Skip to main content

Basic Knowledge of Geochemical Processes

  • Chapter
  • First Online:
Geomicrobiological Properties and Processes of Travertine

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

Travertines (or thermogene travertines in Pentecost 2005) are formed from hydrothermal water with an initial high concentration of Ca2+ and CO2 partial pressure (Ford and Pedley 1996; Gandin and Capezzuoli 2008, 2014; Capezzuoli et al. 2014). In this type of water, the active CO2 degassing immediately after discharging on the ground increases pH and saturation state with respect to CaCO3 of the water. Precipitation (and dissolution) of CaCO3, which is associated with CO2 degassing (and uptake), is often simply represented in the following reaction 2.1:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins JF, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim Cosmochim Acta 67:1129–1143

    Article  Google Scholar 

  • Amundson R, Kelly E (1987) The chemistry and mineralogy of a CO2-rich travertine deposition spring in California Coast Range. Geochim Cosmochim Acta 51:2883–2890

    Article  Google Scholar 

  • Andrews JE (2006) Palaeoclimatic records from stable isotopes in riverine tufas: synthesis and review. Earth Sci Rev 75:85–104

    Article  Google Scholar 

  • Angus S, Armstrong B, De Reuck KM (1976) IUPAC international thermodynamic tables of the fluid state. Carbon dioxide, vol 3. Pergamon Press, New York

    Google Scholar 

  • Arenas C, Vázquez-Urbez M, Auqué L, Sancho C, Osácar C, Pardo G (2014) Intrinsic and extrinsic controls of spatial and temporal variations in modern fluvial tufa sedimentation: a thirteen-year record from a semi-arid environment. Sedimentology 61:90–132

    Article  Google Scholar 

  • Baker A, Smart PL (1995) Recent flowstone growth rates: field measurements in comparison to theoretical predictions. Chem Geol 122:121–128

    Article  Google Scholar 

  • Baker A, Genty D, Dreybrodt W, Grapes J, Mockler NJ (1998) Testing theoretically predicted stalagmite growth rate with recent annually laminated stalagmites: implications for past stalagmite deposition. Geochim Cosmochim Acta 62:393–404

    Article  Google Scholar 

  • Beck WC, Grossman EL, Morse JW (2005) Experimental studies of oxygen isotope fractionation in the carbonic acid system at 15°, 25°, and 40°C. Geochim Cosmochim Acta 69:3493–3503

    Article  Google Scholar 

  • Berner RA (1971) Principles of chemical sedimentology. McGraw-Hill, New York

    Google Scholar 

  • Berner RA (1975) The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochim Cosmochim 39:489–504

    Article  Google Scholar 

  • Berner RA (1976) Solubility of calcite and aragonite in seawater at atmospheric pressure and 34. 5% salinity. Am J Sci 276:713–730

    Article  Google Scholar 

  • Berner RA (1991) A model for atmospheric CO2 level over Phanerozoic time. Am J Sci 291:339–376

    Article  Google Scholar 

  • Bickle MJ (2009) Geological carbon storage. Nat Geosci 2:815–818

    Article  Google Scholar 

  • Bockris JOM, Ruddy AKN (1977) Modern electrochemistry, 3rd edn. Plenum Rosetta, New York

    Google Scholar 

  • Bono P, Dreybrodt W, Ercole S, Percopo C, Vosbeck K (2001) Inorganic calcite precipitation in tartare karstic spring (Lazio, central Italy): field measurements and theoretical prediction on depositional rates. Environ Geol 41:305–313

    Article  Google Scholar 

  • Brady AL, Slater GF, Omelon CR, Southam G, Druschel G, Andersen DT, Hawes I, Laval B, Lim DSS (2010) Photosynthetic isotope biosignatures in laminated micro-stromatolitic and non-laminated nodules associated with modern, freshwater microbialites in Pavilion Lake, B.C. Chem Geol 274:56–67

    Article  Google Scholar 

  • Brogi A, Capezzuoli E (2009) Travertine deposition and faulting: the fault-related travertine fissure-ridge at Terme S. Giovanni, Rapolano Terme (Italy). Int J Earth Sci 98:931–947

    Article  Google Scholar 

  • Buczynski C, Chafetz HC (1991) Habit of bacterially induced precipitates of calcium carbonate and the influence of medium viscosity on mineralogy. J Sediment Petrol 61:221–233

    Article  Google Scholar 

  • Buhmann D, Dreybrodt W (1985) The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas I open-system. Chem Geol 48:189–211

    Article  Google Scholar 

  • Burton EA, Walter LM (1987) Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control? Geology 15:111–114

    Article  Google Scholar 

  • Capezzuoli E, Gandin A, Pedley M (2014) Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: the state of the art. Sedimentology 61:1–21

    Article  Google Scholar 

  • Carig H (1961) Isotopic variations in meteoric water. Science 133:1702–1703

    Article  Google Scholar 

  • Chafetz HS, Rush PF, Utech NM (1991) Microenvironmental controls on mineralogy and habit of CaCO3 precipitates: an example from an active travertine system. Sedimentology 38:107–126

    Article  Google Scholar 

  • Chen T, Neville A, Yuan M (2005) Assessing the effect of Mg2+ on CaCO3 scale formation-bulk precipitation and surface deposition. J Cryst Growth 275:1341–1347

    Article  Google Scholar 

  • Chou L, Garrels RM, Wollast R (1989) Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem Geol 78:269–282

    Article  Google Scholar 

  • Coplen TB (2007) Calibration of the calcite–water oxygenisotope geothermometer at devils hole, Nevada, a natural laboratory. Geochim Cosmochim Acta 71:3948–3957

    Article  Google Scholar 

  • Coplen TB, Kendall C, Hopple J (1983) Comparison of stable isotope reference samples. Nature 302:236

    Article  Google Scholar 

  • Curewitz D, Karson JA (1997) Structural settings of hydrothermal outflow: fracture permeability maintained by fault propagation and interaction. J Volcanol Geotherm Res 79:149–168

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:438–468

    Article  Google Scholar 

  • Des Marias DJ, Moore JG (1984) Carbon and its isotopes in mid-oceanic basaltic glasses. Earth Planet Sci Lett 69:43–57

    Article  Google Scholar 

  • Dietzel M, Tang JW, Leis A, Kohler SJ (2009) Oxygen isotopic fractionation during inorganic calcite precipitation – effects of temperature, precipitation rate and pH. Chem Geol 268:107–115

    Article  Google Scholar 

  • Dreybrodt W (1981) The kinetics of calcite precipitation from thin films of calcareous solutions and growth of speleothems: revisited. Chem Geol 32:237–245

    Article  Google Scholar 

  • Dreybrodt W, Buhmann D, Michaelis J, Usdowski E (1992) Geochemically controlled calcite precipitation by CO2 outgassing: field measurements of precipitation rates in comparison to theoretical predictions. Chem Geol 97:285–294

    Article  Google Scholar 

  • Emrich K, Ehhalt DH, Vogel JC (1970) Carbon isotope fractionation during the precipitation of calcium carbonate. Earth Planet Sci Lett 8:363–371

    Article  Google Scholar 

  • Fischer AG (1982) Long-term climatic oscillations recorded in stratigraphy. In: Climate in earth history. National Research Council, Washington, DC, pp 97–104

    Google Scholar 

  • Folk RL (1974) The natural history of crystalline calcium carbonate: effect of magnesium content and salinity. J Sediment Petrol 44:40–53

    Google Scholar 

  • Folk RL (1994) Interaction between bacteria, nannobacteria, and mineral precipitation in hot springs of central Italy. Géog Phys Quatern 48:233–246

    Google Scholar 

  • Ford TD, Pedley HM (1996) A review of tufa and travertine deposits of the world. Earth Sci Rev 41:117–175

    Article  Google Scholar 

  • Fouke BW, Farmer JD, Des Marais DJ, Pratt L, Sturchio NC, Burns PC, Discipulo MK (2000) Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth hot springs, Yellowstone national park, USA). J Sediment Res 70:565–585

    Article  Google Scholar 

  • Friedman I (1970) Some investigations of the deposition of travertine from Hot Springs – I. The isotopic chemistry of a travertine-depositing spring. Geochim Cosmochim Acta 34:1303–1315

    Article  Google Scholar 

  • Gandin A, Capezzuoli E (2008) Travertine versus calcareous tufa: distinctive petrologic features and stable isotopes signatures. Ital J Quat Sci 21:125–136

    Google Scholar 

  • Gandin A, Capezzuoli E (2014) Travertine: distinctive depositional fabrics of carbonates from thermal spring systems. Sedimentology 61:264–290

    Article  Google Scholar 

  • Garlick GD (1969) Stable isotope of oxygen. In: Wedepohl KH (ed) Handbook of geochemistry V. Springer-Verlag, Berlin

    Google Scholar 

  • Garrels RM, Thompson ME (1962) A chemical model for sea water at 25 degrees C and one atmosphere total pressure. Am J Sci 260:57–66

    Article  Google Scholar 

  • Gaus I, Azariyak M, Czernichowski-Lauriol I (2005) Reactive transport modeling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chem Geol 217:319–337

    Article  Google Scholar 

  • Giggenbach WF (1980) Geothermal gas equilibria. Geochim Cosmochim Acta 44:2021–2032

    Article  Google Scholar 

  • Giggenbach WF (1984) Mass transfer in hydrothermal alteration systems—a conceptual approach. Geochim Cosmochim Acta 48:2693–2711

    Article  Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765

    Article  Google Scholar 

  • Giggenbach WF (1995) Variations in the chemical and isotopic composition of fluids discharged from the Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 68:89–116

    Article  Google Scholar 

  • Glennon JA, Pfaff RM (2005) The operation and geography of carbon dioxide-driven, cold-water “geysers”. Geyser Obs Study Assoc 6:184–192

    Google Scholar 

  • Gonfiantini R, Panichi C, Tongiorgi E (1968) Isotopic disequilibrium in travertine deposition. Earth Planet Sci Lett 5:55–58

    Article  Google Scholar 

  • Goto M (1961) Somemineralo-chemical problems concerning calcite and aragonite, with special reference to the genesis of aragonite. J Fac Sci Hokkaido Univ Ser 4 Geol Mineral 10:571–640

    Google Scholar 

  • Grasby SE (2003) Naturally precipitating vaterite (μ-CaCO3) spheres: unusual carbonates formed in an extreme environment. Geochim Cosmochim Acta 67:1659–1666

    Article  Google Scholar 

  • Grossman EL (1984) Carbon isotopic fractionation in live benthic foraminifera—comparison with inorganic precipitate studies. Geochim Cosmochim Acta 48:1505–1512

    Article  Google Scholar 

  • Guo L, Andrews J, Riding R, Dennis P, Dresser Q (1996) Possible microbial effects on stable carbon isotopes in hot-spring travertines. J Sediment Res 68:468–473

    Google Scholar 

  • Halas S, Wolacewicz W (1982) The experimental study of oxygen isotope exchange reaction between dissolved bicarbonate and water. J Chem Phys 76:5470–5472

    Article  Google Scholar 

  • Han WS, Lu M, Mcpherson BJ, Keating EH, Moore J, Park E, Watson ZT, Jung N-H (2013) Characteristics of CO2-driven cold-water geyser, Crystal Geyser in Utah: experimental observation and mechanism analyses. Geofluids 13:283–297

    Article  Google Scholar 

  • Hardie LA (1996) Secular variation in seawater chemistry: an explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology 24:279–283

    Article  Google Scholar 

  • Hardie LA (2003) Secular variations in Precambrian seawater chemistry and the timing of Precambrian aragonite seas and calcite seas. Geology 31:785–788

    Article  Google Scholar 

  • Hori M, Takashima C, Matsuoka J, Kano A (2009) Carbon and oxygen stable isotopic measurements of carbonate and water samples using mass spectrometer with Gas Bench. Bull Grad Sch Soc Cult Stud Kyushu Univ 15:51–57

    Google Scholar 

  • Inskeep WP, Bloom PR (1985) An evaluation of rate equations for calcite precipitation kinetics at pCO2 less than 0.01 atm and pH greater than 8. Geochim Cosmochim Acta 49:2165–2180

    Article  Google Scholar 

  • Ito T (1993) The occurrence of monohydrocalcite from calcareous sinter of cold spring of Shiowakka, Asyoro, Hokkaido. J Mineral Petrol Econ Geol Jpn 88:485–491 (in Japanese with English abstract)

    Article  Google Scholar 

  • Jones B (2017) Review of calcium carbonate polymorph precipitation in spring systems. Sediment Geol 353:64–75

    Article  Google Scholar 

  • Jones B, Peng X (2012) Intrinsic versus extrinsic controls on the development of calcite dendrite bushes, Shuzhishi Spring, Rehai geothermal area, Tengchong, Yunnan Province, China. Sediment Geol 249–250:45–62

    Article  Google Scholar 

  • Jones B, Peng X (2016) Mineralogical, crystallographic, and isotopic constraints on the precipitation of aragonite and calcite at Shiqiang and other hot springs in Yunnan Province, China. Sediment Geol 345:103–125

    Article  Google Scholar 

  • Jones B, Renaut RW (1998) Origin of platy calcite crystals in hot-spring deposits in the Kenya Rift Valley. J Sediment Res 68:913–927

    Article  Google Scholar 

  • Jones B, Renaut RW (2008) Cyclic development of large, complex, calcite dendrite crystals in the Clinton travertine, Interior British Columbia, Canada. Sediment Geol 203:17–35

    Article  Google Scholar 

  • Jones B, Renaut RW, Owen RB, Torfason H (2005) Growth patterns and implications of complex dendrites in calcite travertines from Lýsuhóll, Snæfellsnes, Iceland. Sedimentology 52:1277–1301

    Google Scholar 

  • Kano A (2012) Principles and development of the method of stalagmite paleoclimatology. J Geol Soc Jpn 118:157–171

    Article  Google Scholar 

  • Kano A, Matsuoka J, Kojo T, Fujii H (2003) Origin of annual laminations in tufa deposits, southwest Japan. Palaeogeogr Palaeoclimatol Palaeoecol 191:243–262

    Article  Google Scholar 

  • Kano A, Sakuma K, Kaneko N, Naka T (1998) Chemical properties of surface waters in the limestone regions of western Japan: evaluation of chemical conditions for the deposition of tufas. J Sci Hiroshima Univ Ser C 11:11–22

    Google Scholar 

  • Kano A, Hagiwara R, Kawai T, Hori M, Matsuoka J (2007) Climatic condition and hydrological change recorded in a high-resolution stable-isotope profile of a recent laminated tufa on a subtropical island, southern Japan. J Sediment Res 77:59–67

    Article  Google Scholar 

  • Kawahata H (2003) Metabolic and kinetic isotope effects on oxygen and carbon isotopes of coral skeleton. Chishitsu News 585:14–20

    Google Scholar 

  • Kele S, Demeny A, Siklosy Z, Nemeth T, Toth M, Kovacs MB (2008) Chemical and stable isotope composition of recent hot-water travertines and associated thermal waters, from Egerszalok, Hungary: depositional facies and non-equilibrium fractionation. Sediment Geol 211:53–72

    Article  Google Scholar 

  • Kele S, Özkul M, Fórizs I, Gökgöz A, Baykara MO, Alçiçek MC, Németh T (2011) Stable isotope geochemical study of Pamukkale travertines: new evidences of low-temperature non-equilibrium calcite-water fractionation. Sediment Geol 238:191–212

    Article  Google Scholar 

  • Kele S, Breitenbach SF, Capezzuoli E, Meckler AN, Ziegler M, Millan IM, Kulge T, Deák J, Hanselmann K, John CM, Yan H, Lui Z, Bernasconi SM (2015) Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: a study of travertines and tufas in the 6–95 °C temperature range. Geochim Cosmochim Acta 168:172–192

    Article  Google Scholar 

  • Kim ST, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3475

    Article  Google Scholar 

  • Kim S-T, O’Neil JR, Hillaire-Marcel C, Mucci A (2007) Oxygen isotope fractionation between synthetic aragonite and water: influence of temperature and mg concentration. Geochim Cosmochim Acta 71:4701–4715

    Article  Google Scholar 

  • Kitano Y (1962) A study of the polymorphic formation of calcium carbonate in thermal springs with an emphasis of the effect of temperature. J Earth Sci Nagoya Univ 35:1980–1985

    Google Scholar 

  • Kitano Y (1963) Geochemistry of calcareous deposits found in hot springs. J Earth Sci Nagoya Univ 1:68–100

    Google Scholar 

  • Kitano Y, Tokuyama A, Arakaki T (1979) Magnesian calcite synthesis from calcium bicarbonate solution containing magnesium and barium ions. Geochem J 13:181–185

    Article  Google Scholar 

  • Kokh SN, Shnyukov YF, Sokol EV, Novikova SA, Kozmenko OA, Semenova DV, Rybak EN (2015) Heavy carbon travertine related to methane generation: a case study of the Big Tarkhan cold spring, Kerch Peninsula, Crimea. Sediment Geol 325:26–40

    Article  Google Scholar 

  • Liu Z, Svensson U, Dreybrodt W, Yuan D, Buhmann D (1995) Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine, China: field measurements and theoretical prediction of deposition rate. Geochim Cosmochim Acta 59:3087–3097

    Article  Google Scholar 

  • Majoube M (1971) Fractionnement en oxygene-18 et en deuterium entre I’eauet sa vapeur. J Chim Phys 10:625–636

    Article  Google Scholar 

  • Manoli F, Dalas E (2000) Spontaneous precipitation of calcium carbonate in the presence of chondroitin sulfate. J Cryst Growth 217:416–421

    Article  Google Scholar 

  • Matahwa H, Ramiah V, Sanderson RD (2008) Calcium carbonate crystallization in the presence of modified polysaccharides and linear polymeric additives. J Cryst Growth 310:4561–4569

    Article  Google Scholar 

  • McConnaughey T (1989) 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim Cosmochim Acta 53:151–162

    Article  Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–853

    Article  Google Scholar 

  • Minissale A, Kerrick DM, Magro G, Murrell MT, Paladini M, Rihs S, Sturchio NC, Tassi F, Veselli O (2002) Geochemistry of Quaternary travertines in the region north of Rome (Italy): structural, hydrologic and paleoclimatic implications. Earth Planet Sci Lett 203:709–728

    Article  Google Scholar 

  • Morse JW, Arvidson RS (2002) The dissolution kinetics of major sedimentary carbonate minerals. Earth Sci Rev 58:51–84

    Article  Google Scholar 

  • Morse JW, Berner RC (1979) Chemistry of calcium carbonate in the deep oceans. In: Jenne E (ed) Chemical modeling—speciation, sorption, solubility, and kinetics in aqueous systems. American Chemical Society, Washington, DC, pp 499–535

    Chapter  Google Scholar 

  • Morse JW, MacKenzie FT (1990) Geochemistry of sedimentary carbonates, developments in sedimentology. Elsevier, Amsterdam, p 707

    Google Scholar 

  • Nancollas GH, Reddy MM (1971) The crystallization of calcium carbonate, II. Calcite growth mechanism. J Colloid Interf Sci 37:824–829

    Article  Google Scholar 

  • Nier AO (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Phys Rev 77:789–793

    Article  Google Scholar 

  • Obst M, Dynes JJ, Larence JR, Swerhone GDW, Benzerara K, Karunakaran C, Kaznatcheev K, Tyliszczak T, Hitchcock AP (2009) Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: a STXM study of the influence of EPS on the nucleation process. Geochim Cosmochim Acta 73:4180–4198

    Article  Google Scholar 

  • Okumura T, Takashima C, Shiraishi F, Nishida S, Yukimura K, Naganuma T, Koike H, Arp G, Kano A (2011) Microbial processes forming daily lamination in an aragonite travertine, Nagano-yu hot spring, southwest Japan. Geomicrobiol J 28:135–148

    Article  Google Scholar 

  • Okumura T, Takashima C, Shiraishi F, Akmaluddin, Kano A (2012) Textural transition in an aragonite travertine formed under various flow conditions at Pancuran Pitu, Central Java, Indonesia. Sediment Geol 265–266:195–209

    Article  Google Scholar 

  • Okumura T, Takashima C, Shiraishi F, Nishida S, Kano A (2013a) Processes forming daily lamination in a microbe-rich travertine under low flow condition at the Nagano-yu hot spring, southwestern Japan. Geomicrobiol J 30:910–927

    Article  Google Scholar 

  • Okumura T, Takashima C, Kano A (2013b) Textures and processes of laminated travertines formed by unicellular cyanobacteria in Myoken hot spring, southwestern Japan. Island Arc 22:410–426

    Article  Google Scholar 

  • Olsson J, Stipp SLS, Gislason SR (2014) Element scavenging by recently formed travertine deposits in the alkaline springs from the Oman Semail Ophiolite. Mineral Mag 78:1479–1490

    Article  Google Scholar 

  • O’Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558

    Article  Google Scholar 

  • Oue K, Ohsawa S, Yusa Y (2002) Change in color of the hot spring deposits at the Chinoike-Jigoku hot pool, Beppu geothermal field. Geothermics 31:361–380

    Article  Google Scholar 

  • Peng X, Jones B (2013) Patterns of biomediated CaCO3 crystal bushes in hot spring deposits. Sediment Geol 294:105–117

    Article  Google Scholar 

  • Pentecost A (1995) The quaternary travertine deposits of Europe and Asia minor. Quat Sci Rev 14:1005–1028

    Article  Google Scholar 

  • Pentecost A (2005) Travertine. Springer, Verlag, Berlin, p 445

    Google Scholar 

  • Plummer LN, Busenberg E (1982) The solubilities of calcite, aragonite and vaterite in CO -H O solution between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO -CO -H O. Geochim Cosmochim Acta 46:1011–1040

    Article  Google Scholar 

  • Plummer LN, Wigley TML, Parkhurst DL (1978) The kinetics of calcite dissolution in CO2-water systems at 5°C to 60°C and 1.0 atm CO2. Am J Sci 278:179–216

    Article  Google Scholar 

  • Pytkowicz RM (1975) Activity coefficients of bicarbonates and carbonates in seawater. Limnol Oceanogr 20:971–975

    Article  Google Scholar 

  • Reddy MM, Nancollas GH (1971) The crystallization of calcium carbonate: I. Isotopic exchange and kinetics. J Colloid Interface Sci 36:166–172

    Article  Google Scholar 

  • Renaut RW, Jones B (1997) Controls on aragonite and calcite precipitation in hot spring travertines at Chemurkeu, Lake Bongoria, Kenya. Can J Earth Sci 34:801–818

    Article  Google Scholar 

  • Renaut RW, Owenm RB, Jones B, Tiercelin JJ, Tarits C, Ego JK, Konhauser KO (2013) Impact of lake-level changes on the formation of thermogene travertine in continental rifts: evidence from Lake Bogoria, Kenya Rift Valley. Sedimentology 60:428–468

    Article  Google Scholar 

  • Rischer F, Eugster HP (1979) Holocene pisoliths and encrustations associated with spring-fed surface pools, Pastos Grandes, Bolivia. Sedimentology 26:253–270

    Article  Google Scholar 

  • Rogerson M, Pedley HM, Kelham A, Wadhawan JD (2014) Linking mineralisation process and sedimentary product in terrestrial carbonates using a solution thermodynamic. Earth Surf Dyn 2:197–216

    Article  Google Scholar 

  • Romanek CS, Grossman EL, Morse JW (1992) Carbon isotopic fractionation in synthetic aragonite and calcite: effects of temperature and precipitation rate. Geochim Cosmochim Acta 56:419–430

    Article  Google Scholar 

  • Romanov D, Kaufmann G, Dreybrodt W (2008) Modeling stalagmite growth by first principles of chemistry and physics of calcite precipitation. Geochim Cosmochim Acta 72:423–437

    Article  Google Scholar 

  • Roques H, Girou A (1974) Kinetics of the formation conditions of carbonate tartars. Water Res 8:907–920

    Article  Google Scholar 

  • Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern precipitation. In: Swart PK, Lohmann KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records, geophysical monograph, vol 78. American Geophysical Union, Washington, DC, pp 1–36

    Google Scholar 

  • Rubinson M, Clayton RN (1969) Carbon-13 fractionation between aragonite and calcite. Geochim Cosmochim Acta 33:997–1002

    Article  Google Scholar 

  • Ruddy MM, Nancollas GH (1976) The crystallization of calcium carbonate (IV. The effect of magnesium, strontium, and sulfate ions). J Cryst Growth 35:33–38

    Article  Google Scholar 

  • Sandberg PA (1975) New interpretations of Great Salt Lake ooids and of ancient non- skeletal carbonate mineralogy. Sedimentology 22:497–537

    Article  Google Scholar 

  • Sandberg PA (1983) An oscillating trend in Phanerozoic nonskeletal carbonate mineralogy. Nature 305:19–22

    Article  Google Scholar 

  • Sasaki M, Sorai M, Okuyama Y, Muraoka Y (2009) Geochemical features of hot and mineral springs associated with large calcareous deposits in Japan—a potential natural analog study for CO2 underground sequestration. Jpn Mag Mineral Petrol Sci 38:175–197 (in Japanese)

    Google Scholar 

  • Shiraishi F, Bissett A, de Beer D, Reimer A, Arp G (2008) Photosynthesis, respiration and exopolymer calcium-binding in biofilm calcification (Westerhöfer and Deinschwanger Creek, Germany). Geomicrobiol J 25:83–94

    Article  Google Scholar 

  • Smith JR, Giegengack R, Schwarcz HP (2004) Constraints on Pleistocene pluvial climates through stable-isotope analysis of fossil-spring tufas and associated gastropods, Kharga Oasis, Egypt. Palaeogeogr Palaeoclimatol Palaeoecol 206:157–175

    Article  Google Scholar 

  • Spero HJ, Bijma J, Lea DW, Bemis BE (1997) Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497–500

    Article  Google Scholar 

  • Sumner DY (2001) Microbial influences on local carbon isotopic ratios and their preservation in carbonate. Astrobiology 1:57–70

    Article  Google Scholar 

  • Takashima C, Okumura T, Hori M, Kano A (2010) Geochemical characteristics of carbonate hot-springs in Japan. Bulletin of the Graduate School of Social and Cultural Studies, Kyushu University 16:67–74

    Google Scholar 

  • Takashima C, Okumura T, Nishida S, Koike H, Kano A (2011) Bacterial symbiosis forming laminated iron-rich deposits in Okuoku-hachikurou hot spring, Akita Prefecture, Japan. Island Arc 20:294–304

    Article  Google Scholar 

  • Thompson JB, Ferris FG (1990) Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology 18:995–998

    Article  Google Scholar 

  • Tremaine DM, Froelich PN, Wang Y (2011) Speleothem calcite farmed in situ: modern calibration of δ O and δ C paleoclimate proxies in a continuously-monitored natural cave system. Geochim Cosmochim Acta 75:4929–4950

    Article  Google Scholar 

  • Turi B (1986) Stable isotope geochemistry of travertines. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry, 2B. Elsevier, Amsterdam, pp 207–238

    Google Scholar 

  • Turner JV (1982) Kinetic fractionation of carbon-13 during calcium carbonate precipitation. Geochim Cosmochim Acta 46:1183–1191

    Article  Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc (Lond) 1947:562–581

    Google Scholar 

  • Usdowski E, Michaelis J, Böttcher ME, Hoefs J (1991) Factors for the oxygen isotope equilibrium fractionation between aqueous and gaseous CO2, carbonic acid, bicarbonate, carbonate, and water (19°C). Z Phys Chem 170S:237–249

    Google Scholar 

  • Weiss IM, Tuross N, Addadi L, Weiner S (2002) Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J Exp Zool 293:478–491

    Article  Google Scholar 

  • Wilkinson BH (1979) Biomineralization, paleoceanography, and the evolution of calcareous marine organisms. Geology 7:524–527

    Article  Google Scholar 

  • Wilkinson BH, Owen RM, Carroll AR (1985) Submarine hydrothermal weathering, global eustasy, and carbonate polymorphism in Phanerozoic marine oolites. J Sediment Petrol 55:171–183

    Google Scholar 

  • Zeebe RE (1999) An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes. Geochim Cosmochim Acta 63:2001–2007

    Article  Google Scholar 

  • Zhang J, Quay PD, Wilbur DO (1995) Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochim Cosmochim Acta 59:107–114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kano, A., Okumura, T., Takashima, C., Shiraishi, F. (2019). Basic Knowledge of Geochemical Processes. In: Geomicrobiological Properties and Processes of Travertine. Springer Geology. Springer, Singapore. https://doi.org/10.1007/978-981-13-1337-0_2

Download citation

Publish with us

Policies and ethics