Advertisement

Mitigating Arsenic Toxicity in Plants: Role of Microbiota

  • Neha Pandey
  • Vibhuti Chandrakar
  • Sahu Keshavkant
Chapter

Abstract

Arsenic (As) pollution, particularly in soil and water, is a very prominent environmental issue which seriously threatens plant growth, development, and productivity. Since As is ubiquitous in the natural environment, microorganisms have developed mechanisms to resist the toxic effects of this metalloid. A large number of microorganisms, viz. Acinetobacter, Aeromonas, Bacillus, Exiguobacterium, and Pseudomonas, are capable of growing in the presence of high concentrations of As. But relatively less information is available on accumulation, mobilization, distribution, and speciation of As by rhizospheric microbiota and their impact on plant growth and development. The use of As-resistant and plant growth promoting microorganisms (PGPMs) for the restoration of plants growing on contaminated soils is the need of the time. The use of PGPM occupies a small but growing niche in the development of organic agriculture and has attracted attention during the last decade only. There are several reports revealing the multifarious role of soil microbiota in amelioration of As toxicity and improving metal tolerance in plants. Colonization of PGPMs helps the host plant to overcome As-induced phosphate (P) deficiency and consequently maintain favorable P:As ratio. Further, they also improve nutritional status and reduce As uptake and translocation in plants. Inoculation of bacteria/fungi can exert protective effects on vascular plants under As contamination by transforming more toxic inorganic forms into less toxic organic forms or via reducing the concentration of As by enhancing plant biomass. The PGPMs also result in higher activities of the antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase) and accumulation of nonenzymatic antioxidants (carotenoids, ascorbic acid, proline, and α-tocopherol). Increased concentrations of cysteine, glutathione, and non-protein thiols, and activity of glutathione S-transferase have also been reported that facilitate sequestration of As into nontoxic complexes. Thus, application of As-resistant PGPMs could provide a low cost and eco-friendly mitigation approach to diminish As accumulation in plants, thereby promoting higher growth, development, and yield responses. There is also a need to improve our understanding of the mechanisms involved in extenuating toxic effects of As by rhizospheric microbiota and to improve the stabilization of plants in contaminated sites.

Keywords

Phytoremediation Plant-microbe interactions Plant growth Rhizosphere Toxic metalloids 

Notes

Acknowledgments

Authors are grateful to Science and Engineering Research Board, New Delhi; Department of Science and Technology, New Delhi; and Chhattisgarh Council of Science and Technology, Raipur, for providing financial assistance/research project to Neha Pandey, Vibhuti Chandrakar, and S. Keshavkant, respectively.

References

  1. Aksakal O, Esim N (2015) Evaluation of arsenic trioxide genotoxicity in wheat seedlings using oxidative system and RAPD assays. Environ. Sci Pollut Res 22:7120–7128CrossRefGoogle Scholar
  2. Álvarez-Ayuso E, Abad-Valle P, Murciego A, Villar-Alonso P (2015) Arsenic distribution in soils and rye plants of a cropland located in an abandoned mining area. Sci Total Environ 542:238–246PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30:512–523PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ao L, Zeng XC, Nie Y, Mu Y, Zhou L, Luo X (2014) Flavobacterium arsenatis sp. nov., a novel arsenic-resistant bacterium from high-arsenic sediment. Int J Syst Evol Microbiol 64:3369–3374PubMedCrossRefPubMedCentralGoogle Scholar
  5. Arora NK, Tewari S, Singh R (2013) Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In: Arora NK (ed) Plant microbe Symbiosis: fundamentals and advances. Springer, New Delhi, pp 411–449CrossRefGoogle Scholar
  6. Bahar MM, Megharaj M, Naidu R (2012) Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil. Biodegradation 23:803–812PubMedCrossRefPubMedCentralGoogle Scholar
  7. Banerjee S, Datta S, Chattyopadhyay D, Sarkar P (2011) Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. J Environ Sci Health A Tox Hazard Subst Environ Eng 46:1736–1747PubMedCrossRefPubMedCentralGoogle Scholar
  8. Banerjee S, Majumdar J, Samal AC, Bhattachariya P, Santra SC (2013) Biotransformation and bioaccumulation of arsenic by Brevibacillus brevis isolated from arsenic contaminated region of West Bengal. J Environ Sci Toxicol Food Technol 3:1–10Google Scholar
  9. Batool K, Tuz Zahra F, Rehman Y (2017) Arsenic-redox transformation and plant growth promotion by purple nonsulfur bacteria Rhodopseudomonas palustris CS2 and Rhodopseudomonas faecalis SS5. Biomed Res Int 2017:6250327.  https://doi.org/10.1155/2017/6250327 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bayramoglu G, Altintas B, Arica MY (2013) Immobilization of glucoamylase onto polyaniline-grafted magnetic hydrogel via adsorption and adsorption/cross-linking. Appl Microbiol Biotechnol 97:1149–1159PubMedCrossRefPubMedCentralGoogle Scholar
  11. Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bhargavi SD, Savitha J (2014) Arsenate resistant Penicillium coffeae: a potential fungus for soil bioremediation. Bull Environ Contam Toxicol 92:369–373PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bhat S, Luo X, Xu Z, Liu L, Zhang R (2011) Bacillus sp. CDB3 isolated from cattle dip sites possesses two ars gene clusters. J Environ Sci 23:95–101CrossRefGoogle Scholar
  15. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350PubMedCrossRefPubMedCentralGoogle Scholar
  16. Ca’novas D, Vooijs R, Schat H, de Lorenzo V (2004) The role of thiol species in the Hypertolerance of Aspergillus sp. P37 to Arsenic. J Biol Chem 279:51234–51240CrossRefGoogle Scholar
  17. Cai L, Rensing C, Li X, Wang G (2009) Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp. SY8 and Pseudomonas sp. TS44. Appl Microbiol Biotechnol 83:715–725PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cavalca L, Zanchi R, Corsini A, Colombo M, Romagnoli C, Canzi E, Andreoni V (2010) Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Syst Appl Microbiol 33:154–164PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cavalca L, Corsini A, Bachate SP, Andreoni V (2013) Rhizosphere colonization and arsenic translocation in sunflower (Helianthus annuus L.) by arsenate reducing Alcaligenes sp. strain Dhal-L. World J Microbiol Biotechnol 29:1931–1940PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cernanský S, Kolencík M, Sevc J, Urík M, Hiller E (2009) Fungal volatilization of trivalent and pentavalent arsenic under laboratory conditions. Bioresour Technol 100:1037–1040PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chandrakar V, Naithani SC, Keshavkant S (2016) Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: a review. Biologia 71:367–377CrossRefGoogle Scholar
  22. Chandrakar V, Yadu B, Meena RK, Dubey A, Keshavkant S (2017) Arsenic-induced genotoxic responses and their amelioration by diphenylene iodonium, 24-epibrassinolide and proline in Glycine max L. Plant Physiol Biochem 112:74–86PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chen B, Xiao X, Zhu YG, Smith FA, Xie ZM, Smith SE (2007) The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Sci Total Environ 379:226–234PubMedCrossRefPubMedCentralGoogle Scholar
  24. Chen J, Qin J, Zhu YG, de Lorenzo V, Rosen BP (2013) Engineering the soil bacterium Pseudomonas putida for arsenic methylation. Appl Environ Microbiol 79:4493–4495PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen J, Sun GX, Wang XX, Vd L, Rosen BP, Zhu YG (2014) Volatilization of arsenic from polluted soil by Pseudomonas putida engineered for expression of the arsM Arsenic(III) S-adenosine methyltransferase gene. Environ Sci Technol 48:10337–10344PubMedPubMedCentralCrossRefGoogle Scholar
  26. Choe S-I, Gravelat FN, Abdallah QA, Lee MJ, Gibbs BF, Sheppard DC (2012) Role of Aspergillus niger acrA in arsenic resistance and its use as the basis for an arsenic biosensor. Appl Environ Microbiol 78:3855–3863PubMedPubMedCentralCrossRefGoogle Scholar
  27. Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47:289–297PubMedCrossRefPubMedCentralGoogle Scholar
  28. Cuebas M, Villafane A, McBride M, Yee N, Bini E (2011) Arsenate reduction and expression of multiple chromosomal ars operons in Geobacillus kaustophilus A1. Microbiology 157:2004–2011PubMedCrossRefPubMedCentralGoogle Scholar
  29. Das S, Jean JS, Chou M (2015) Arsenite-oxidizing bacteria exhibiting plant growth promoting traits isolated from the rhizosphere of Oryza sativa L.: implications for mitigation of arsenic contamination in paddies. J Hazard Mater 302:10–18PubMedCrossRefPubMedCentralGoogle Scholar
  30. Das S, Jean JS, Chou ML, Rathod J, Liu CC (2016) Arsenite-oxidizing bacteria exhibiting plant growth promoting traits isolated from the rhizosphere of Oryza sativa L.: implications for mitigation of arsenic contamination in paddies. J Hazard Mater 302:10–18PubMedCrossRefPubMedCentralGoogle Scholar
  31. Deepika KV, Raghuram M, Kariali E, Bramhachari PV (2016) Biological responses of symbiotic Rhizobium radiobacter strain VBCK1062 to the arsenic contaminated rhizosphere soils of mung bean. Ecotoxicol Environ Saf 134:1–10CrossRefGoogle Scholar
  32. Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394PubMedCrossRefPubMedCentralGoogle Scholar
  33. Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dhuldhaj UP, Yadav IC, Singh S, Sharma NK (2013) Microbial interactions in the arsenic cycle: adoptive strategies and applications in environmental management. Rev Environ Contam Toxicol 224:1–38PubMedPubMedCentralGoogle Scholar
  35. Drewniak L, Dziewit L, Ciezkowska M, Gawor J, Gromadka R, Sklodowska A (2013) Structural and functional genomics of plasmid pSinA of Sinorhizobium sp. M14 encoding genes for the arsenite oxidation and arsenic resistance. J Biotechnol 164:479–488PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dwivedi D, Johri BN (2003) Antifungals from fluorescent pseudomonads: biosynthesis and regulation. Curr Sci 12:1693–1703Google Scholar
  37. Eş I, Vieira JD, Amaral AC (2015) Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 99:2065–2082PubMedCrossRefPubMedCentralGoogle Scholar
  38. Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil rhizosphere plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278PubMedCrossRefPubMedCentralGoogle Scholar
  39. Garelick H, Jones H, Dybowska A, Valsami-Jones E (2008) Arsenic pollution sources. Rev Environ Contam Toxicol 197:17–60PubMedPubMedCentralGoogle Scholar
  40. Ghosh S, Sar P (2013) Identification and characterization of metabolic properties of bacterial populations recovered from arsenic contaminated ground water of North East India (Assam). Water Res 47:6992–7005PubMedCrossRefPubMedCentralGoogle Scholar
  41. Ghosh M, Shen J, Rosen BP (1999) Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci 96:5001–5006PubMedCrossRefPubMedCentralGoogle Scholar
  42. Ghosh P, Rathinasabapathi B, Ma LQ (2011) Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L. Bioresour Technol 102:8756–8761CrossRefGoogle Scholar
  43. Ghosh P, Rathinasabapathi B, Ma LQ (2015) Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria. Chemosphere 134:1–6CrossRefGoogle Scholar
  44. Gianinazzi-Pearson V (1996) Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the Symbiosis. Plant Cell 8:1871–1883PubMedPubMedCentralCrossRefGoogle Scholar
  45. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401.  https://doi.org/10.6064/2012/963401 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242CrossRefGoogle Scholar
  47. Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting Rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:96–102Google Scholar
  48. Haas D, Keel C, Reimann C (2002) Signal transduction in plant beneficial rhizobacteria with biocontrol properties. Antonie van Leeuw 81:385–395CrossRefGoogle Scholar
  49. Heinrich A (2007) Biosorption and biovolatilization of arsenic by heat-resistant fungi. Environ Sci Pollut Res Int 14:31–35. (5 pp)PubMedCrossRefPubMedCentralGoogle Scholar
  50. Ho KM, Mao X, Gu L, Li P (2008) Facile route to enzyme immobilization: core-shell nanoenzyme particles consisting of well-defined poly(methyl methacrylate) cores and cellulose shells. Langmuir 24:11036–11042PubMedCrossRefPubMedCentralGoogle Scholar
  51. Huang K, Chen C, Shen Q, Rosen BP, Zhao FJ (2015) Genetically engineering Bacillus subtilis with a heat-resistant arsenite methyltransferase for bioremediation of arsenic-contaminated organic waste. Appl Environ Microbiol 81:6718–6724PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hudson-Edwards KA, Santini JM (2013) Arsenic-microbe-mineral interactions in mining-affected environments. Fortschr Mineral 3:337–351CrossRefGoogle Scholar
  53. Islam SM, Fukushi K, Yamamoto K, Saha GC (2007) Estimation of biologic gasification potential of arsenic from contaminated natural soil by enumeration of arsenic methylating bacteria. Arch Environ Contam Toxicol 52:332–338PubMedCrossRefPubMedCentralGoogle Scholar
  54. Jankong P, Visoottiviseth P (2008) Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Chemosphere 72:1092–1097PubMedCrossRefPubMedCentralGoogle Scholar
  55. Jog R, Pandya M, Nareshkumar G, Rajkumar S (2014) Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160:778–788PubMedCrossRefPubMedCentralGoogle Scholar
  56. Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183CrossRefGoogle Scholar
  57. Kao AC, Chu YJ, Hsu FL, Liao VH (2013) Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium. J Contam Hydrol 155:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  58. Karn SK, Pan X, Jenkinson IR (2017) Bio-transformation and stabilization of arsenic (As) in contaminated soil using arsenic oxidizing bacteria and FeCl3 amendment. 3 Biotech 7:50.  https://doi.org/10.1007/s13205-017-0681-1
  59. Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364PubMedCrossRefPubMedCentralGoogle Scholar
  60. Krishnamoorthy R, Kim CG, Subramanian P, Kim KY, Selvakumar G, Sa TM (2015) Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration. PLoS One 10:e0128784.  https://doi.org/10.1371/journal.pone.0128784 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kruger MC, Bertin PN, Heipieper HJ, Arsène-Ploetze F (2013) Bacterial metabolism of environmental arsenic mechanisms and biotechnological applications. Appl Microbiol Biotechnol 97:3827–3841PubMedCrossRefPubMedCentralGoogle Scholar
  62. Kumar A, Bhargava P, Rai LC (2010) Isolation and molecular characterization of phosphate solubilizing Enterobacter and Exiguobacterium species from paddy fields of eastern Uttar Pradesh, India. Afr J Microbiol Res 4:820–829Google Scholar
  63. Kuramata M, Sakakibara F, Kataoka R, Abe T, Asano M, Baba K, Takagi K, Ishikawa S (2015) Arsenic biotransformation by Streptomyces sp. isolated from rice rhizosphere. Environ Microbiol 17:1897–1909PubMedCrossRefPubMedCentralGoogle Scholar
  64. Lakshmanan V, Shantharaj D, Li G, Seyfferth AL, Janine Sherrier D, Bais HP (2015) A natural rice rhizospheric bacterium abates arsenic accumulation in rice (Oryza sativa L.). Planta 242:1037–1050PubMedCrossRefPubMedCentralGoogle Scholar
  65. Lampis S, Santi C, Ciurli A, Andreolli M, Vallini G (2015) Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective. Front Plant Sci 6:80.  https://doi.org/10.3389/fpls.2015.00080 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Li B, Lin J, Mi S, Lin J (2010) Arsenic resistance operon structure in Leptospirillum ferriphilum and proteomic response to arsenic stress. Bioresour Technol 101:9811–9814PubMedCrossRefPubMedCentralGoogle Scholar
  67. Li P, Wang Y, Dai X, Zhang R, Jiang Z, Jiang D, Wang S, Jiang H, Wang Y, Dong H (2015) Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China. PLoS One 10:e0125844.  https://doi.org/10.1371/journal.pone.0125844 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Liao VH, Chu YJ, Su YC, Hsiao SY, Wei CC, Liu CW, Liao CM, Shen WC, Chang FJ (2011) Arsenite oxidizing and arsenate reducing bacteria associated with arsenic rich groundwater in Taiwan. J Contam Hydrol 123:20–29PubMedCrossRefGoogle Scholar
  69. Lièvremont D, Bertin PN, Lett MC (2009) Arsenic in contaminated waters: biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie 91:1229–1237PubMedCrossRefPubMedCentralGoogle Scholar
  70. Limoli DH, Jones CJ, Wozniak DJ (2015) Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr 3:10.  https://doi.org/10.1128/microbiolspec.MB-0011-2014 CrossRefPubMedCentralGoogle Scholar
  71. Liu Y, Zhu YG, Chen BD, Christie P, Li XL (2005) Yield and arsenate uptake of arbuscular mycorrhizal tomato colonized by Glomus mosseae BEG167 in As spiked soil under glasshouse conditions. Environ Int 31:867–873PubMedCrossRefPubMedCentralGoogle Scholar
  72. Liu S, Zhang F, Chen J, Sun G (2011) Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J Environ Sci 23:1544–1550CrossRefGoogle Scholar
  73. Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:918.  https://doi.org/10.3389/fpls.2016.00918 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Majumder A, Ghosh S, Saha N, Kole SC, Sarkar S (2013) Arsenic accumulating bacteria isolated from soil for possible application in bioremediation. J Environ Biol 34:841–846PubMedPubMedCentralGoogle Scholar
  75. Mallick I, Hossain ST, Sinha S, Mukherjee SK (2014) Brevibacillus sp. KUMAs2, a bacterial isolate for possible bioremediation of arsenic in rhizosphere. Ecotoxicol Environ Saf 107:236–244PubMedCrossRefPubMedCentralGoogle Scholar
  76. Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17:458–466PubMedCrossRefPubMedCentralGoogle Scholar
  77. Mateos LM, Ordóñez E, Letek M, Gil JA (2006) Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic. Int Microbiol 9:207–215PubMedPubMedCentralGoogle Scholar
  78. de Melo RW, Schneider J, de Souza CE, Sousa SC, Guimarães GL, de Souza MF (2014) Phytoprotective effect of arbuscular mycorrhizal fungi species against arsenic toxicity in tropical leguminous species. Int J Phytoremediation 16:840–858PubMedCrossRefPubMedCentralGoogle Scholar
  79. Mishra S, Srivastava S, Dwivedi S, Tripathi RD (2013) Investigation of biochemical responses of Bacopa monnieri L. upon exposure to arsenate. Environ Toxicol 28:419–430PubMedCrossRefPubMedCentralGoogle Scholar
  80. Moreno-Jiménez E, Esteban E, Peñalosa JM (2012) The fate of arsenic in soil-plant systems. Rev Environ Contam Toxicol 215:1–37PubMedPubMedCentralGoogle Scholar
  81. Mukhopadhyay R, Shi J, Rosen BP (2000) Purification and characterization of ACR2p, the Saccharomyces cerevisiae arsenate reductase. J Biol Chem 275:21149–21157CrossRefGoogle Scholar
  82. Nagvenkar GS, Ramaiah N (2010) Arsenite tolerance and biotransformation potential in estuarine bacteria. Ecotoxicology 19:604–613PubMedCrossRefPubMedCentralGoogle Scholar
  83. Ongena M, Duby F, Rossignol F, Fauconnier ML, Dommes J, Thonart P (2004) Stimulation of the lipooxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic Pseudomonas strain. Mol Plant-Microbe Interact 17:1009–1018PubMedCrossRefPubMedCentralGoogle Scholar
  84. Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13:45–49PubMedCrossRefPubMedCentralGoogle Scholar
  85. Páez-Espino D, Tamames J, de Lorenzo V, Cánovas D (2009) Microbial responses to environmental arsenic. Biometals 22:117–130PubMedCrossRefPubMedCentralGoogle Scholar
  86. Pandey N, Bhatt R (2015) Arsenic resistance and accumulation by two bacteria isolated from a natural arsenic contaminated site. J Basic Microbiol 55:1275–1286PubMedCrossRefPubMedCentralGoogle Scholar
  87. Pandey N, Bhatt R (2016) Arsenic removal and biotransformation potential of Exiguobacterium isolated from an arsenic- rich soil of Chhattisgarh, India. Clean (Weinh) 44:211–218Google Scholar
  88. Paul D, Poddar S, Sar P (2014) Characterization of arsenite-oxidizing bacteria isolated from arsenic contaminated groundwater of West Bengal. J Environ Sci Health A Tox Hazard Subst Environ Eng 49:1481–1492PubMedCrossRefPubMedCentralGoogle Scholar
  89. Paul D, Kazy SK, Gupta AK, Pal T, Sar P (2015) Diversity, metabolic properties and arsenic mobilization potential of indigenous bacteria in arsenic contaminated groundwater of West Bengal, India. PLoS One 10:e0118735.  https://doi.org/10.1371/journal.pone.0118735 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Pepi M, Volterrani M, Renzi M, Marvasi M, Gasperini S, Franchi E, Focardi SE (2007) Arsenic resistant bacteria isolated from contaminated sediments of the Orbetello Lagoon, Italy, and their characterization. J Appl Microbiol 103:2299–2308PubMedCrossRefPubMedCentralGoogle Scholar
  91. Qamar N, Rehman Y, Hasnain S (2017) Arsenic-resistant and plant growth-promoting Firmicutes and γ-Proteobacteria species from industrially polluted irrigation water and corresponding cropland. J Appl Microbiol 123:748–758PubMedCrossRefPubMedCentralGoogle Scholar
  92. Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci 103:2075–2080PubMedCrossRefPubMedCentralGoogle Scholar
  93. Rahman MA, Hassler C (2014) Is arsenic biotransformation a detoxification mechanism for microorganisms? Aquat Toxicol 146:212–219PubMedCrossRefPubMedCentralGoogle Scholar
  94. Rahman A, Nahar N, Nawani NN, Jass J, Desale P, Kapadnis BP, Hossain K, Saha AK, Ghosh S, Olsson B, Mandal A (2014) Isolation and characterization of a Lysinibacillus strain B1-CDA showing potential for bioremediation of arsenics from contaminated water. J Environ Sci Health A Tox Hazard Subst Environ Eng 49:1349–1360PubMedCrossRefPubMedCentralGoogle Scholar
  95. Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant associated microbes in heavy metal phytoremediation. Biotech Adv 30:1562–1574CrossRefGoogle Scholar
  96. Rao MA, Scelza R, Scotti R, Gianfreda L (2010) Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutr 10:333–353CrossRefGoogle Scholar
  97. Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92PubMedCrossRefGoogle Scholar
  98. Rosen BR, Liu ZJ (2009) Transport pathways for arsenic and selenium: a minireview. Environ Int 35:512–515PubMedCrossRefPubMedCentralGoogle Scholar
  99. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sarkar A, Kazy SK, Sar P (2013) Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal, India. Ecotoxicology 22:363–376PubMedCrossRefPubMedCentralGoogle Scholar
  101. Schneider J, Stürmer SL, Guilherme LR, de Souza Moreira FM, Soares CR (2013a) Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil. J Hazard Mater 262:1105–1115PubMedPubMedCentralCrossRefGoogle Scholar
  102. Schneider J, Labory CR, Rangel WM, Alves E, Guilherme LR (2013b) Anatomy and ultrastructure alterations of Leucaena leucocephala (Lam.) inoculated with mycorrhizal fungi in response to arsenic-contaminated soil. J Hazard Mater 262:1245–1258CrossRefPubMedPubMedCentralGoogle Scholar
  103. Schneider J, Bundschuh J, Rangel WM, Guilherme LR (2017) Potential of different AM fungi (native from As-contaminated and uncontaminated soils) for supporting Leucaena leucocephala growth in As-contaminated soil. Environ Pollut 224:125–135PubMedCrossRefPubMedCentralGoogle Scholar
  104. Selamat SN, Abdullah SR, Idris M (2014) Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathricum L. from contaminated soil in separate exposure. Int J Phytoremediation 16:694–703PubMedCrossRefPubMedCentralGoogle Scholar
  105. Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194PubMedPubMedCentralCrossRefGoogle Scholar
  106. Shagol CC, Krishnamoorthy R, Kim K, Sundaram S, Sa T (2014) Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea. Environ Sci Pollut Res Int 21:9356–9365PubMedCrossRefPubMedCentralGoogle Scholar
  107. Shakya S, Pradhan B, Smith L, Shrestha J, Tuladhar S (2012) Isolation and characterization of aerobic culturable arsenic resistant bacteria from surface water and groundwater of Rautahat District, Nepal. J Environ Manag 95:250–255CrossRefGoogle Scholar
  108. Sharma S, Anand G, Singh N, Kapoor R (2017) Arbuscular mycorrhiza augments arsenic tolerance in wheat (Triticum aestivum L.) by strengthening antioxidant defense system and thiol metabolism. Front. Plant Sci 8:906.  https://doi.org/10.3389/fpls.2017.00906 CrossRefGoogle Scholar
  109. Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) Mechanism of arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae. Plant Physiol 124:1327–1334PubMedPubMedCentralCrossRefGoogle Scholar
  110. Sheik CS, Mitchell TW, Rizvi FZ, Rehman Y, Faisal M, Hasnain S, McInerney MJ, Krumholz LR (2012) Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS One 7:e40059.  https://doi.org/10.1371/journal.pone.0040059 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Shilev S (2013) Soil rhizobacteria regulating the uptake of nutrients and undesirable elements by plants. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 147–167CrossRefGoogle Scholar
  112. Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608PubMedPubMedCentralCrossRefGoogle Scholar
  113. Singh M, Srivastava PK, Verma PC, Kharwar RN, Singh N, Tripathi RD (2015) Soil fungi for mycoremediation of arsenic pollution in agriculture soils. J Appl Microbiol 119:1278–1290PubMedCrossRefPubMedCentralGoogle Scholar
  114. Singh N, Marwa N, Mishra SK, Mishra J, Verma PC, Rathaur S, Singh N (2016) Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L. Ecotoxicol Environ Saf 125:25–34PubMedPubMedCentralCrossRefGoogle Scholar
  115. Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409:2430–2442PubMedCrossRefPubMedCentralGoogle Scholar
  116. Srivastava PK, Shenoy BD, Gupta M, Vaish A, Mannan S, Singh N, Tewari SK, Tripathi RD (2012) Stimulatory effects of arsenic-tolerant soil fungi on plant growth promotion and soil properties. Microbes Environ 27:477–482PubMedPubMedCentralCrossRefGoogle Scholar
  117. Srivastava S, Verma PC, Chaudhry V, Singh N, Abhilash PC, Kumar KV, Sharma N, Singh N (2013) Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. J Hazard Mater 262:1039–1047PubMedCrossRefPubMedCentralGoogle Scholar
  118. Stolz JF, Basu P, Oremland RS (2002) Microbial transformation of elements: the case of arsenic and selenium. Int Microbiol 5:201–207PubMedCrossRefPubMedCentralGoogle Scholar
  119. Su S, Zeng X, Bai L, Li L, Duan R (2011) Arsenic biotransformation by arsenic-resistant fungi Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1. Sci Total Environ 409:5057–5062PubMedCrossRefPubMedCentralGoogle Scholar
  120. Sujatha N, Ammani K (2013) Siderophore production by the isolates of fluorescent Pseudomonads. Int J Cur Res Rev 5:1–7Google Scholar
  121. Sun Y, Zhang X, Wu Z, Hu Y, Wu S, Chen B (2016) The molecular diversity of arbuscular mycorrhizal fungi in the arsenic mining impacted sites in Hunan Province of China. J Environ Sci 39:110–118CrossRefGoogle Scholar
  122. Tak HI, Ahmad F, Babalola OO (2013) Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Rev Environ Contam Toxicol 223:33–52PubMedPubMedCentralGoogle Scholar
  123. Talat M, Prakash O, Hasan SH (2009) Enzymatic detection of As(III) in aqueous solution using alginate immobilized pumpkin urease: optimization of process variables by response surface methodology. Bioresour Technol 100:4462–4467PubMedCrossRefPubMedCentralGoogle Scholar
  124. Talukdar T, Talukdar D (2013) Response of antioxidative enzymes to arsenic induced phytotoxicity in leaves of a medicinal daisy, Wedelia chinensis Merrill. J Nat Sci Biol Med 4:383–388PubMedPubMedCentralCrossRefGoogle Scholar
  125. Tian J, Peng XW, Li X, Sun YJ, Feng HM, Jiang ZP (2014) Isolation and characterization of two bacteria with heavy metal resistance and phosphate solubilizing capability. Huan Jing Ke Xue 35:2334–2340PubMedPubMedCentralGoogle Scholar
  126. Tsai SL, Singh S, Chen W (2009) Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol 20:659–667PubMedCrossRefGoogle Scholar
  127. Ullah S, Bano A (2015) Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity. Can J Microbiol 61:307–313PubMedCrossRefPubMedCentralGoogle Scholar
  128. Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules 21:573.  https://doi.org/10.3390/molecules21050573 CrossRefGoogle Scholar
  129. Vishnoi N, Singh DP (2014) Biotransformation of arsenic by bacterial strains mediated by oxido-reductase enzyme system. Cell Mol Biol 60:7–14PubMedPubMedCentralGoogle Scholar
  130. Viveros OM, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319Google Scholar
  131. Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554PubMedCrossRefPubMedCentralGoogle Scholar
  132. Wang G, Huang Y, Li J (2011) Bacteria live on arsenic analysis of microbial arsenic metabolism- a review. Acta Microbiol Sin 51:154–160Google Scholar
  133. Wang Z, Luo Z, Yan C (2013) Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa. Environ Sci Pollut Res Int 20:7286–7295PubMedCrossRefPubMedCentralGoogle Scholar
  134. Wang PP, Bao P, Sun GX (2015) Identification and catalytic residues of the arsenite methyltransferase from a sulfate-reducing bacterium, Clostridium sp BXM. FEMS Microbiol Lett 362:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  135. Wani PA, Khan MS (2013) Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9. Bull Environ Contam Toxicol 91:117–124PubMedCrossRefPubMedCentralGoogle Scholar
  136. Wysocki R, Bobrowicz P, Ulaszewski S (1997) The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J Biol Chem 272:30061–30066PubMedCrossRefPubMedCentralGoogle Scholar
  137. Xia YS, Chen BD, Christie P, Smith FA, Wang YS, Li XL (2007) Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus. J Environ Sci 19:1245–1251CrossRefGoogle Scholar
  138. Xu P, Christie P, Liu Y, Zhang J, Li X (2008) The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake. Environ Pollut 156:215–220PubMedCrossRefPubMedCentralGoogle Scholar
  139. Yuan C, Lu X, Qin J, Rosen BP, Le XC (2008) Volatile arsenic species released from Escherichia coli expressing the AsIII S-adenosylmethionine methyltransferase gene. Environ Sci Technol 42:3201–3206PubMedPubMedCentralCrossRefGoogle Scholar
  140. Zhang Z, Yin N, Cai X, Wang Z, Cui Y (2016) Arsenic redox transformation by Pseudomonas sp. HN2 isolated from arsenic contaminated soil in Hunan, China. J Environ Sci 47:165–173CrossRefGoogle Scholar
  141. Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Neha Pandey
    • 1
  • Vibhuti Chandrakar
    • 1
  • Sahu Keshavkant
    • 1
    • 2
  1. 1.School of Studies in BiotechnologyPt. Ravishankar Shukla UniversityRaipurIndia
  2. 2.National Center for Natural ResourcesPt. Ravishankar Shukla UniversityRaipurIndia

Personalised recommendations