Williams SA (1986) Cloning and comparison of repeated DNA sequences from the human filarial parasite Brugia malayi and the animal parasite Brugia pahangi. Proc Natl Acad Sci USA 83(3):797–801PubMedCrossRefPubMedCentralGoogle Scholar
  71. Melrose WD (2002) Lymphatic filariasis: new insights into an old disease. Int J Parasitol 32(8):947–960PubMedCrossRefPubMedCentralGoogle Scholar
  72. Meyrowitsch DW, Simonsen PE, Magesa SM (2004) Long-term effect of three different strategies for mass diethylcarbamazine administration in bancroftian filariasis: follow-up at 10 years after treatment. Trans R Soc Trop Med Hyg 98(11):627–634PubMedCrossRefPubMedCentralGoogle Scholar
  73. Michael E, Bundy DA (1997) Global mapping of lymphatic filariasis. Parasitol Today 13(12):472–476PubMedCrossRefPubMedCentralGoogle Scholar
  74. Molyneux DH, Zagaria N (2002) Lymphatic filariasis elimination: progress in global programme development. Ann Trop Med Parasitol 96(Suppl 2):S15–S40PubMedPubMedCentralCrossRefGoogle Scholar
  75. Morgan UM, Constantine CC, Greene WK, Thompson RC (1993) RAPD (random amplified polymorphic DNA) analysis of Giardia DNA and correlation with isoenzyme data. Trans R Soc Trop Med Hyg 87(6):702–705PubMedCrossRefPubMedCentralGoogle Scholar
  76. Nadler SA (1987) Biochemical and immunological systematics of some ascaridoid nematodes: genetic divergence between congeners. J Parasitol 73(4):811–816PubMedCrossRefPubMedCentralGoogle Scholar
  77. Nadler SA (1990) Molecular approaches to studying helminth population genetics and phylogeny. Int J Parasitol 20(1):11–29PubMedCrossRefPubMedCentralGoogle Scholar
  78. Nadler SA (1992) Phylogeny of some ascaridoid nematodes, inferred from comparison of 18S and 28S rRNA sequences. Mol Biol Evol 9(5):932–944PubMedPubMedCentralGoogle Scholar
  79. Nuchprayoon S (2009) DNA-based diagnosis of lymphatic filariasis. Southeast Asian J Trop Med Public Health 40:904–913PubMedPubMedCentralGoogle Scholar
  80. Nuchprayoon S, Sangprakarn S, Junpee A, Nithiuthai S, Chungpivat S, Poovorawan Y (2003a) Differentiation of Brugia malayi and Brugia pahangi by PCR-RFLP of ITS1 and ITS2. Southeast Asian J Trop Med Public Health 34(Suppl 2):67–73PubMedPubMedCentralGoogle Scholar
  81. Nuchprayoon S, Sanprasert V, Porksakorn C, Nuchprayoon I (2003b) Prevalence of bancroftian filariasis on the Thai-Myanmar border. Asian Pac J Allergy Immunol 21(3):179–188PubMedPubMedCentralGoogle Scholar
  82. Nuchprayoon S, Junpee A, Poovorawan Y, Scott AL (2005) Detection and differentiation of filarial parasites by universal primers and polymerase chain reaction-restriction fragment length polymorphism analysis. Am J Trop Med Hyg 73:895–900PubMedCrossRefPubMedCentralGoogle Scholar
  83. Nuchprayoon S, Junpee A, Poovorawan Y (2007) Random amplified polymorphic DNA (RAPD) for differentiation between Thai and Myanmar strains of Wuchereria bancrofti. Filaria J 6:6PubMedPubMedCentralCrossRefGoogle Scholar
  84. Okimoto R, Macfarlane JL, Clary DO, Wolstenholme DR (1992) The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics 130(3):471–498PubMedPubMedCentralGoogle Scholar
  85. Ottesen EA, Kumaraswami V, Paranjape R, Poindexter RW, Tripathy SP (1981) Naturally occurring blocking antibodies modulate immediate hypersensitivity responses in human filariasis. J Immunol 127(5):2014–2020PubMedPubMedCentralGoogle Scholar
  86. Ottesen EA, Duke BO, Karam M, Behbehani K (1997) Strategies and tools for the control/elimination of lymphatic filariasis. Bull World Health Organ 75:491–503PubMedPubMedCentralGoogle Scholar
  87. Ottesen EA, Ismail MM, Horton J (1999) The role of albendazole in programmes to eliminate lymphatic filariasis. Parasitol Today 15(9):382–386PubMedCrossRefPubMedCentralGoogle Scholar
  88. Pandiaraja P, Murugan V, Hoti SL, Kaliraj P (2010) Molecular characterization of a truncated antigen (Wb14) of SXP-1 of Wuchereria bancrofti from four endemic regions in India. Exp Parasitol 125:236–243PubMedCrossRefPubMedCentralGoogle Scholar
  89. Pani SP, Hoti SL, Elango A, Yuvaraj J, Lall R, Ramaiah KD (2000) Evaluation of the ICT whole blood antigen card test to detect infection due to nocturnally periodic Wuchereria bancrofti in South India. Tropical Med Int Health 5(5):359–363CrossRefGoogle Scholar
  90. Parra G et al (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23:1061–1067PubMedCrossRefPubMedCentralGoogle Scholar
  91. Partono F (1987) The spectrum of disease in lymphatic filariasis. Ciba Found Symp 127:15–31PubMedPubMedCentralGoogle Scholar
  92. Patra KP, Ramu T, Hoti SL, Pragasam GS, Das PK (2007) Identification of a molecular marker for genotyping human lymphatic filarial nematode parasite Wuchereria bancrofti. Exp Parasitol 116(1):59–65PubMedCrossRefPubMedCentralGoogle Scholar
  93. Pichon G, Treuil JP (2004) Genetic determinism of parasitic circadian periodicity and subperiodicity in human lymphatic filariasis. C R Biol 327:1087–1094PubMedCrossRefPubMedCentralGoogle Scholar
  94. Piessens WF, McGreevy PB, Piessens PW, McGreevy M, Koiman I, Saroso JS, Dennis DT (1980) Immune responses in human infections with Brugia malayi: specific cellular unresponsiveness to filarial antigens. J Clin Invest 65:172–179.  https://doi.org/10.1172/JCI109648 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Plaisier AP, Stolk WA, van Oortmarssen GJ, Habbema JD (2000) Effectiveness of annual ivermectin treatment for Wuchereria bancrofti infection. Parasitol Today 16(7):298–302CrossRefGoogle Scholar
  96. Pothikasikorn J, Bangs MJ, Boonplueang R, Chareonviriyaphap T (2008) Susceptibility of various mosquitoes of Thailand to nocturnal subperiodic Wuchereria bancrofti. J Vector Ecol 33:313–320PubMedCrossRefPubMedCentralGoogle Scholar
  97. Pradeep Kumar N, Patra KP, Hoti SL, Das PK (2002) Genetic variability of the human filarial parasite, Wuchereria bancrofti in South India. Acta Trop 82(1):67–76PubMedCrossRefPubMedCentralGoogle Scholar
  98. Prichard RK (1990) Anthelmintic resistance in nematodes: extent, recent understanding and future directions for control and research. Int J Parasitol 20:515–523PubMedCrossRefPubMedCentralGoogle Scholar
  99. Prichard RK (2007) Ivermectin resistance and overview of the consortium for anthelmintic resistance SNPs. Expert Opin Drug Discov 2:S41–S52PubMedCrossRefPubMedCentralGoogle Scholar
  100. Rahmah N, Lim BH, Azian H, Ramelah TS, Rohana AR (2003) Short communication: use of a recombinant antigen-based ELISA to determine prevalence of brugian filariasis among Malaysian schoolchildren near Pasir mas, Kelantan-Thailand border. Tropical Med Int Health 8:158–163CrossRefGoogle Scholar
  101. Raina VK, Joshi MC, Singh S, Joshi RD, Bhattacharjee KK, Kumar A, Verghese T (1990) Epidemiology of Brugia malayi infection and its co-existence with Wuchereria bancrofti in and around Sillaberia PHC, district Midnapur, West Bengal. J Commun Dis 22:205–208PubMedPubMedCentralGoogle Scholar
  102. Rajendran G, Panicker KN, Krishnamoorthy K, Sabesan S, Snehlatha, Radhakrishnan R (1997) Current status of filariasis in Chavakad taluk, Trichur district, Kerala. J Commun Dis 29:333–343PubMedPubMedCentralGoogle Scholar
  103. Ramesh A, Small ST, Kloos ZA, Kazura JW, Nutman TB, Serre D, Zimmerman PA (2012) The complete mitochondrial genome sequence of the filarial nematode Wuchereria bancrofti from three geographic isolates provides evidence of complex demographic history. Mol Biochem Parasitol 183:32–41.  https://doi.org/10.1016/j.molbiopara.2012.01.004 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Rao RU (2005) Endosymbiotic Wolbachia of parasitic filarial nematodes as drug targets. Indian J Med Res 122:199–204PubMedPubMedCentralGoogle Scholar
  105. Rao UR, Salinas G, Mehta K, Klei TR (2000) Identification and localization of glutathione S-transferase as a potential target enzyme in Brugia species. Parasitol Res 86(11):908–915PubMedCrossRefPubMedCentralGoogle Scholar
  106. Rao RU, Atkinson LJ, Ramzy RM, Helmy H, Farid HA, Bockarie MJ, Susapu M, Laney SJ, Williams SA, Weil GJ (2006) A real-time PCR-based assay for detection of Wuchereria bancrofti DNA in blood and mosquitoes. Am J Trop Med Hyg 74(5):826–832PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ravindran B, Satapathy AK, Sahoo PK (1994) Bancroftian filariasis-differential reactivity of anti-sheath antibodies in microfilariae carriers. Parasite Immunol 16:321–323PubMedCrossRefGoogle Scholar
  108. Remme JH, Blas E, Chitsulo L, Desjeux PM, Engers HD, Kanyok TP, Kayondo JF, Kioy DW, Kumaraswami V, Lazdins JK, Nunn PP, Oduola A, Ridley RG, Toure YT, Zicker F, Morel CM (2002) Strategic emphases for tropical diseases research: a TDR perspective. Trends Microbiol 10(10):435–440PubMedCrossRefPubMedCentralGoogle Scholar
  109. Rosenthal AN, Ryan A, Hopster D, Jacobs IJ (2002) Molecular evidence of a common clonal origin and subsequent divergent clonal evolution in vulval intraepithelial neoplasia, vulval squamous cell carcinoma and lymph node metastases. Int J Cancer 99(4):549–554PubMedCrossRefPubMedCentralGoogle Scholar
  110. Routh HB, Bhowmik KR (1994) Filariasis. Dermatol Clin 12:719–727Google Scholar
  111. Russel S, Das M, Rao C (1975) Filariasis in Andaman and Nicobar Islands I. survey findings. Nancowry, Teressa, Chowra, Car Nicobar and Port Blair. J Commun Dis 7:15–30Google Scholar
  112. Sabesan S, Palaniyandi M, Das PK, Michael E (2000) Mapping of lymphatic filariasis in India. Ann Trop Med Parasitol 94(6):591–606CrossRefGoogle Scholar
  113. Sakthidevi M, Murugan V, Hoti SL, Kaliraj P (2010) Lymphatic filarial species differentiation using evolutionarily modified tandem repeats: generation of new genetic markers. Infect Genet Evol 10:591–594PubMedCrossRefPubMedCentralGoogle Scholar
  114. Sasa M (1974) Anti-filariasis campaign: its history and future prospects. Prog Drug Res 18:259–268PubMedPubMedCentralGoogle Scholar
  115. Sasa M, Tanaka H (1974) A statistical method for comparison and classification of the microfilarial periodicity. Jpn J Exp Med 44(4):321–346PubMedPubMedCentralGoogle Scholar
  116. Schwab AE, Boakye DA, Kyelem D, Prichard RK (2005) Detection of benzimidazole resistance-associated mutations in the filarial nematode Wuchereria bancrofti and evidence for selection by albendazole and ivermectin combination treatment. Am J Trop Med Hyg 73(2):234–238CrossRefGoogle Scholar
  117. Schwab AE, Churcher TS, Schwab AJ, Basanez MG, Prichard RK (2007) An analysis of the population genetics of potential multi-drug resistance in Wuchereria bancrofti due to combination chemotherapy. Parasitology 134:1025–1040PubMedCrossRefPubMedCentralGoogle Scholar
  118. Scott AL, Ghedin E, Nutman TB, McReynolds LA, Poole CB, Slatko BE, Foster JM (2013) Filarial and Wolbachia genomics. Parasite Immunol 34:121–129CrossRefGoogle Scholar
  119. Shahab M, Verma M, Pathak M, Mitra K, Misra-Bhattacharya S (2014) Cloning, expression and characterization of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from Wolbachia endosymbiont of human lymphatic filarial parasite Brugia malayi. PLoS One 9:e99884PubMedPubMedCentralCrossRefGoogle Scholar
  120. Sharma R, Hoti SL, Vasuki V, Sankari T, Meena RL, Das PK (2013) Filamentation temperature-sensitive protein Z (FtsZ) of Wolbachia, endosymbiont of Wuchereria bancrofti: a potential target for anti-filarial chemotherapy. Acta Trop 125:330–338PubMedCrossRefPubMedCentralGoogle Scholar
  121. Shriram AN, Murhekar MV, Ramaiah KD, Sehgal SC (2002) Prevalence of diurnally subperiodic bancroftian filariasis among the Nicobarese in Andaman and Nicobar Islands, India: effect of age and gender. Tropical Med Int Health 7:949–954CrossRefGoogle Scholar
  122. Simonsen PE (2003) Filariasis. In: Cook GC, Zumla A (eds) Manson’s tropical diseases, 21st edn. W. B. Saunders, London, pp 1489–1526Google Scholar
  123. Sire C, Langand J, Barral V, Theron A (2001) Parasite (Schistosoma mansoni) and host (Biomphalaria glabrata) genetic diversity: population structure in a fragmented landscape. Parasitology 122(Pt 5):545–554PubMedPubMedCentralGoogle Scholar
  124. Sironi M, Bandi C, Sacchi L, Di Sacco B, Damiani G, Genchi C (1995) Molecular evidence for a close relative of the arthropod endosymbiont Wolbachia in a filarial worm. Mol Biochem Parasitol 74(2):223–227PubMedCrossRefPubMedCentralGoogle Scholar
  125. Slatko BE, Luck AN, Dobson SL, Foster JM (2014) Wolbachia endosymbionts and human disease control. Mol Biochem Parasitol 195:88–95CrossRefGoogle Scholar
  126. Small ST, Ramesh A, Bun K, Reimer L, Thomsen E, Baea M, Bockarie MJ, Siba P, Kazura JW et al (2013) Population genetics of the filarial worm Wuchereria bancrofti in a post-treatment region of Papua New Guinea: insights into diversity and life history. PLoS Negl Trop Dis 7:e2308PubMedPubMedCentralCrossRefGoogle Scholar
  127. Small ST, Tisch DJ, Zimmerman PA (2014) Molecular epidemiology, phylogeny and evolution of the filarial nematode Wuchereria bancrofti. Infect Genet Evol 28:33–43PubMedCrossRefPubMedCentralGoogle Scholar
  128. Smith HL, Rajan TV (2000) Tetracycline inhibits development of the infective-stage larvae of filarial nematodes in vitro. Exp Parasitol 95(4):265–270PubMedCrossRefPubMedCentralGoogle Scholar
  129. Supali T, Rahmah N, Djuardi Y, Sartono E, Ruckert P, Fischer P (2004) Detection of filaria-specific IgG4 antibodies using Brugia rapid test in individuals from an area highly endemic for Brugia timori. Acta Trop 90:255–261PubMedCrossRefPubMedCentralGoogle Scholar
  130. Tarrant CA, Blouin MS, Yowell CA, Dame JB (1992) Suitability of mitochondrial DNA for assaying interindividual genetic variation in small helminths. J Parasitol 78(2):374–378PubMedCrossRefPubMedCentralGoogle Scholar
  131. Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17(16):6463–6471PubMedPubMedCentralCrossRefGoogle Scholar
  132. Taylor MJ (2000) Wolbachia bacteria of filarial nematodes in the pathogenesis of disease and as a target for control. Trans R Soc Trop Med Hyg 94(6):596–598PubMedCrossRefPubMedCentralGoogle Scholar
  133. Taylor MJ (2002) A new insight into the pathogenesis of filarial disease. Curr Mol Med 2(3):299–302PubMedCrossRefPubMedCentralGoogle Scholar
  134. Taylor MJ, Bilo K, Cross HF, Archer JP, Underwood AP (1999) 16S rDNA phylogeny and ultrastructural characterization of Wolbachia intracellular bacteria of the filarial nematodes Brugia malayi, B. Pahangi, and Wuchereria bancrofti. Exp Parasitol 91(4):356–361PubMedCrossRefPubMedCentralGoogle Scholar
  135. Taylor MJ, Bandi C, Hoerauf AM, Lazdins J (2000) Wolbachia bacteria of filarial nematodes: a target for control? Parasitol Today 16(5):179–180CrossRefGoogle Scholar
  136. Taylor MD, LeGoff L, Harris A, Malone E, Allen JE, Maizels RM (2005) Removal of regulatory T cell activity reverses hyporesponsiveness and leads to filarial parasite clearance in vivo. J Immunol 174(8):4924–4933PubMedPubMedCentralCrossRefGoogle Scholar
  137. Thangadurai R, Hoti SL, Kumar NP, Das PK (2006) Phylogeography of human lymphatic filarial parasite, Wuchereria bancrofti in India. Acta Trop 98(3):297–304PubMedCrossRefPubMedCentralGoogle Scholar
  138. Thanomsub BW, Chansiri K, Sarataphan N, Phantana S (2000) Differential diagnosis of human lymphatic filariasis using PCR-RFLP. Mol Cell Probes 14(1):41–46PubMedCrossRefPubMedCentralGoogle Scholar
  139. Thiery M, Mugniery D (2000) Microsatellite loci in the phytoparasitic nematode Globodera. Genome 43(1):160–165PubMedCrossRefPubMedCentralGoogle Scholar
  140. Thorpe V (1896) Filaria sanguinis hominis in the South Sea islands, with photomicrographs from Tonga & the friendly islands. Br Med J 2:922–924Google Scholar
  141. Tisch DJ, Hazlett FE, Kastens W, Alpers MP, Bockarie MJ, Kazura JW (2001) Ecologic and biologic determinants of filarial antigenemia in bancroftian filariasis in Papua New Guinea. J Infect Dis 184(7):898–904PubMedCrossRefPubMedCentralGoogle Scholar
  142. Triteeraprapab S, Karnjanopas K, Porksakorn C, Sai-Ngam A, Yentakam S, Loymak S (2001) Lymphatic filariasis caused by Brugia malayi in an endemic area of Narathiwat Province, southern of Thailand. J Med Assoc Thail 84(Suppl 1):S182–S188Google Scholar
  143. Underwood AP, Supali T, Wu Y, Bianco AE (2000) Two microsatellite loci from Brugia malayi show polymorphisms among isolates from Indonesia and Malaysia. Mol Biochem Parasitol 106:299–302PubMedCrossRefPubMedCentralGoogle Scholar
  144. Unnasch TR, Williams SA (2000) The genomes of Onchocerca volvulus. Int J Parasitol 30:543–552PubMedCrossRefPubMedCentralGoogle Scholar
  145. Vasuki V, Hoti SL, Sadanandane C, Jambulingam P (2003) A simple and rapid DNA extraction method for the detection of Wuchereria bancrofti infection in the vector mosquito, Culex quinquefasciatus by Ssp I PCR assay. Acta Trop 86(1):109–114PubMedCrossRefGoogle Scholar
  146. Vasuki V, Subramanian S, Hoti SL, Jambulingam P (2012) Use of a simple DNA extraction method for high-throughput detection of filarial parasite Wuchereria bancrofti in the vector mosquitoes. Parasitol Res 111:2479–2481PubMedCrossRefPubMedCentralGoogle Scholar
  147. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283(5407):1482–1488PubMedCrossRefPubMedCentralGoogle Scholar
  148. Weerasooriya MV, Mudalige MP, Gunawardena NK, Kimura E, Samarawickrema WA (1998) Microfilarial periodicity of Wuchereria bancrofti and man landing periodicity of the vector Culex quinquefasciatus say in Matara, Sri Lanka. Ceylon Med J 43:78–83PubMedPubMedCentralGoogle Scholar
  149. Weil GJ, Ramzy RM (2007) Diagnostic tools for filariasis elimination programs. Trends Parasitol 23:78–82PubMedCrossRefPubMedCentralGoogle Scholar
  150. Weil GJ, Lammie PJ, Weiss N (1997) The ICT Filariasis test: a rapid-format antigen test for diagnosis of bancroftian filariasis. Parasitol Today 13(10):401–404PubMedPubMedCentralCrossRefGoogle Scholar
  151. Weil GJ, Curtis KC, Fischer PU, Won KY, Lammie PJ, Joseph H, Melrose WD, Brattig NW (2011) A multicenter evaluation of a new antibody test kit for lymphatic filariasis employing recombinant Brugia malayi antigen Bm-14. Acta Trop 120(Suppl 1):S19–S22PubMedPubMedCentralCrossRefGoogle Scholar
  152. Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609PubMedCrossRefPubMedCentralGoogle Scholar
  153. WHO (1992) Lymphatic filariasis, the disease and its control. Fifth report of the WHO expert committee on filariasis. Tech Rep Ser 821:1–31Google Scholar
  154. WHO (1995) World health report 1995. Bridging the gaps, GenevaGoogle Scholar
  155. WHO (2002) Annual report on lymphatic filariasis 2001. Global programme to eliminate lymphatic filariasis. WHO/CDS/CPE/CEE/2002 28:1–8Google Scholar
  156. WHO (2007) Global programme to eliminate lymphatic filariasis. Wkly Epidemiol Rec 82:361–380Google Scholar
  157. WHO (2014) Global programme to eliminate lymphatic filariasis. Wkly Epidemiol Rec 89:409–420Google Scholar
  158. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535PubMedPubMedCentralCrossRefGoogle Scholar
  159. Williams SA, Nicolas L, Lizotte-Waniewski M, Plichart C, Luquiaud P, Nguyen LN, Moulia-Pelat JP (1996) A polymerase chain reaction assay for the detection of Wuchereria bancrofti in blood samples from French Polynesia. Trans R Soc Trop Med Hyg 90:384–387PubMedCrossRefPubMedCentralGoogle Scholar
  160. Williams SA, Lizotte-Waniewski MR, Foster J, Guiliano D, Daub J, Scott AL, Slatko B, Blaxter ML (2000) The filarial genome project: analysis of the nuclear, mitochondrial and endosymbiont genomes of Brugia malayi. Int J Parasitol 30(4):411–419PubMedPubMedCentralCrossRefGoogle Scholar
  161. Zahner J, Hobom G, Stirm S (1995) The microfilarial sheath and its proteins. Parasitology today 11: 116–120CrossRefGoogle Scholar
  162. Zaman V, Narayanan E (1986) Differentiation of infective larvae of Brugia malayi and Wuchereria bancrofti by scanning electron microscopy. Ann Trop Med Parasitol 80:333–338PubMedCrossRefPubMedCentralGoogle Scholar
  163. Zarlenga DS, Aschenbrenner RA, Lichtenfels JR (1996) Variations in microsatellite sequences provide evidence for population differences and multiple ribosomal gene repeats within Trichinella pseudospiralis. J Parasitol 82(4):534–538PubMedCrossRefPubMedCentralGoogle Scholar
  164. Zhong M, McCarthy J, Bierwert L, Lizotte-Waniewski M, Chanteau S, Nutman TB, Ottesen EA, Williams SA (1996) A polymerase chain reaction assay for detection of the parasite Wuchereria bancrofti in human blood samples. Am J Trop Med Hyg 54:357–363PubMedCrossRefPubMedCentralGoogle Scholar
  165. Zhu XQ, Gasser RB (1998) Single-strand conformation polymorphism (SSCP)-based mutation scanning approaches to fingerprint sequence variation in ribosomal DNA of ascaridoid nematodes. Electrophoresis 19:1366–1373PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • S. L. Hoti
    • 1
    • 2
  • R. Dhamodharan
    • 2
    • 3
  1. 1.Regional Medical Research Centre (ICMR)BelgaumIndia
  2. 2.Vector Control Research Centre (ICMR)PuducherryIndia
  3. 3.Behavioral and Population Ecology Lab, Department of Biological SciencesSeoul National UniversitySeoulSouth Korea

Personalised recommendations