Advertisement

Spin-Off Application of Silica Aerogel in Space: Capturing Intact Cosmic Dust in Low-Earth Orbits and Beyond

  • Makoto Tabata
  • on behalf of the Tanpopo Team
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 212)

Abstract

A spin-off application of transparent, low-density silica aerogel as a dust-capture medium in space is described. We provide an overview of the physics behind the hypervelocity capture of dust using aerogels and chronicle their history of use as dust collectors. In addition, recent developments regarding the high-performance aerogel used in the Tanpopo mission are presented.

Keywords

Silica aerogel Low-density material Cosmic dust Low-Earth orbit Astrobiology Tanpopo 

Notes

Acknowledgments

The author is grateful to the members of the Tanpopo team for their contributions to CP development. Additionally, the author is grateful to Prof. H. Kawai of Chiba University and Prof. I. Adachi of KEK for their assistance in aerogel production. Furthermore, the author is thankful to the JEM Mission Operations and Integration Center, Human Spaceflight Technology Directorate, JAXA. This study was partially supported by the Hypervelocity Impact Facility (former name: Space Plasma Laboratory) at ISAS, JAXA, the Venture Business Laboratory at Chiba University, a Grant-in-Aid for Scientific Research (B) (No. 6H04823), and a Grant-in-Aid for JSPS Fellows (No. 07J02691) from the Japan Society for the Promotion of Science (JSPS).

References

  1. 1.
    Cantin, M., et al.: Silica aerogels used as Cherenkov radiators. Nucl. Instrum. Meth. 118, 177–182 (1974)ADSCrossRefGoogle Scholar
  2. 2.
    Adachi, I., et al.: Construction of silica aerogel radiator system for Belle II RICH counter. Nucl. Instrum. Meth. Phys. Res. A 876, 129–132 (2017).  https://doi.org/10.1016/j.nima.2017.02.036ADSCrossRefGoogle Scholar
  3. 3.
    Tabata, M., et al.: Fabrication of silica aerogel with \(n\) = 1.08 for \(e^+/\mu ^+\) separation in a threshold Cherenkov counter of the J-PARC TREK/E36 experiment. Nucl. Instrum. Meth. Phys. Res. A 795, 206–212 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Yokogawa, H., Yokoyama, M.: Hydrophobic silica aerogels. J. Non-Cryst. Solids 186, 23–29 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    Tabata, M., et al.: Development of transparent silica aerogel over a wide range of densities. Nucl. Instrum. Meth. Phys. Res. A 623(1), 339–341 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Tabata, M., et al.: Hydrophobic silica aerogel production at KEK. Nucl. Instrum. Meth. Phys. Res. A 668, 64–70 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Burchell, M.J., et al.: Cosmic dust collection in aerogel. Annu. Rev. Earth Planet. Sci. 34, 385–418 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Tsou, P.: Silica aerogel captures cosmic dust intact. J. Non-Cryst. Solids 186, 415–427 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    Kitazawa, Y., et al.: Hypervelocity impact experiments on aerogel dust collector. J. Geophys. Res. 104(E9), 22035–22052 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    Niimi, R., et al.: Size and density estimation from impact track morphology in silica aerogel: application to dust from comet 81P/Wild 2. Astrophys. J. 744(1), 18 (2012). (5 pages)ADSCrossRefGoogle Scholar
  11. 11.
    Brownlee, D.E., et al.: Eureka!! Aerogel capture of meteoroids in space. In: 25th Lunar and Planetary Science Conference, Abstract #1092 (1994)Google Scholar
  12. 12.
    Noguchi, T., et al.: A chondrule-like object captured by space-exposed aerogel on the international space station. Earth Planet. Sci. Lett. 309(3–4), 198–206 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Liou, J.-C., et al.: Improving the near-Earth meteoroid and orbital debris environment definition with LAD-C. In: Proceedings of 57th International Astronautical Congress, IAC-06-B6.3.10, 7p., Valencia, Spain (2006)Google Scholar
  14. 14.
    Brownlee, D., et al.: Comet 81P/Wild 2 under a microscope. Science 314, 1711–1716 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Tsou, P., et al.: LIFE: life investigation for Enceladus A sample return mission concept in search for evidence of life. Astrobiology 12(8), 730–742 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Fujishima, K., et al.: A fly-through mission strategy targeting peptide as a signature of chemical evolution and possible life in Enceladus plumes. Enceladus and the Icy Moons of Saturn, Abstract #3085 (2016)Google Scholar
  17. 17.
    Yamagishi, A., et al.: TANPOPO: astrobiology exposure and micrometeoroid capture experiments. Biol. Sci. Space 21(3), 67–75 (2007). (in Japanese)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kawaguchi, Y., et al.: Investigation of the interplanetary transfer of microbes in the Tanpopo mission at the exposed facility of the international space station. Astrobiology 16(5), 363–376 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Tabata, M., et al.: Tanpopo cosmic dust collector: silica aerogel production and bacterial DNA contamination analysis. Biol. Sci. Space 25(1), 7–12 (2011)CrossRefGoogle Scholar
  20. 20.
    Tabata, M., et al.: Silica aerogel for capturing intact interplanetary dust particles for the Tanpopo experiment. Orig. Life Evol. Biosph. 45(1–2), 225–229 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Tabata, M., et al.: Ultralow-density double-layer silica aerogel fabrication for the intact capture of cosmic dust in low-Earth orbits. J. Sol-Gel Sci. Technol. 77(2), 325–334 (2016)CrossRefGoogle Scholar
  22. 22.
    Tabata, M., et al.: Design of a silica-aerogel-based cosmic dust collector for the Tanpopo mission aboard the international space station. Trans. JSASS Aerosp. Technol. Jpn. 12(ists29), Pk\_29–PK\_34 (2014).Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Makoto Tabata
    • 1
  • on behalf of the Tanpopo Team
  1. 1.Chiba UniversityChibaJapan

Personalised recommendations