Advertisement

Improvement of the MCP-PMT Performance Under a High Count Rate

  • Kodai Matsuoka
  • Shigeki Hirose
  • Toru Iijima
  • Kenji Inami
  • Yuji Kato
  • Kazuho Kobayashi
  • Yosuke Maeda
  • Genta Muroyama
  • Raita Omori
  • Kazuhito Suzuki
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 213)

Abstract

A square shape micro-channel-plate photomultiplier tube (MCP-PMT) was developed for the Belle II TOP counter, where the count rate of the MCP-PMT is as high as several MHz/PMT due to the accelerator beam backgrounds. A major problem of the MCP-PMT in such an environment is depression of the quantum efficiency along with the integrated amount of output charge. We succeeded in diminishing the depression significantly by introducing an atomic layer deposition technique and some other processes in the production of the MCP-PMT.

Keywords

MCP-PMT Photocathode QE Lifetime ALD 

Notes

Acknowledgment

This work was supported by MEXT Grant-in-Aid for Scientific Research on Innovative Areas “Elucidation of New Hadrons with a Variety of Flavors” and JSPS Grant-in-Aid for Scientific Research (S) “Probing New Physics with Tau-Lepton” (No. 26220706).

References

  1. 1.
    Ohshima, T.: Time-of-propagation counter - a new Cherenkov ring imaging detector. ICFA Instrum. Bull. 20, 10 (2000)Google Scholar
  2. 2.
    Schönmeier, P., et al.: Disc DIRC endcap detector for PANDA@FAIR. Nucl. Instrum. Methods Phys. Res. A 595, 108 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Schwarz, C., et al.: The barrel DIRC of the P̄ANDA experiment. Nucl. Instrum. Methods Phys. Res. A 595, 112 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Charles, M.J., Forty, R.: on behalf of the LHCb collaboration: TORCH: time of flight identification with Cherenkov radiation. Nucl. Instrum. Methods Phys. Res. A 639, 173 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    The PHENIX Collaboration: Concept for an Electron Ion Collider (EIC) detector built around the BaBar solenoid. arXiv:1402.1209 [nucl-ex] (2014)
  6. 6.
    Lehmann, A., et al.: Significantly improved lifetime of micro-channel plate PMTs. Nucl. Instrum. Methods Phys. Res. A 718, 535 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Conneely, T.M., et al.: The TORCH PMT: a close packing, multi-anode, long life MCP-PMT for Cherenkov applications. JINST 10, C05003 (2015)CrossRefGoogle Scholar
  8. 8.
    Matsuoka, K., et al.: Extension of the MCP-PMT lifetime. Nucl. Instrum. Methods Phys. Res. A 876, 93 (2017).  https://doi.org/10.1016/j.nima.2017.02.010ADSCrossRefGoogle Scholar
  9. 9.
    Abe, T., et al.: Belle II Technical Design Report. KEK-REPORT-2010-1 (2010)Google Scholar
  10. 10.
    Matsuoka, K., et al.: Performance of the MCP-PMT for the Belle II TOP counter. PoS(PhotoDet2015)028 (2015)Google Scholar
  11. 11.
    George, S.M.: Atomic layer deposition: an overview. Chem. Rev. 110, 111 (2010)CrossRefGoogle Scholar
  12. 12.
    Jinno, T., et al.: Lifetime-extended MCP-PMT. Nucl. Instrum. Methods Phys. Res. A 629, 111 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd.  2018

Authors and Affiliations

  • Kodai Matsuoka
    • 1
  • Shigeki Hirose
    • 2
  • Toru Iijima
    • 1
    • 2
  • Kenji Inami
    • 2
  • Yuji Kato
    • 1
  • Kazuho Kobayashi
    • 2
  • Yosuke Maeda
    • 1
  • Genta Muroyama
    • 2
  • Raita Omori
    • 2
  • Kazuhito Suzuki
    • 2
  1. 1.Kobayashi-Maskawa InstituteNagoya UniversityNagoyaJapan
  2. 2.Department of PhysicsNagoya UniversityNagoyaJapan

Personalised recommendations