Advertisement

Scattering Studies with the DATURA Beam Telescope

  • Hendrik Jansen
  • Jan Dreyling-Eschweiler
  • Paul Schütze
  • Simon Spannagel
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 212)

Abstract

High-precision particle tracking devices allow for two-dimensional analyses of the material budget distribution of particle detectors and their periphery. In this contribution, the material budget of different targets is reconstructed from the width of the angular distribution of scattered beam particle at a sample under test. Positrons in the GeV-range serve as beam particles carrying enough momentum to traverse few millimetre thick targets whilst offering sufficient deflection for precise measurement. Reference measurements of the scattering angle distribution of targets of known thicknesses are presented that serve as calibration techniques required for tomographic reconstructions of inhomogeneous objects.

Notes

Acknowledgement

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).

References

  1. 1.
    Moliere, G.: Theorie der Streuung schneller geladener Teilchen I. Einzelstreuung am abgeschirmten Coulomb-Feld. Z. Naturforsch. A2, 133 (1947)ADSzbMATHGoogle Scholar
  2. 2.
    Highland, V.: Some practical remarks on multiple scattering. Nucl. Instrum. Methods Phys. Rev. A 129(2), 497–499 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    Jansen, H., et al.: Performance of the EUDET-type beam telescopes. EPJ Tech. Instrum. 3(1), 7 (2016)CrossRefGoogle Scholar
  4. 4.
    Baudot, J., et al.: First test results of MIMOSA-26, a fast CMOS sensor with integrated zero suppression and digitized output. In: Nuclear Science Symposium Conference Record 2009, pp. 1169–1173. IEEE (2009)Google Scholar
  5. 5.
    Cussans, D.G.: Description of the JRA1 Trigger Logic Unit (TLU), v0.2c. Technical report (2009). Accessed 21 Apr 2015Google Scholar
  6. 6.
    Perrey, H.: EUDAQ and EUTelescope – software frameworks for testbeam data acquisition and analysis. In: Technology and Instrumentation in Particle Physics, PoS(TIPP2014), p. 353 (2014)Google Scholar
  7. 7.
    EUDAQ Software Developers. EUDAQ Website. http://eudaq.github.io. Accessed 22 June 2017
  8. 8.
    Diener, R., Meyners, N., Potylitsina-Kube, N., Stanitzki, M.: Test Beams at DESY. http://testbeam.desy.de. Accessed 26 July 2016
  9. 9.
    Bulgheroni, A., et al.: EUTelescope, the JRA1 Tracking and Reconstruction Software: A Status Report (Milestone). Technical report (2008). Accessed 22 June 2017Google Scholar
  10. 10.
    EUTelescope Software Developers. EUTelescope Website. http://eutelescope.desy.de. Accessed 22 June 2017
  11. 11.
    Patrignani, C., Particle Data Group: Review of particle physics. Chin. Phys. C 40(10), 100001 (2016)Google Scholar
  12. 12.
    Blobel, V.: A new fast track-fit algorithm based on broken lines. Nucl. Instr. Meth. Phys. A 566(1), 14–17 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Kleinwort, C.: General broken lines as advanced track fitting method. Nucl. Instr. Meth. Phys. A 673, 107–110 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Schütze, P., Jansen, H.: Feasibility study of a track-based multiple scattering tomography. In: These proceedings (2018)Google Scholar
  15. 15.
    Bisanz, T., Morton, A., Rubinskiy, I.: EUTelescope 1.0: Reconstruction Software for the AIDA Testbeam Telescope. AIDA-NOTE-2015-009 (2015). https://cds.cern.ch/record/2000969

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Hendrik Jansen
    • 1
  • Jan Dreyling-Eschweiler
    • 1
  • Paul Schütze
    • 1
  • Simon Spannagel
    • 2
  1. 1.Deutsches Elektronen-Synchrotron DESYHamburgGermany
  2. 2.CERNGenevaSwitzerland

Personalised recommendations