An Overview on the Application of Ligninolytic Microorganisms and Enzymes for Pretreatment of Lignocellulosic Biomass

  • Hossain Zabed
  • Shakila Sultana
  • Jaya Narayan SahuEmail author
  • Xianghui Qi


Generation of biofuels from lignocellulosic biomass has received much interest in recent times to achieve an alternative energy source over conventional fossil fuels. Pretreatment is a vital step in the bioconversion of lignocellulosic biomass into biofuels, which is required to break down the lignocellulosic network of biomass. It is necessarily applied prior to the production of bioalcohols (bioethanol and biobutanol), biohydrogen, and biogas through fermentation. Delignification is the main objective of pretreatment that releases polysaccharides from the lignocellulosic matrix and increases enzymatic digestibility of cellulose. Although pretreatment can be done by using different physical, chemical, physicochemical, and biological methods, the latter is considered more promising as it is less expensive and eco-friendly, generates low or no inhibitors, and consumes relatively lower energy (steam and electricity). Many naturally occurring ligninolytic microorganisms and enzymes are used for delignification of biomass biologically. The aim of this chapter is to present an overview of different ligninolytic microorganisms (fungi and bacteria) and their enzymes for biological pretreatment of lignocellulosic biomass.


Biofuels Biological pretreatment Lignocellulosic biomass Delignification Ligninolytic enzymes White rot fungi Bacterial pretreatment Laccase Fungal pretreatment 



This work was supported by the China Postdoctoral Science Foundation (Grant No.: 2017M621657), NSFC (Grant No.: 31571806), and Six Talent Peaks in Jiangsu Province (SWYY-018).


  1. Abdel-Hamid AM, Solbiati JO, Cann I (2013) Insights into lignin degradation and its potential industrial applications. Adv Appl Microbiol 82:1–28CrossRefGoogle Scholar
  2. Achinas S, Euverink GJW (2016) Consolidated briefing of biochemical ethanol production from lignocellulosic biomass. Electron J Biotechnol 23:44–53CrossRefGoogle Scholar
  3. Ambye-Jensen M, Johansen KS, Didion T, Kádár Z, Schmidt JE, Meyer AS (2013) Ensiling as biological pretreatment of grass (Festulolium hykor): the effect of composition, dry matter, and inocula on cellulose convertibility. Biomass Bioenergy 58:303–312CrossRefGoogle Scholar
  4. Amirta R, Tanabe T, Watanabe T, Honda Y, Kuwahara M, Watanabe T (2006) Methane fermentation of Japanese cedar wood pretreated with a white rot fungus, Ceriporiopsis subvermispora. J Biotechnol 123:71–77CrossRefGoogle Scholar
  5. Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19:771–783CrossRefGoogle Scholar
  6. Bell PJ, Attfield PV (2009) Breakthrough in yeast for making bio-ethanol from lignocellulosics. Microbiogen Pty Ltd, Macquarie University Campus, Sydney Google Scholar
  7. Binod P, Janu K, Sindhu R, Pandey A (2011) Hydrolysis of lignocellulosic biomass for bioethanol production. In: Biofuels: alternative feedstocks and conversion processes, pp. 229–250CrossRefGoogle Scholar
  8. van Bloois E, Pazmiño DET, Winter RT, Fraaije MW (2010) A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl Microbiol Biotechnol 86:1419–1430CrossRefGoogle Scholar
  9. Brown ME, Chang MC (2014) Exploring bacterial lignin degradation. Curr Opin Chem Biol 19:1–7CrossRefGoogle Scholar
  10. Chandra R, Chowdhary P (2015) Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci Process Impacts 17:326–342CrossRefGoogle Scholar
  11. Chen C-Y, Zhao X-Q, Yen H-W, Ho S-H, Cheng C-L, Lee D-J, Bai F-W, Chang J-S (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10CrossRefGoogle Scholar
  12. Claassen P, Van Lier J, Contreras AL, Van Niel E, Sijtsma L, Stams A, De Vries S, Weusthuis R (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755CrossRefGoogle Scholar
  13. Crawford DL, Crawford RL (1980) Microbial degradation of lignin. Enzym Microb Technol 2:11–22CrossRefGoogle Scholar
  14. Cullen D (1997) Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol 53:273–289CrossRefGoogle Scholar
  15. Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50PubMedPubMedCentralGoogle Scholar
  16. Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017) Enzymatic degradation of lignin in soil: a review. Sustainability 9:1163CrossRefGoogle Scholar
  17. Dewar W, McDonald P, Whittenbury R (1963) The hydrolysis of grass hemicelluloses during ensilage. J Sci Food Agric 14:411–417CrossRefGoogle Scholar
  18. Gervais P, Molin P (2003) The role of water in solid-state fermentation. Biochem Eng J 13:85–101CrossRefGoogle Scholar
  19. Gianfreda L, Xu F, Bollag J-M (1999) Laccases: a useful group of oxidoreductive enzymes. Biorem J 3:1–26CrossRefGoogle Scholar
  20. Gírio F, Fonseca C, Carvalheiro F, Duarte L, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800CrossRefGoogle Scholar
  21. de Gonzalo G, Colpa DI, Habib MH, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119CrossRefGoogle Scholar
  22. Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sust Energ Rev 41:550–567CrossRefGoogle Scholar
  23. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund M-F, Lidén G, Zacchi G (2006) Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556CrossRefGoogle Scholar
  24. Kalyani D, Lee K-M, Kim T-S, Li J, Dhiman SS, Kang YC, Lee J-K (2013) Microbial consortia for saccharification of woody biomass and ethanol fermentation. Fuel 107:815–822CrossRefGoogle Scholar
  25. Keller FA, Hamilton JE, Nguyen QA (2003) Microbial pretreatment of biomass. Appl Biochem Biotechnol 105:27–41CrossRefGoogle Scholar
  26. Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Appl Environ Microbiol 65:1029–1035PubMedPubMedCentralGoogle Scholar
  27. Liers C, Arnstadt T, Ullrich R, Hofrichter M (2010) Patterns of lignin degradation and oxidative enzyme secretion by different wood-and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. FEMS Microbiol Ecol 78:91–102CrossRefGoogle Scholar
  28. Lu Y, Cheng Y-F, He X-P, Guo X-N, Zhang B-R (2012) Improvement of robustness and ethanol production of ethanologenic Saccharomyces cerevisiae under co-stress of heat and inhibitors. J Ind Microbiol Biotechnol 39:73–80CrossRefGoogle Scholar
  29. Machczynski MC, Vijgenboom E, Samyn B, Canters GW (2004) Characterization of SLAC: a small laccase from Streptomyces coelicolor with unprecedented activity. Protein Sci 13:2388–2397CrossRefGoogle Scholar
  30. Mackuľak T, Prousek J, Švorc Ľ, Drtil M (2012) Increase of biogas production from pretreated hay and leaves using wood-rotting fungi. Chem Pap 66:649–653Google Scholar
  31. Mai C, Kües U, Militz H (2004) Biotechnology in the wood industry. Appl Microbiol Biotechnol 63:477–494CrossRefGoogle Scholar
  32. Majumdar S, Lukk T, Solbiati JO, Bauer S, Nair SK, Cronan JE, Gerlt JA (2014) Roles of small laccases from Streptomyces in lignin degradation. Biochemistry 53:4047–4058CrossRefGoogle Scholar
  33. Martín-Sampedro R, Fillat Ú, Ibarra D, Eugenio ME (2015) Use of new endophytic fungi as pretreatment to enhance enzymatic saccharification of Eucalyptus globulus. Bioresour Technol 196:383–390CrossRefGoogle Scholar
  34. Millati R, Syamsiah S, Niklasson C, Cahyanto MN, Ludquist K, Taherzadeh MJ (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. Bioresources 6:5224–5259Google Scholar
  35. Mustafa AM, Poulsen TG, Sheng K (2016) Fungal pretreatment of rice straw with Pleurotus ostreatus and Trichoderma reesei to enhance methane production under solid-state anaerobic digestion. Appl Energy 180:661–671CrossRefGoogle Scholar
  36. Nanda S, Mohammad J, Reddy SN, Kozinski JA, Dalai AK (2014) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conv Bioref 4:157–191CrossRefGoogle Scholar
  37. Pérez J, Munoz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63CrossRefGoogle Scholar
  38. Plácido J, Capareda S (2015) Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresour Bioprocess 2:23CrossRefGoogle Scholar
  39. Poszytek K, Ciezkowska M, Sklodowska A, Drewniak L (2016) Microbial consortium with high cellulolytic activity (MCHCA) for enhanced biogas production. Front Microbiol 7:324CrossRefGoogle Scholar
  40. Ray MJ, Leak DJ, Spanu PD, Murphy RJ (2010) Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production. Biomass Bioenergy 34:1257–1262CrossRefGoogle Scholar
  41. Reid ID (1985) Biological delignification of aspen wood by solid-state fermentation with the white-rot fungus Merulius tremellosus. Appl Environ Microbiol 50:133–139PubMedPubMedCentralGoogle Scholar
  42. Rodriguez C, Alaswad A, Benyounis K, Olabi A (2017) Pretreatment techniques used in biogas production from grass. Renew Sust Energ Rev 68:1193–1204CrossRefGoogle Scholar
  43. Rouches E, Herpoël-Gimbert I, Steyer J, Carrere H (2016) Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review. Renew Sust Energ Rev 59:179–198CrossRefGoogle Scholar
  44. Saxena R, Adhikari D, Goyal H (2009) Biomass-based energy fuel through biochemical routes: a review. Renew Sust Energ Rev 13:167–178CrossRefGoogle Scholar
  45. Shi J, Sharma-Shivappa RR, Chinn M, Howell N (2009) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy 33:88–96CrossRefGoogle Scholar
  46. Shi Y, Yan X, Li Q, Wang X, Xie S, Chai L, Yuan J (2017) Directed bioconversion of Kraft lignin to polyhydroxyalkanoate by Cupriavidus basilensis B-8 without any pretreatment. Process Biochem 52:238–242CrossRefGoogle Scholar
  47. da Silva Machado A, Ferraz A (2017) Biological pretreatment of sugarcane bagasse with basidiomycetes producing varied patterns of biodegradation. Bioresour Technol 225:17–22CrossRefGoogle Scholar
  48. Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass–an overview. Bioresour Technol 199:76–82CrossRefGoogle Scholar
  49. Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44(1):13–18CrossRefGoogle Scholar
  50. Song L, Yu H, Ma F, Zhang X (2013) Biological pretreatment under non-sterile conditions for enzymatic hydrolysis of corn stover. Bioresources 8:3802–3816CrossRefGoogle Scholar
  51. Srebotnik E, Jensen K, Kawai S, Hammel KE (1997) Evidence that Ceriporiopsis subvermispora degrades nonphenolic lignin structures by a one-electron-oxidation mechanism. Appl Environ Microbiol 63:4435–4440PubMedPubMedCentralGoogle Scholar
  52. Suhara H, Kodama S, Kamei I, Maekawa N, Meguro S (2012) Screening of selective lignin-degrading basidiomycetes and biological pretreatment for enzymatic hydrolysis of bamboo culms. Int Biodeterior Biodegrad 75:176–180CrossRefGoogle Scholar
  53. Vasco-Correa J, Ge X, Li Y (2016) Fungal pretreatment of non-sterile miscanthus for enhanced enzymatic hydrolysis. Bioresour Technol 203:118–123CrossRefGoogle Scholar
  54. Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30:1447–1457CrossRefGoogle Scholar
  55. Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187CrossRefGoogle Scholar
  56. Winquist E, Moilanen U, Mettälä A, Leisola M, Hatakka A (2008) Production of lignin modifying enzymes on industrial waste material by solid-state cultivation of fungi. Biochem Eng J 42:128–132CrossRefGoogle Scholar
  57. Wongwilaiwalin S, Rattanachomsri U, Laothanachareon T, Eurwilaichitr L, Igarashi Y, Champreda V (2010) Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzym Microb Technol 47:283–290CrossRefGoogle Scholar
  58. Woolridge EM (2014) Mixed enzyme systems for delignification of lignocellulosic biomass. Catalysts 4:1–35CrossRefGoogle Scholar
  59. Yan X, Wang Z, Zhang K, Si M, Liu M, Chai L, Liu X, Shi Y (2017) Bacteria-enhanced dilute acid pretreatment of lignocellulosic biomass. Bioresour Technol 245:419–425CrossRefGoogle Scholar
  60. Zabed H, Faruq G, Sahu JN, Azirun MS, Hashim R, Nasrulhaq Boyce A (2014) Bioethanol production from fermentable sugar juice. Sci World J, Article ID 957102Google Scholar
  61. Zabed H, Boyce A, Faruq G, Sahu J (2016a) A comparative evaluation of agronomic performance and kernel composition of normal and high sugary corn genotypes (Zea mays L.) grown for dry-grind ethanol production. Ind Crop Prod 94:9–19CrossRefGoogle Scholar
  62. Zabed H, Faruq G, Boyce AN, Sahu JN, Ganesan P (2016b) Evaluation of high sugar containing corn genotypes as viable feedstocks for decreasing enzyme consumption during dry-grind ethanol production. J Taiwan Inst Chem Eng 58:467–475CrossRefGoogle Scholar
  63. Zabed H, Faruq G, Sahu J, Boyce A, Ganesan P (2016c) A comparative study on normal and high sugary corn genotypes for evaluating enzyme consumption during dry-grind ethanol production. Chem Eng J 287:691–703CrossRefGoogle Scholar
  64. Zabed H, Sahu J, Boyce A, Faruq G (2016d) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sust Energ Rev 66:751–774CrossRefGoogle Scholar
  65. Zabed H, Boyce AN, Sahu J, Faruq G (2017a) Evaluation of the quality of dried distiller’s grains with solubles for normal and high sugary corn genotypes during dry-grind ethanol production. J Clean Prod 142:4282–4293CrossRefGoogle Scholar
  66. Zabed H, Sahu J, Suely A (2017b) Bioethanol production from lignocellulosic biomass: an overview of pretreatment, hydrolysis, and fermentation. In: Mondal P, Dalai AK (eds) Sustainable utilization of natural resources. Taylor & Francis, Boca Raton, p 145CrossRefGoogle Scholar
  67. Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G (2017c) Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sust Energ Rev 71:475–501CrossRefGoogle Scholar
  68. Zhang Q, He J, Tian M, Mao Z, Tang L, Zhang J, Zhang H (2011) Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresour Technol 102:8899–8906CrossRefGoogle Scholar
  69. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Hossain Zabed
    • 1
  • Shakila Sultana
    • 2
  • Jaya Narayan Sahu
    • 3
    Email author
  • Xianghui Qi
    • 1
  1. 1.School of Food & Biological EngineeringJiangsu UniversityZhenjiangChina
  2. 2.Department of MicrobiologyPrimeasia UniversityBanani, DhakaBangladesh
  3. 3.Institute of Chemical Technology, Faculty of ChemistryUniversity of StuttgartStuttgartGermany

Personalised recommendations