Carbon Dynamics in Coral Reefs

  • Atsushi Watanabe
  • Takashi Nakamura


Coral reefs show high organic and inorganic carbon production and create unique landforms on tropical coastlines. The balance between organic and inorganic carbon production is determined by benthic organisms such as corals, macroalgae, and seagrasses, and also by reef hydrodynamics, which in turn determine CO2 sinks and sources within the ecosystem. Many studies have shown that net organic carbon production in coral reef ecosystems is almost zero (balanced), with net positive calcification resulting in reefs acting as CO2 sources. However, the relationships among productivity, benthic organisms, and hydrodynamics have not been well documented; more detailed information is required from both field observations and coupled physical–biological models. Reef sediments have low organic carbon content (median, 0.35% dry weight), approximately 50% those of tropical and subtropical seagrass beds (median, 0.67%) and 5% those of mangrove forests (median, 6.3%). Sedimentation rates do not vary significantly between these three ecosystems, so organic carbon input and decomposition in the surface sediments are key factors controlling organic carbon burial rates. Coral reefs provide calm conditions that enhance sedimentation of fine sediments, which facilitates the development of seagrass beds and mangrove forests. Seagrass meadows and mangrove forests in turn trap fine sediments from terrestrial sources and prevent high-turbidity water from reaching coral reefs. Coral reefs, seagrass meadows, and mangrove forests are thus interdependent ecosystems; to effectively store and export blue carbon in tropical coastal areas, it is necessary to maintain the health of these ecosystems.


  1. Abo K, Sugimatsu K, Hori M, Yoshida G, Shimabukuro H, Yagi H, Nakayama A, Tarutani K (2018) Quantifying the fate of captured carbon: from seagrass meadow to deep sea. In: Kuwae T, Hori M (eds) Blue carbon in shallow coastal ecosystems: carbon dynamics, policy, and implementation. Springer, Singapore, pp 251–271Google Scholar
  2. Bates NR (2002) Seasonal variability of the effect of coral reefs on seawater CO2 and air–sea CO2 exchange. Limnol Oceanogr 47:43–52CrossRefGoogle Scholar
  3. Bates NR, Samuels L, Merlivat L (2001) Biogeochemical and physical factors influencing seawater fCO2 and air–sea CO2 exchange on the Bermuda coral reef. Limnol Oceanogr 46:833–846CrossRefGoogle Scholar
  4. Birkeland C (1985) Ecological interactions between tropical coastal ecosystems. UNEP Reg Seas Rep Stud 73:1–26Google Scholar
  5. Bouillon S, Dahdouh-Guebas F, Rao AVVS, Koedam N, Dehairs F (2003) Sources of organic carbon in mangrove sediments: variability and possible ecological implications. Hydrobiologia 495:33–39CrossRefGoogle Scholar
  6. Breithaupt JL, Smoak JM, Smith TJ III, Sanders CJ, Hoare A (2012) Organic carbon burial rates in mangrove sediments: strengthening the global budget. Glob Biogeochem Cycles 26:GB3011. CrossRefGoogle Scholar
  7. Buddemeier RW (1996) Coral reefs and carbon dioxide. Science 271:1298–1299CrossRefGoogle Scholar
  8. Cyronak T, Santos IR, Erler DV, Maher DT, Eyre BD (2014) Drivers of pCO2 variability in two contrasting coral reef lagoons: the influence of submarine groundwater discharge. Glob Biogeochem Cycles 28:398–414CrossRefGoogle Scholar
  9. Dai M, Lu Z, Zhai W, Baoshan C, Zhimian C, Kuanbo Z, Wei-Jun C, Chen-Tung AC (2009) Diurnal variations of surface seawater pCO2 in contrasting coastal environments. Limnol Oceanogr 54:735–745CrossRefGoogle Scholar
  10. Delesalle B, Buscail R, Carbonne J, Courp T, Dufour V, Heussner S, Monaco A, Schrimm M (1998) Direct measurements of carbon and carbonate export from a coral reef ecosystem (Moorea Island, French Polynesia). Coral Reefs 17:121–132CrossRefGoogle Scholar
  11. Drupp PS, De Carlo EH, Mackenzie FT, Sabine CL, Feely RA, Shamberger KE (2013) Comparison of CO2 dynamics and air-sea gas exchange in differing tropical reef environments. Aquat Geochem 19:371–397CrossRefGoogle Scholar
  12. Duke NC, Wolanski E (2001) Muddy coastal waters and depleted mangrove coastlines – depleted seagrass and coral reefs. In: Wolanski E (ed) Oceanographic processes of coral reefs. Physical and biology links in the Great Barrier Reef. CRC Press, Washington, DC, pp 77–91Google Scholar
  13. Endo T, Otani S (2018) Chapter 8. Carbon storage in tidal flats. In: Kuwae T, Hori M (eds) Blue carbon in shallow coastal ecosystems: carbon dynamics, policy, and implementation. Springer, Singapore, pp 129–151Google Scholar
  14. Fagan KE, Mackenzie FT (2007) Air-sea CO2 exchange in a subtropical estuarine-coral reef system, Kaneohe Bay, Oahu, Hawaii. Mar Chem 106:174–191CrossRefGoogle Scholar
  15. Falter JL, Lowe RJ, Zhang Z, McCulloch M (2013) Physical and biological controls on the carbonate chemistry of coral reef waters: effects of metabolism, wave forcing, sea level, and geomorphology. PLoS One 8:e53303CrossRefGoogle Scholar
  16. Frankignoulle M, Canon C, Gattuso J-P (1994) Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO2. Limnol Oceanogr 39(2):458–462CrossRefGoogle Scholar
  17. Frankignoulle M, Gattuso J-P, Biondo R, Bourge I, Copin-Montégut G, Pichon M (1996) Carbon fluxes in coral reefs. II. Eulerian study of inorganic carbon dynamics and measurement of air–sea CO2 exchanges. Mar Ecol Prog Ser 145:123–132CrossRefGoogle Scholar
  18. Gattuso J-P, Pichon M, Delesalle B, Frankignoulle M (1993) Community metabolism and air–sea CO2 fluxes in a coral reef ecosystem (Moorea, French Polynesia). Mar Ecol Prog Ser 96:259–267CrossRefGoogle Scholar
  19. Gattuso J-P, Frankignoulle M, Smith SV, Ware JR, Wollast R (1996a) Coral reefs and carbon dioxide. Science 271:1298CrossRefGoogle Scholar
  20. Gattuso J-P, Pichon M, Delesalle B, Canon C, Frankignoulle M (1996b) Carbon fluxes in coral reefs. I. Lagrangian measurement of community metabolism and resulting air–sea CO2 disequilibrium. Mar Ecol Prog Ser 145:109–121CrossRefGoogle Scholar
  21. Gattuso J-P, Payri CE, Pichon M, Delesalle B, Frankignoulle M (1997) Primary production, calcification, and air–sea CO2 fluxes of a macroalgal-dominated coral reef community (Moorea, French Polynesia). J Phycol 33:729–738CrossRefGoogle Scholar
  22. Gattuso J-P, Frankignoulle M, Wollast R (1998) Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst 29:405–434CrossRefGoogle Scholar
  23. Gattuso J-P, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183CrossRefGoogle Scholar
  24. Guannel G, Arkema K, Ruggiero P et al (2016) The power of three: coral reefs, seagrasses and mangroves protect coastal regions and increase their resilience. PLoS One 11(7):e0158094. CrossRefGoogle Scholar
  25. Haas AF, Nelson CE, Rohwer F, Wegley-Kelly L, Quistad SD, Carlson CA, Leichter JJ, Hatay M, Smith JE (2013) Influence of coral and algal exudates on microbially mediated reef metabolism. PeerJ 1:e108. CrossRefGoogle Scholar
  26. Hata H, Suzuki A, Maruyama T, Kurano N, Miyachi S, Ikeda Y, Kayanne H (1998) Carbon flux by suspended and sinking particles around the barrier reef of Palau, western Pacific. Limnol Oceanogr 43(8):1883–1893CrossRefGoogle Scholar
  27. Hata H, Kudo S, Yamano H, Kurano N, Kayanne H (2002) Organic carbon flux in Shiraho coral reef (Ishigaki Island, Japan). Mar Ecol Prog Ser 232:129–140CrossRefGoogle Scholar
  28. Hemminga MA, Duarte CM (2000) Seagrass ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  29. Inoue T (2018) Carbon sequestration in mangroves. In: Kuwae T, Hori M (eds) Blue carbon in shallow coastal ecosystems: carbon dynamics, policy, and implementation. Springer, Singapore, pp 73–99Google Scholar
  30. Jiang ZP, Huang JC, Dai M, Kao SJ, Hydes DJ, Chou WC, Jan S (2011) Short-term dynamics of oxygen and carbon in productive nearshore shallow seawater systems off Taiwan: observations and modeling. Limnol Oceanogr 56:1832–1849CrossRefGoogle Scholar
  31. Kayanne H (1996) Coral reefs and carbon dioxide- reply. Science 271:1299–1300CrossRefGoogle Scholar
  32. Kayanne H, Suzuki A, Saito H (1995) Diurnal changes in the partial pressure of carbon dioxide in coral reef water. Science 269:214–216CrossRefGoogle Scholar
  33. Kayanne H, Harii S, Ide Y, Akimoto F (2002) Recovery of coral populations after the 1998 bleaching on Shiraho Reef, in the southern Ryukyus, NW pacific. Mar Ecol Prog Ser 239:93–103CrossRefGoogle Scholar
  34. Kayanne H, Hata H, Kudo S, Yamano H, Watanabe A, Ikeda Y, Nozaki K, Kato K, Negishi A, Saito H (2005) Seasonal and bleaching-induced changes in coral reef metabolism and CO2 flux. Glob Biogeochem Cycles 19:GB3015. CrossRefGoogle Scholar
  35. Kennedy H, Beggins J, Duarte CM, Fourqurean JW, Holmer M, Marbà N, Middelburg JJ (2010) Seagrass sediments as a global carbon sink: isotopic constraints. Global Biogeochem Cycles 24:GB4026. CrossRefGoogle Scholar
  36. Kraines S, Suzuki Y, Omori T, Shitashima K, Kanahara S, Komiyama H (1997) Carbonate dynamics of the coral reef systems at Bora Bay, Miyako Island. Mar Ecol Prog Ser 156:1–16CrossRefGoogle Scholar
  37. Kuwae T, Kanda J, Kubo A, Nakajima F, Ogawa H, Sohma A, Suzumura M (2018) CO2 uptake in the shallow coastal ecosystems affected by anthropogenic impacts. In: Kuwae T, Hori M (eds) Blue carbon in shallow coastal ecosystems: carbon dynamics, policy, and implementation. Springer, Singapore, pp 295–319Google Scholar
  38. Lamb JB, van de Water JAJM, Bourne DG, Altier C, Hein MY, Fiorenza EA, Abu N, Jompa J, Harvell CD (2017) Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355:731–733CrossRefGoogle Scholar
  39. Longhini CM, Souza MFL, Silva AM (2015) Net ecosystem production, calcification and CO2 fluxes on a reef flat in Northeastern Brazil. Estuar Coast Shelf Sci 166:13–23CrossRefGoogle Scholar
  40. Massaro RFS, De Carlo EH, Drupp PS, Mackenzie FT, Jones SM, Shamberger KE, Sabine CL, Feely RA (2012) Multiple factors driving variability of CO2 exchange between the ocean and atmosphere in a tropical coral reef environment. Aquat Geochem 18:357–386CrossRefGoogle Scholar
  41. McGowan HA, MacKellar MC, Gray MA (2016) Direct measurements of air-sea CO2 exchange over a coral reef. Geophys Res Lett 43:4602–4608CrossRefGoogle Scholar
  42. Miyajima T, Hamaguchi M (2018) Carbon sequestration in sediment as an ecosystem function of seagrass meadows. In: Kuwae T, Hori M (eds) Blue carbon in shallow coastal ecosystems: carbon dynamics, policy, and implementation. Springer, Singapore, pp 33–71Google Scholar
  43. Miyajima T, Koike I, Yamano H, Iizumi H (1998) Accumulation and transport of seagrass-derived organic matter in reef flat sediment of Green Island, Great Barrier Reef. Mar Ecol Prog Ser 175:251–259CrossRefGoogle Scholar
  44. Miyajima T, Hori M, Hamaguchi M, Shimabukuro H, Adachi H, Yamano H, Nakaoka M (2015) Geographic variability in organic carbon stock and accumulation rate in sediments of East and Southeast Asian seagrass meadows. Global Biogeochem Cycles 29:397–415. CrossRefGoogle Scholar
  45. Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29:215–233CrossRefGoogle Scholar
  46. Mumby PJ, Edwards AJ, Ernesto Arias-González JE, Lindeman KC, Blackwell PG, Gall A, Gorczynska MI, Harborne AR, Pescod CL, Renken H, Wabnitz CCC, Llewellyn G (2004) Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533–536CrossRefGoogle Scholar
  47. Nakamura T, Nadaoka K, Watanabe A, Yamamoto T, Miyajima T, Blanco AC (2017) Reef-scale modeling of coral calcification responses to ocean acidification and sea-level rise. Coral Reefs. CrossRefGoogle Scholar
  48. Ogden JC (1988) The influence of adjacent systems on the structure and function of coral reefs. Proceedings of the sixth international coral reef symposium. 1Google Scholar
  49. Ohde S, van Woesik R (1999) Carbon dioxide flux and metabolic processes of a coral reef. Okinawa Bull Mar Sci 65:559–576Google Scholar
  50. Saunders MI, Leon JX, Callaghan DP, Roelfsema CM, Hamylton S, Brown CJ, Baldock T, Golshani A, Phinn SR, Lovelock CE, Hoegh-Guldberg O, Woodroffe CD, Mumby PJ (2014) Interdependency of tropical marine ecosystems in response to climate change. Nat Clim Chang 4(8):724–729CrossRefGoogle Scholar
  51. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596CrossRefGoogle Scholar
  52. Serafy JE, Shideler GS, Araújo RJ, Nagelkerken I (2015) Mangroves enhance reef fish abundance at the Caribbean regional scale. PLoS One 10(11):e0142022. CrossRefGoogle Scholar
  53. Shaw EC, McNeil BI (2014) Seasonal variability in carbonate chemistry and air-sea CO2 fluxes in the southern Great Barrier Reef. Mar Chem 158:49–58CrossRefGoogle Scholar
  54. Smith SV, Pesret F (1974) Processes of carbon dioxide flux in the Fanning Island lagoon. Pac Sci 28:225–245Google Scholar
  55. Smith SV, Chandra S, Kwitko L, Schneider RC, Schoonmaker J, Seeto J, Tebano T, Tribble GW (1984) Chemical stoichiometry of lagoon metabolism: preliminary report on an environmental chemistry survey of Christmas Island, Kiribati. University of Hawaii/University of South Pacific International Sea Grant Programme Cooperative Report. UNIHISEAGRANT-CR-84-02Google Scholar
  56. Sorokin YI (1993) Coral reef ecology. Springer-Verlag (Ecological studies 102)Google Scholar
  57. Suzuki A, Kawahata H (2004) Reef water CO2 system and carbon production of coral reefs: topographic control of system-level performance. In: Global environmental change in the ocean and on land. pp 229–248Google Scholar
  58. Takahashi T, Sutherland SC, Wanninkhof R, others (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Res II 56:554–577CrossRefGoogle Scholar
  59. Tanaka Y, Miyajima T, Koike I, Hayashibara T, Ogawa H (2008) Production of dissolved and particulate organic matter by the reef-building corals Porites cylindrica and Acropora pulchra. Bull Mar Sci 82:237–245Google Scholar
  60. Unsworth RKF, Cullen LC (2010) Recognising the necessity for Indo-Pacific seagrass conservation. Conserv Lett 3:63–73CrossRefGoogle Scholar
  61. Unsworth RKF, Collier CJ, Henderson GM, McKenzie LJ (2012) Tropical seagrass meadows modify seawater carbon chemistry: implications for coral reefs impacted by ocean acidification. Environ Res Lett 7:024026CrossRefGoogle Scholar
  62. Ware JR, Smith SV, Reaka-Kudla ML (1991) Coral reefs: sources or sinks of atmospheric CO2? Coral Reefs 11:127–130CrossRefGoogle Scholar
  63. Watanabe A, Yamamoto T, Nadaoka K, Maeda Y, Miyajima T, Tanaka Y, Blanco AC (2013) Spatiotemporal variations in CO2 flux in a fringing reef simulated using a novel carbonate system dynamics model. Coral Reefs 32:239–254CrossRefGoogle Scholar
  64. Werner U, Bird P, Wild C, Ferdelman T, Polerecky L, Eickert G, Jonstone R, Hoegh-Guldberg O, de Beer D (2006) Spatial patterns of aerobic and anaerobic mineralization rates and oxygen penetration dynamics in coral reef sediments. Mar Ecol Prog Ser 309:93–105CrossRefGoogle Scholar
  65. Wild C, Huettel M, Klueter A, Kremb SG, Rasheed MYM, Jorgensen BB (2004) Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66–70CrossRefGoogle Scholar
  66. Yamamoto S, Kayanne H, Tokoro T, Kuwae T, Watanabe A (2015) Total alkalinity flux in coral reefs estimated from eddy covariance and sediment pore-water profiles. Limnol Oceanogr 60:229–241CrossRefGoogle Scholar
  67. Yan H, Yu K, Shi Q, Tan YH, Zhang HL, Zhao MX, Li S, Chen TR, Huang LY, Wang PX (2011) Coral reef ecosystems in the South China Sea as a source of atmospheric CO2 in summer. Chin Sci Bull 56:676–684CrossRefGoogle Scholar
  68. Yan H, Yu K, Shi Q, Tan Y, Liu G, Zhao M, Li S, Chen T, Wang Y (2016) Seasonal variations of seawater pCO2 and sea-air CO2 fluxes in a fringing coral reef, northern South China Sea. J Geophys Res Oceans 121:998–1008CrossRefGoogle Scholar
  69. Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, Paperback ISBN: 9780444509468Google Scholar
  70. Zhang Z, Lowe R, Falter J, Ivey G (2011) A numerical model of wave- and current-driven nutrient uptake by coral reef communities. Ecol Model 222:1456–1470CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Atsushi Watanabe
    • 1
    • 2
  • Takashi Nakamura
    • 1
  1. 1.Department of Transdisciplinary Science and Engineering, School of Environment and SocietyTokyo Institute of TechnologyMeguro-kuJapan
  2. 2.Policy Ocean Policy Research Institute, The Sasakawa Peace FoundationMinato-kuJapan

Personalised recommendations