Advertisement

Radiation Hardness of Small-Pitch 3D Pixel Sensors up to HL-LHC Fluences

  • J. Lange
  • S. Grinstein
  • M. Manna
  • G. Pellegrini
  • D. Quirion
  • S. Terzo
  • D. Vázquez Furelos
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 213)

Abstract

A new generation of 3D silicon pixel detectors with a small pixel size of 50 \(\times \) 50 and 25 \(\times \) 100 \(\upmu \)m\(^{2}\) is being developed for the HL-LHC tracker upgrades. The radiation hardness of such detectors was studied in beam tests after irradiation to HL-LHC fluences up to \(1.4\times 10^{16}\) n\(_{\mathrm {eq}}\)/cm\(^2\). At this fluence, an operation voltage of only 100 V is needed to achieve 97% hit efficiency, with a power dissipation of 13 mW/cm\(^2\) at \(-25\,^{\circ }\)C, considerably lower than for previous 3D sensor generations and planar sensors.

Notes

Acknowledgements

The authors wish to thank A. Rummler, M. Bomben and the other ATLAS ITk beam test participants for great support and discussions at the beam tests; also to F. Ravotti and G. Pezzullo (CERN IRRAD) and F. Bögelspacher for excellent support for the irradiations. This work was partly performed in the framework of the CERN RD50 collaboration.This work was partially funded by: the MINECO, Spanish Government, under grants FPA2013-48308-C2-1-P, FPA2015-69260-C3-2-R, FPA2015-69260-C3-3-R (co-financed with the European Union’s FEDER funds) and SEV-2012-0234 (Severo Ochoa excellence programme) and under the Juan de la Cierva programme; the Catalan Government (AGAUR): Grups de Recerca Consolidats (SGR 2014 1177); and the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168 (AIDA2020).

References

  1. 1.
    The HL-LHC Project: High Luminosity Large Hadron Collider. http://hilumilhc.web.cern.ch/about/hl-lhc-project
  2. 2.
    Parker, S., Kenney, C., Segal, J.: 3D - a proposed new architecture for solid-state radiation detectors. Nucl. Instrum. Method A 395(3), 328–343 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    ATLAS IBL Collaboration: Prototype ATLAS IBL modules using the FE-I4A front-end readout chip. JINST 7, P11010 (2012)Google Scholar
  4. 4.
    Grinstein, S., et al.: Module production of the one-arm AFP 3D pixel tracker. JINST 12, C01086 (2017)CrossRefGoogle Scholar
  5. 5.
    Garcia-Sciveres, M., et al.: The FE-I4 pixel readout integrated circuit. Nucl. Instrum. Method A 636, S155 (2011)CrossRefGoogle Scholar
  6. 6.
    Lange, J., et al.: 3D silicon pixel detectors for the High-Luminosity LHC. JINST 11, C11024 (2016)CrossRefGoogle Scholar
  7. 7.
    Pellegrini, G., et al.: 3D double sided detector fabrication at IMB-CNM. Nucl. Instrum. Method A 699, 27 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Vazquez Furelos, D., et al.: 3D sensors for the HL-LHC. JINST 12, C01026 (2017)CrossRefGoogle Scholar
  9. 9.
    Jansen, H., et al.: Performance of the EUDET-type beam telescopes. EPJ Tech. Instrum. 3(1), 7 (2016)CrossRefGoogle Scholar
  10. 10.
    Savic, N., et al.: Investigation of thin n-in-p planar pixel modules for the ATLAS upgrade. JINST 11, C12008 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd.  2018

Authors and Affiliations

  • J. Lange
    • 1
  • S. Grinstein
    • 1
    • 2
  • M. Manna
    • 3
  • G. Pellegrini
    • 3
  • D. Quirion
    • 3
  • S. Terzo
    • 1
  • D. Vázquez Furelos
    • 1
  1. 1.Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  3. 3.Centro Nacional de Microelectronica (CNM-IMB-CSIC)BarcelonaSpain

Personalised recommendations