Skip to main content

Part of the book series: Research for Development ((REDE))

Abstract

Thermocapillary convection is an important content in the study of microgravity fluid physics. It is not only the problem of fluid physics mechanism such as convection stability, but also closely related to spacecraft flow control, efficient heat transfer, etc., and has direct guiding significance for material growth processes such as floating zone method and Czochralski method. This chapter mainly introduces the research status of thermocapillary convection about an annular liquid pool, the scientific experiment and partial analysis results carried out by the project group in the early stage, and the development of space experimental payload, space experiment and preliminary experimental results about the annular liquid pool from SJ-10 mission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cockayne B, Gates MP (1967) Growth striations in vertically pulled oxide and fluoride single crystals. J Mater Sci 2(2):118–123

    Article  ADS  Google Scholar 

  2. Kobayashi N (1978) Computational simulation of the melt flow during Czochralski growth. J Cryst Growth 43(3):357–363

    Article  ADS  Google Scholar 

  3. Kobayashi N, Wilcox WR (1982) Computational studies of convection due to rotation in a cylindrical floating zone. J Cryst Growth 59(3):616–624

    Article  ADS  Google Scholar 

  4. Langlois WE, Shir CC (1977) Digital simulation of flow patterns in the Czochralski crystal-pulling process. Comput Methods Appl Mech Eng 12(2):145–152

    Article  ADS  MATH  Google Scholar 

  5. Langlois WE (1985) Buoyancy-driven flows in crystal-growth melts. Annu Rev Fluid Mech 17(1):191–215

    Article  ADS  Google Scholar 

  6. Ostrach S (1982) Low-gravity fluid flows. Annu Rev Fluid Mech 14(1):313–345

    Article  ADS  MATH  Google Scholar 

  7. Napolitano LG, Monti R, Russo G (1984) Some results of the Marangoni free convection experiment. In: Materials science under microgravity. Results of Spacelab 1, vol 1, pp 15–22

    Google Scholar 

  8. Schmidt RJ, Milverton SW (1935) On the instability of a fluid when heated from below. Proc R Soc London Ser A Math Phys Sci 152(877):586–594

    Google Scholar 

  9. Smith MK, Davis SH (1983) Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities. J Fluid Mech 132:119–144

    Google Scholar 

  10. Hu W et al (2010) Introduction to microgravity science. Science Press, Beijing (in Chinese)

    Google Scholar 

  11. Hashim I, Sarma W (2007) On oscillatory Marangoni convection in a rotating fluid layer subject to a uniform heat flux from below. Int Commun Heat Mass Transfer 34:225–230

    Article  Google Scholar 

  12. Nepomnyashchy AA, Simanovskii IB, Braverman LM (2001) Stability of thermocapillary flows with inclined temperature gradient. J Fluid Mech 442:141–155

    Article  ADS  MATH  Google Scholar 

  13. Kats-Demyanets V, Oron A, Nepomnyashchy AA (1997) Linear stability of a tri-layer fluid system driven by the thermocapillary effect. Actaastronautica 40(9):655–661

    Article  ADS  Google Scholar 

  14. Ermakov MK, Ermakova MS (2004) Linear-stability analysis of thermocapillary convection in liquid bridges with highly deformed free surface. J Cryst Growth 266(1):160–166

    Article  ADS  Google Scholar 

  15. Shiratori S, Kuhlmann HC, Hibiya T (2007) Linear stability of thermocapillary flow in partially confined half-zones. Phys Fluids (1994–present) 19(4):044103

    Google Scholar 

  16. Xu B, Ai X, Li BQ (2007) Stabilities of combined radiation and Rayleigh–Bénard–Marangoni convection in an open vertical cylinder. Int J Heat Mass Transf 50(15):3035–3046

    Article  MATH  Google Scholar 

  17. Li MW, Zeng DL, Zhu TX (2002) Instability of the Marangoni convection in a liquid bridge with liquid encapsulation under microgravity condition. Int J Heat Mass Transf 45(1):157–164

    Article  MATH  Google Scholar 

  18. Guo WD, Narayanan R (2007) Onset of Rayleigh–Marangoni convection in a cylindrical annulus heated from below. J Colloid Interface Sci 314(2):727–732

    Article  ADS  Google Scholar 

  19. Hoyas S, Herrero H, Mancho AM (2004) Thermocapillar and thermogravitatory waves in a convection problem. Theoret Comput Fluid Dyn 18(2–4):309–321

    Article  ADS  MATH  Google Scholar 

  20. Zhu P, Duan L, Kang Q (2013) Transition to chaos in thermocapillary convection. Int J Heat Mass Transf 57:457–464

    Article  Google Scholar 

  21. Zhu P, Zhou B, Duan L, Kang Q (2011) Characteristics of surface oscillation in thermocapillary convection, Exp Thermal Fluid Sci 35:1444–1450

    Article  Google Scholar 

  22. Jiang H, Duan L, Kang Q (2017) A peculiar bifurcation transition route of thermocapillary convection in rectangular liquid layers. Exp Thermal Fluid Sci 88:8–15

    Article  Google Scholar 

  23. Jiang H, Duan L, Kang Q (2017) Instabilities of thermocapillary–buoyancy convection in open rectangular liquid layers, Chin Phys B 26(11):114703

    Google Scholar 

  24. Wang J, Di W, Duan L, Kang Q (2017) Ground experiment on the instability of buoyant-thermocapillary convection in large-scale liquid bridge with large Prandtl number. Int J Heat Mass Transf 108:2107–2119

    Article  Google Scholar 

  25. Wang J, Duan L, Kang Q (2017) Oscillatory and chaotic buoyant-thermocapillary convection in the large-scale liquid bridge, Chin Phys Lett 34(7):074703

    Article  ADS  Google Scholar 

  26. Tang ZM, Hu WR (1995) Fractal feature of oscillatory convection in the half-floating zone. Int J Heat Mass Transfer 38(17):3295–3303

    Article  Google Scholar 

  27. Li K, Xun B, Hu WR (2016) Some bifurcation routes to chaos of thermocapillary convection in two-dimensional liquid layers of finite extent. Phys Fluids 28:054106

    Article  ADS  Google Scholar 

  28. Kamotani Y, Lee J, Ostrach S (1992) An experimental study of oscillatory thermocapillary convection in cylindrical containers. Phys Fluids A 4:955–962

    Article  ADS  Google Scholar 

  29. Kamotani Y, Chang A, Ostrach S (1994) Effects of heating mode on steady antisymmetric thermocapillary flows in microgravity. Heat Transf Microgravity Systems Trans ASME 290:53–59

    Google Scholar 

  30. Kamotani Y, Ostrach S, Pline A (1995) A thermocapillary convection experiment in microgravity. J Heat Trans-T ASME 117:611–618

    Article  Google Scholar 

  31. Kamotani Y, Ostrach S, Pline A (1994) Analysis of velocity data taken in surface tension driven convection experiment in microgravity. Phys Fluids A 6:3601–3609

    Article  ADS  Google Scholar 

  32. Kamotani Y, Ostrach S, Masud J (2000) Microgravity experiments and analysis of oscillatory thermocapillary flows in cylindrical containers. J Fluid Mech 410:211–233

    Article  ADS  MATH  Google Scholar 

  33. Kamotani Y, Ostrach S, Pline A (1998) Some temperature field results from the thermocapillary flow experiment aboard USML-2 spacelab. Adv Space Res 22:1189–1195

    Article  ADS  Google Scholar 

  34. Kamotani Y (1997) Surface tension driven convection in microgravity. Adv Astronaut Sci 96:487–499

    Google Scholar 

  35. Kamotani Y, Masud J, Lee JH, Pline A (1995) Oscillatory convection due to combined buoyancy and thermocapillarity. AIAA-paper 95-0817

    Google Scholar 

  36. Kamotani Y, Masud J, Pline A (1996) Oscillatory convection due to combined buoyancy and thermocapillarity. J Thermophys Heat Tr 10:102–108

    Article  Google Scholar 

  37. Lin J, Kamotani Y, Ostrach S (1995) An experimental study of free surface deformation in oscillatory thermocapillary flow. Acta Astronaut 34:525–536

    Google Scholar 

  38. Renaud L, Gustav A, Henrik A (2001) Experimental and numerical investigation of nonlinear thermocapillary oscillations in an annular geometry. J Mech B Fluids 20:771–797

    Google Scholar 

  39. van der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13:631–644

    Google Scholar 

  40. Li YR, Peng L, Akiyama Y, Imaishi N (2003) Three-dimensional numerical simulation of thermocapillary flow of moderate Prandtl number fluid in an annular pool. J Crystal Growth 259:374–387

    Article  ADS  Google Scholar 

  41. Li YR, Imaishi N, Peng L, Wu SY, Hibiya T (2004) Thermocapillary flow in a shallow molten Silicon pool with Czconfiguration. J Crystal Growth 266:88–95

    Article  ADS  Google Scholar 

  42. Li YR, Imaishi N, Azami T, Hibiya T (2004) Three-dimensional oscillatory flow in a thin annular pool of Silicon melt. J. Crystal Growth. 260:28–42

    Article  ADS  Google Scholar 

  43. Sim BC, Kim WS, Zebib A (2004) Axisymmetric thermocapillary convection in open cylindrical annuli with deforming interfaces. J Heat Mass Transfer 47:5365–5373

    Article  MATH  Google Scholar 

  44. Sim BC, Zebib A (2004) Thermocapillary convection in cylindrical liquid bridges and annuli. CR Mecanique 332:473–486

    Article  ADS  Google Scholar 

  45. Schwabe D, Benz S, Cramer A (1999) Experiment on the multi-roll-structure of thermocapillary flow in side-heated thin liquid layers. Adv Space Res 24(10):1367–1373

    Google Scholar 

  46. Benz S, Schwabe D (2001) The three-dimensional stationary instability in dynamic thermocapillary shallow cavities. Exp Fluids 31:409–416

    Article  ADS  Google Scholar 

  47. Schwabe D, Benz S (2002) Thermocapillary flow instabilities in an annulus under microgravity results of the experiment MAGIA. Adv Space Res 29:629–638

    Article  ADS  Google Scholar 

  48. Schwabe D (2002) Buoyant-thermocapillary and pure thermocapillary convective instabilities in Czochralskisystems. J Crystal Growth 237–239:1849–1853

    Article  ADS  Google Scholar 

  49. Li YR, Peng L, Wu SY (2004) Thermocapillary convection in a differentially heated annular pool for moderate Prandtl number fluid. Int J Therm Sci 43:587–593

    Article  Google Scholar 

  50. Li YR, Imaishi N, Azami T et al (2004) Three-dimensional oscillatory flow in a thin annular pool of silicon melt. J Crystal Growth 260:28–42

    Google Scholar 

  51. Shi WY, Imaishi N (2006) Hydrothermal waves in differentially heated shallow annular pools of silicone oil. J Crystal Growth 290:280–291

    Article  ADS  Google Scholar 

  52. Peng L, Li YR, Shi WY (2007) Three-demensional thermocapillary-buoyancy flow of silicone oil in a differentially heated annular pool. J Heat Mass Transfer 50:872–880

    Article  MATH  Google Scholar 

  53. Shi WY, Ermakov MK, Imaishi N (2006) Effect of pool rotation on thermocapillary convection in shallow annular pool of silicone oil. J Crystal Growth 294:474–485

    Article  ADS  Google Scholar 

  54. Li YR, Xiao L, Wu SY (2007) Effect of pool rotation on flow pattern transition of silicon melt thermocapillary flow in a slowly rotating shallow annular pool. Int J Heat Mass Transfer

    Google Scholar 

  55. Zhang L, Duan L, Kang Q (2014) An experimental research on surface oscillation of buoyant-thermocapillary convection in an open cylindrical annuli. Acta Mechanica Sinica 30(5):681–686

    Article  ADS  Google Scholar 

  56. Zhang D, Duan L, Kang Q (2016) Critical condition of buoyancy—thermal capillary convection oscillations in annular liquid pool. Mechanics and practice (in Chinese)

    Google Scholar 

  57. Kang Q, Duan L, Zhang L, Yin Y, Yang J, Hu W (2016) Thermocapillary convection experiment facility of an open cylindrical annuli for SJ-10 satellite. Microgravity Sci Technol 28:123–132

    Google Scholar 

  58. Kang Q, Jiang H, Duan L, Zhang C, Hu W (2019) The critical condition and oscillation - transition characteristics of thermocapillary convection in the space experiment on SJ-10 satellite. Int J Heat Mass Transf 135:479–490

    Google Scholar 

  59. Kang Q, Wang J, Duan L, Su YY, He JW, Wu D, Hu WR (2019) The volume ratio effect on flow patterns and transition processes of thermocapillary convection. J Fluid Mech 868:560–583

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Kang Q, Wu D, Duan L, He J, Hu L, Duan L, Hu W (2019) Surface configurations and wave patterns of thermocapillary convection onboard the SJ10 satellite. Phys Fluids 31:044105

    Google Scholar 

Download references

Acknowledgements

This project was funded by the National Natural Science Foundation of China (U1738116), and the Strategic Priority Research Program on Space Science of Chinese Academy of Sciences—SJ-10 Recoverable Scientific Experiment Satellite (XDA04020405 and XDA04020202-05).

The development of this space experimental payload got assistance from Astronaut Research and Training Center and Shenyang Zhixing Science and Technology Company Limited etc. The related experimental results and processing results of space experimental data obtained by the staffs and students of our project group are presented in this paper. Appreciations to all of them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duan, L. et al. (2019). Study on Thermocapillary Convection in an Annular Liquid Pool. In: Hu, W., Kang, Q. (eds) Physical Science Under Microgravity: Experiments on Board the SJ-10 Recoverable Satellite. Research for Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-1340-0_5

Download citation

Publish with us

Policies and ethics