A New Design for Secondary Electron Measurement and Application

  • Jinhai LiEmail author
  • Shulin Liu
  • Baojun Yan
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 213)


The secondary electron is researched in many fields. In order to measure the secondary electron angular distribution of all the solid angle, the X axis support and Y axis support are proposed. The energy distribution of the secondary electron also can be measured. The accumulated charge on the insulated material surface during the secondary electron measurement has very bad effects. Although many methods have been used for the charge neutralization, many defects are still not resolved. So the plasma neutralization is proposed. The plasma neutralization can also be used in the electron microscopy.


Secondary electron Angular distribution Energy distribution Charge neutralization Electron microscopy 


  1. 1.
    Wiza, J.L.: Microchannel plate detectors. Nucl. Instrum. Methods A 162, 587–601 (1979)CrossRefGoogle Scholar
  2. 2.
    Giudicotti, L.: Time dependent model of gain saturation in microchannel plates and channel electron multipliers. Nucl. Instrum. Methods A 659, 336–347 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Wang, Y.F., Qiang, S., Zhao, T.C., et al.: A new design of large area MCP-PMT for the next generation neutrino experiment. Nucl. Instrum. Methods A 695, 113–117 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Ahn, S., Lee, S.E., Ryu, S.H., et al.: A study on the secondary electron emission from Na-ion-doped MgO films in relation to the discharge characteristics of plasma display panels. Thin Solid Films 517, 1706–1709 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Altieri, S., Finazzi, M., Hsieh, H.H., et al.: Secondary electron yield enhancement by MgO capping layers. Surf. Sci. 604, 181–185 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Auday, G., Guill, Ph., Galy, J.: Secondary emission of dielectrics used in plasma display panels. J. Appl. Phys. 88, 4871 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Vaughan, J.R.M.: Observations of multipactor in magnetrons. IEEE Trans. Electron Dev. 15(11), 883–889 (1968)ADSCrossRefGoogle Scholar
  8. 8.
    Benford, J., Benford, G.: Pulse shortening in high power microwave sources. In: IEEE Conference Record - Abstracts. 1996 IEEE International Conference on Plasma Science, Boston, MA, USA (1996)Google Scholar
  9. 9.
    Michizono, S., Saito, Y., Yamaguchi, S., Anami, S.: Dielectric materials for use as output window in high-power klystrons. IEEE Trans. Electr. Insul. 28(4), 692–699 (1993)CrossRefGoogle Scholar
  10. 10.
    Kim, H.C., Verboncoeu, J.P.: Transition of window breakdown from vacuum multipactor discharge to RF plasma. Phys. Plasma 13(5), 123–131 (2006)CrossRefGoogle Scholar
  11. 11.
    Rimmer, R.A.: High power microwave window failures. IEEE Trans. Plasma Sci. 5(12), 121–130 (1998)Google Scholar
  12. 12.
    Hatch, A.J., Williams, H.B.: Multipacting modes of high-frequency gaseous breakdown. Phys. Rev. 112, 681 (1958)ADSCrossRefGoogle Scholar
  13. 13.
    Vaughan, J.R.M.: Multipactor. IEEE Trans. Electron. Dev. 35, 1172 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    Gonin, I., Khabibouline, T., Langranco, G., et al.: High gradient tests of the HINS SSRa1 single spoke resonator. In: HB 2008 (2008)Google Scholar
  15. 15.
    Anderson, B.: Mechanism of pulsed surface flashover involving electron-stimulated desorption. J. Appl. Phys. 51(3), 1414–1421 (1980)ADSCrossRefGoogle Scholar
  16. 16.
    Boersch, H., Hamisch, H., Ehrlich, W.: Surface discharges across insulators in vacuum. Z. Angew. Phys. 15(6), 518–525 (1963)Google Scholar
  17. 17.
    Saito, Y., Michizuno, N., Anami, S., et al.: Surface flashover on alumina RF windows for high-power use. IEEE Trans. Electr. Insul. 28(4), 566–573 (1993)CrossRefGoogle Scholar
  18. 18.
    Guo, Z.Y., Liu, Y.D., Qin, Q., et al.: The studies of electron cloud instability. In: Proceedings of APAC 2004, Gyeongju, Korea, pp. 44–48 (2004)Google Scholar
  19. 19.
    Yamamoto, K., Shibata, T., Ogivara, N., et al.: Secondary electron emission yields from the J-PARC RCS vacuum components. Vacuum 81, 788–792 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Zimmermann, F.: The electron cloud instability: summary of measurements and understanding. In: Proceedings of the 2001 Particle Accelerator Conference, Chicago, pp. 666–670 (2001)Google Scholar
  21. 21.
    Harkay, K., Rosenberg, R., Guo, Z.Y., et al.: Survey of recent results on electron cloud effects in photon machines. In: Proceedings of the 2001 Particle Accelerator Conference, Chicago, pp. 671–675 (2001)Google Scholar
  22. 22.
    HarKay, K.: Electron cloud observations: a retrospective. In: Proceedings of the 31st ICFA Advanced Beam Dynamics Workshop on Electron-Cloud Effects, ECLOUD 2004, California (2004)Google Scholar
  23. 23.
    Jbara, O., Fakhfakh, S., Belhaj, M., Rondot, S., Hadjadj, A., Patat, J.M.: Charging effects of PET under electron beam irradiation in a SEM. J. Phys. D Appl. Phys. 41, 245504 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Boughariou, A., Hachicha, O., Kallel, A., Blaise, G.: Effect of current density on electron beam induced charging in MgO. Nuclear Instrum. Methods Phys. Res. B 240, 697–703 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Cazaux, J.: Mechanisms of charging in electron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 105, 155–185 (1999)CrossRefGoogle Scholar
  26. 26.
    Willis, R.F.: Secondary-electron-emission spectroscopy of tungsten angular dependence and phenomenology. Phys. Rev. B 18(10), 5140–5161 (1978)ADSCrossRefGoogle Scholar
  27. 27.
    Hopman, H.J., Alberda, H., Attema, I., Zeijlemaker, H., Verhoeven, J.: Measuring the secondary electron emission characteristic of insulators. J. Electron Spectrosc. Relat. Phenom. 131–132, 51–60 (2003)CrossRefGoogle Scholar
  28. 28.
    Kawai, J.: Total reflection X-ray photoelectron spectroscopy: a review. J. Electron Spectrosc. Relat. Phenom. 178–179, 268–272 (2010)CrossRefGoogle Scholar
  29. 29.
    Chen, L., Tian, J., Liu, C., Wang, Y., Zhao, T., Liu, H., Wei, Y., Sai, X., Chen, P., Wang, X., Lu, Y., Hui, D., Guo, L., Liu, S., Qian, S., Xia, J., Yan, B., Zhu, N., Sun, J., Si, S., Li, D., Wang, X., Huang, G., Qi, M.: Optimization of the electron collection efficiency of a large area MCP-PMT for the JUNO experiment. Nucl. Instrum. Methods Phys. Res. Sect. A 827, 124–130 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Jinhai, L.: Patent: one type of device for second electron measurement, 201610988714.7Google Scholar
  31. 31.
    Bohm, C., Perrin, J.: Retarding-field analyzer for measurements of ion energy distributions and secondary electron emission coefficients in low-pressure radio frequency discharge. Rev. Sci. Instrum. 64(1), 31–44 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    Palmberg, P.W., Rhodin, T.N.: Auger electron spectroscopy of FCC metal surface. J. Appl. Phys. 39(5), 2425–2432 (1968)ADSCrossRefGoogle Scholar
  33. 33.
    Patino, M.I., Raitses, Y., Koel, B.E., Wirz, R.E.: Analysis of secondary electron emission for conducting materials using 4-grid LEED/AES optics. J. Phys. D Appl. Phys. 48, 195204 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Sickafus, E.N.: A secondary emission analog for improved auger spectroscopy with retarding potential analyzers. Rev. Sci. Instrum. 42(7), 933–941 (1971)ADSCrossRefGoogle Scholar
  35. 35.
    Wei, P.S.P., Cho, A.Y., Caldwell, C.W.: Instrumental effects of the retarding grids in a LEED apparatus. Rev. Sci. Instrum. 40(8), 1075–1079 (1969)ADSCrossRefGoogle Scholar
  36. 36.
    Cazaux, J.: Work function effects on the positive charging of supported insulating samples exposed to X-rays (as in XPS) and other irradiations. J. Electron Spectrosc. Relat. Phenom. 192, 40–51 (2014)CrossRefGoogle Scholar
  37. 37.
    Scholtz, J.J., Schmitz, R.W.A., Hendriks, B.H.W., de Zwart, S.T.: Description of the influence of charging on the measurement of the secondary electron yield of MgO. Appl. Surf. Sci. 111, 259–264 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    Fakhfakh, S., Jbara, O., Rondot, S., Hadjadj, A., Patat, J.M., Fakhfakh, Z.: Analysis of electrical charging and discharging kinetics of different glasses under electron irradiation in a scanning electron microscope. J. Appl. Phys. 108, 093705 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Johnson, J.B., McKay, K.G.: Phys. Rev. 91(3), 582 (1953)Google Scholar
  40. 40.
    Cazaux, J.: About the charge compensation of insulating samples in XPS. J. Electron Spectrosc. Relat. Phenom. 113, 15–33 (2000)CrossRefGoogle Scholar
  41. 41.
    Cazaux, J., Lehuede, P.: Some physical descriptions of charging effects of insulators under incident particle bombardment. J. Electron Spectrosc. Relat. Phenom. 59, 49–71 (1992)CrossRefGoogle Scholar
  42. 42.
    Weng, M., Cao, M., Zhao, H.-J., Zhang, H.-B.: A simple charge neutralization method for measuring the secondary electron. Rev. Sci. Instrum. 85, 036108 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    Gonski, H., Freund, H.J., Hohlneicher, G.: On the importance of photoconduction in ESCA experiments. J. Electron Spectrosc. Rel. Phenom. 12, 435 (1977)CrossRefGoogle Scholar
  44. 44.
    Handel, K.J.: A two electron gun technique for the measurement of secondary emission characteristics of a variety of materials. IEEE Trans. Electron Dev. 13(6), 525 (1966)ADSCrossRefGoogle Scholar
  45. 45.
    Vallayer, B., Saito, Y., Treheux, D.: Proceedings 2nd International Conference on Solid Dielectrics CSC2, Antibes France April 1995, Société Française du Vide, Paris, p. 589 (1995)Google Scholar
  46. 46.
    Cazaux, J.: Some considerations on the electric field induced in insulators by electron bombardment. J. Appl. Phys. 59, 1418–1430 (1986)ADSCrossRefGoogle Scholar
  47. 47.
    Qunn, X., Ji, Y., Zhang, H., Zhang, Y., Xuedong, X., Zhong, T.: Charging compensation of alumina samples by using all oxygen micro-injector in environmental scanning. Electron Microsc. Scan. 28(5), 289–293 (2006)Google Scholar
  48. 48.
    Ji, Y., Guo, H.S., Zhong, T.X., Zhang, H., Quan, X.L., Zhang, Y.Q., Xu, X.D.: Charge and charging compensation on oxides and hydroxides in oxygen environmental SEM. Ultramicroscopy 103, 191–198 (2005)CrossRefGoogle Scholar
  49. 49.
    Totll, M., Thiel, B.L., Donald, A.M.: Interpretation of secondary electron images obtained using a low vacuum SEM. Ultramicroscopy 94, 71–87 (2003)CrossRefGoogle Scholar
  50. 50.
    Cazaux, J., Gressus, C.L.: Phenomena relating to charging in insulators: microscopic effects and microscopy cause. Scan. Microsc. 5(1), 17–27 (1991)Google Scholar
  51. 51.
    Ichmura, S., Bauer, H.E., Seiler, H., Hofmann, S.: Reduction of charging in surface analysis of insulating materials by AES. Surf. Interface Anal. 14, 250 (1989)CrossRefGoogle Scholar
  52. 52.
    Bass, A.D., Cloutier, P., Sanche, L.: J. Appl. Phys. 84, 2740 (1998)Google Scholar
  53. 53.
    Huchital, D.A., Mc Kean, R.T.: Appl. Phys. Lett. 20, 158 (1972)Google Scholar
  54. 54.
    Liehr, M., Thiry, P.A., Pireaux, J.J., Caudano, R.: Phys. Rev. B 33, 5682 (1986)Google Scholar
  55. 55.
    Geller, J.D.: Proceedings of 2nd International Conference on Solid Dielectrics CSC2 Antibes, France 1995, Ibid. Le Vide Sup 275, p. 644 (1995)Google Scholar
  56. 56.
    Wachtendorf, C., Herweg, C., Daeuber, M., Benedikt, J., von Keudell, A.: Thin film growth from a low pressure plasma excited in a supersonic expanding gas jet. J. Phys. D Appl. Phys. 42, 095205 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    Qing, Z., Otorbaev, D.K., Brussaard, G.J.H., van de Sanden, M.C.M., Schram, D.C.: Diagnostics of the magnetized low-pressure hydrogen plasma jet molecular regime. J. Appl. Phys. 80(3), 1312–1324 (1996)ADSCrossRefGoogle Scholar
  58. 58.
    Šícha, M., Hubicka, Z., Soukup, L., Jastrabík, L., Cada, M., Špatenka, P.: Low-pressure RF multi-plasma-jet system for deposition of alloy and composite thin films. Surf. Coat. Technol. 148, 199–205 (2001)CrossRefGoogle Scholar
  59. 59.
    Caldirola, S., Barni, R., Roman, H.E., Riccardi, C.: Mass spectrometry measurements of a low pressure expanding plasma jet. J. Vac. Sci. Technol. A 33, 061306 (2015). Scholar
  60. 60.
    Itou, Y., Hirai, E., Shimakawa, T.: Estimation of minimum power consumption and pumps cost for the differential pumping system. Appl. Surf. Sci. 169–170, 792–798 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd.  2018

Authors and Affiliations

  1. 1.China Institute of Atomic EnergyBeijingChina
  2. 2.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations