Advertisement

A Vertex and Tracking Detector System for CLIC

  • A.  Nürnberg
  • on behalf of the CLICdp collaboration
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 212)

Abstract

The physics aims at the proposed future CLIC high-energy linear Open image in new window collider pose challenging demands on the performance of the detector system. In particular the vertex and tracking detectors have to combine precision measurements with robustness against the expected high rates of beam-induced backgrounds. The requirements include ultra-low mass, facilitated by power pulsing and air cooling in the vertex-detector region, small cell sizes and precision hit timing at the few-ns level. A detector concept meeting these requirements has been developed and an integrated R&D program addressing the challenges is progressing in the areas of ultra-thin sensors and readout ASICs, interconnect technology, mechanical integration and cooling.

References

  1. 1.
    Aicheler, M., et al.: A multi-TeV linear collider based on CLIC technology: CLIC conceptual design report (2012). https://cds.cern.ch/record/1500095. CERN-2012-007
  2. 2.
    CLIC Conceptual Design Report: Physics and Detectors at CLIC (2012). CERN-2012-003Google Scholar
  3. 3.
    Alipour Tehrani, N., et al.: CLICdet: the post-CDR CLIC detector model (2017). http://cds.cern.ch/record/2254048. CLICdp-Note-2017-001
  4. 4.
    Alipour Tehrani, N.: Test-beam measurements and simulation studies of thin-pixel sensors for the CLIC vertex detector. Ph.D. thesis, ETH Zurich (2017), https://www.research-collection.ethz.ch/handle/20.500.11850/164813. Diss. ETH No. 24216
  5. 5.
    Buckland, M.: Analysis and simulation of HV-CMOS assemblies for the CLIC vertex detector (2017). These ProceedingsGoogle Scholar
  6. 6.
    Munker, M.: Integrated CMOS sensor technologies for the CLIC tracker (2017). These ProceedingsGoogle Scholar
  7. 7.
    Nurnberg, A.: A vertex and tracking detector system for CLIC (2017). http://cds.cern.ch/record/2272079. CLICdp-Conf-2017-013
  8. 8.
    Agostinelli, S., et al.: Geant4 - a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506(3), 250–303 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Allison, J., et al.: Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53(1), 270–278 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Suehara, T., Tanabe, T.: LCFIPlus: a framework for jet analysis in linear collider studies. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 808, 109–116 (2016). http://www.sciencedirect.com/science/article/pii/S0168900215014199ADSCrossRefGoogle Scholar
  11. 11.
    Alipour Tehrani, N., Roloff, P.: Optimisation studies for the CLIC vertex-detector geometry (2014). https://cds.cern.ch/record/1742993. CLICdp-Note-2014-002
  12. 12.
    Alipour Tehrani, N.: Optimisation studies for the CLIC vertex-detector geometry. J. Instrum. 10(07) (2015). C07001. http://stacks.iop.org/1748-0221/10/i=07/a=C07001
  13. 13.
    Regler, M., Valentan, M., Fruhwirth, R.: LiC detector Toy 2.0 (Vienna fast simulation tool for charged tracks), users guide. http://www.hephy.at/project/ilc/lictoy/. HEPHY-PUB-863/08
  14. 14.
    Nurnberg, A., Dannheim, D.: Requirements for the CLIC tracker readout (2017). https://cds.cern.ch/record/2261066. CLICdp-Note-2017-002
  15. 15.
    Dannheim, D., Sailer, A.: Beam-induced backgrounds in the CLIC detectors (2012). http://cds.cern.ch/record/1443516. LCD-Note-2011-021

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • A.  Nürnberg
    • 1
  • on behalf of the CLICdp collaboration
  1. 1.CERNGenevaSwitzerland

Personalised recommendations