Advertisement

The Weighting Resistive Matrix for Real Time Data Filtering in Large Detectors

  • A. Abdallah
  • G. Aielli
  • R. Cardarelli
  • M. Manca
  • M. Nessi
  • P. Sala
  • L. H. Whitehead
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 212)

Abstract

Experimental High Energy Physics pioneered in facing the problem of managing, large data flows smartly and in real time. Very large volume experiments searching for rare events such as DUNE (Deep Underground Neutrino Experiment) may produce an extremely high data flow with a complex data model. In this paper, we propose to overcome the real time computing limitations by introducing a novel technology, the WRM (Weighting Resistive Matrix).

Keywords

Fast pattern recognition Analog processing Tracking trigger 

References

  1. 1.
    Dell’Orso, M., Ristori, L.: VLSI structures for track finding. NIM-A 278, 436–440 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    Cardarelli, R., Chiostri, V., Di Stante, L., Reali, E., Santonico, R., Travaglini, M., Tusi, E.: On a very fast topological trigger. NIM-A 324(1–2), 253–259 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    Abdallah, A., Cardarelli, R., Aielli, G.: On a fast discrete straight line segment detection (2014)Google Scholar
  4. 4.
  5. 5.
    Boehlen, T.T., et al.: The FLUKA code: developments and challenges for high energy and medical applications. Nucl. Data Sheets 120, 211–214 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    J.T. Anderson, et al.: FELIX: a high-throughput network approach for interfacing to front end electronics for ATLAS upgrades. In: ATL-DAQ-PROC-2015-014. https://cds.cern.ch/record/2016626

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • A. Abdallah
    • 1
  • G. Aielli
    • 1
  • R. Cardarelli
    • 1
  • M. Manca
    • 2
  • M. Nessi
    • 4
  • P. Sala
    • 3
  • L. H. Whitehead
    • 4
  1. 1.University and INFN Sez. Roma Tor VergataRomeItaly
  2. 2.Scimpulse FoundationGeleenThe Netherlands
  3. 3.CERN and INFN Sez. MilanoMilanItaly
  4. 4.CERNGenevaSwitzerland

Personalised recommendations