Arsenic Toxicity in Crop Plants: Responses and Remediation Strategies

  • Lakita Kashyap
  • Neera Garg


Arsenic (As), a naturally occurring nonessential metalloid, has a potential to affect plant and human health negatively. It enters the environment by mineralization of rocks and by activities of microorganisms that enhance its mobilization. Human interventions have accelerated As concentration in the soil to the levels exceeding the hazardous threshold. As occurs in both organic and inorganic forms, with inorganic form more toxic. Inorganic species comprise of arsenate (As V) and arsenite (As III), where As V is prevalent in aerated soils, while As III occur in anaerobic soils, with As III more toxic and mobile than As V. Once inside the plants, As V is converted into As III with the help of arsenate reductase. Plants exposed to As stress exhibit severe toxic effects on root growth which further decrease nutrient acquisition and disturb metabolic processes. As V is taken by plants’ roots through phosphate transporter (PHT1) and interferes with oxidative phosphorylation. On the other hand, plants uptake As III through aquaporins and hamper enzyme activities by reacting with thiol groups. Various tools have been used by scientists in the last decade for the alleviation of metal stress in plants, among which, use of biological materials such as arbuscular mycorrhizal (AM) fungi and silicon amendment has gained importance due to their ability to restrict metalloid uptake. This chapter highlights recent advances concerning (1) As speciation in the environment and their uptake mechanisms, (2) impact of As species on plant growth and metabolism, and (3) use of AM and Si in mitigating As stress.


Arsenic toxicity Silicon Arbuscular mycorrhiza Remediation 


  1. Abedin MJ, Meharg AA (2002) Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice (Oryza sativa L.). Plant Soil 243:57–66Google Scholar
  2. Abercrombie JM, Halfhill MD, Ranjan P, Rao MR, Saxton AM, Yuan JS, Stewart CN Jr (2008) Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biol 8:87. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adriano DC (2001) Arsenic. In: Trace elements in terrestrial environments. Biogeochemistry, bioavailability and risks of metals. Springer, New YorkCrossRefGoogle Scholar
  4. Ahmed FRS, Killham K, Alexander I (2006) Influences of arbuscular mycorrhizal fungus Glomus mosseae on growth and nutrition of lentil irrigated with arsenic contaminated water. Plant Soil 283:33–41CrossRefGoogle Scholar
  5. Ahsan N, Lee DG, Kim KH, Alam I, Lee SH, Lee KW, Lee H, Lee BH (2010) Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry. Chemosphere 78:224–231CrossRefGoogle Scholar
  6. Aide M, Beighley D, Dunn D (2016) Arsenic in the soil environment: a soil chemistry. Int J Appl 11:1–28Google Scholar
  7. Akhtar S, Shoaib A (2014) Toxic effect of arsenate on germination, early growth and bioaccumulation in wheat (Triticum aestivum L.). Pak J Agri Sci 51:389–394Google Scholar
  8. Anjum SA, Tanveer M, Hussain S, Shahzad B, Ashraf U, Fahad S, Hassan W, Jan S, Khan I, Saleem MF, Bajwa AA (2016) Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environ Sci Pollut Res 23:11864–11875CrossRefGoogle Scholar
  9. Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6:2026–2032Google Scholar
  10. Arriagada C, Aranda E, Sampedro I, Garcia-Romera I, Ocampo JA (2009) Contribution of the saprobic fungi Trametes versicolor and Trichoderma harzianum and the arbuscular mycorrhizal fungi Glomus deserticola and Glomus claroideum to arsenic tolerance of Eucalyptus globulus. Biores Technol 100:6250–6257CrossRefGoogle Scholar
  11. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396PubMedPubMedCentralCrossRefGoogle Scholar
  12. Asher CJ, Reay PF (1979) Arsenic uptake by barley seedlings. Funct Plant Biol 6:459–466Google Scholar
  13. Atker K, Naidu R (2006) Arsenic speciation in the environment. In: Naidu R, Smith E, Owens G, Bhattacharya P, Nadebaum P (eds) Managing Arsenic in the environment. From soils to human health. CSIRO Publishing, Melbourne, pp 95–115Google Scholar
  14. Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev 2014:1–31CrossRefGoogle Scholar
  15. Bai J, Lin X, Yin R, Zhang H, Junhua W, Xueming C, Yongming L (2008) The influence of arbuscular mycorrhizal fungi on As and P uptake by maize (Zea mays L.) from As-contaminated soils. Appl Soil Ecol 38:137–145CrossRefGoogle Scholar
  16. Bandaru V, Hansen DJ, Codling EE, Daughtry CS, White-Hansen S, Green CE (2010) Quantifying arsenic-induced morphological changes in spinach leaves: implications for remote sensing. Int J Remote Sens 31:4163–4177CrossRefGoogle Scholar
  17. Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial cooperation in the rhizosphere. J Exp Bot 56:1761–1778PubMedCrossRefPubMedCentralGoogle Scholar
  18. Batista BL, Nigar M, Mestrot A, Rocha BA, Ju´nior FB, Price AH et al (2014) Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. J Exp Bot 65:1467–1479PubMedCrossRefPubMedCentralGoogle Scholar
  19. Beesley L, Dickinson N (2010) Carbon and trace element mobility in an urban soil amended with green waste compost. J Soils Sediments 10:215–222CrossRefGoogle Scholar
  20. Bentley R, Chasteen TG (2002) Arsenic curiosa and humanity. J Chem Educ 7:51–60CrossRefGoogle Scholar
  21. Bhattacharjee H, Rosen BP (2007) Arsenic metabolism in prokaryotic and eukaryotic microbes. In: Nies D, Silver S (eds) Molecular microbiology of heavy metals. Springer, Berlin, pp 371–406CrossRefGoogle Scholar
  22. Bhattacharya S, De Sarkar N, Banerjee P, Banerjee S, Mukherjee S, Chattopadhyay D, Mukhopadhyay A (2012) Effects of arsenic toxicity on germination, seedling growth and peroxidase activity in Cicer arietinum. Int J Agric Food Sci 2:131–137Google Scholar
  23. Bhushan G, Sharma SK, Sagar P, Seth N, Singh AP (2014) Role of arbuscular mycorrhiza fungi on tolerance to salinity of the tree legume Albizia lebbeck (L.) inoculated by Rhizobium. Indian J Pharm Biol Res 2:45CrossRefGoogle Scholar
  24. Bianucci E, Furlan A, del Carmen Tordable M, Hernández LE, Carpena-Ruiz RO, Castro S (2017) Antioxidant responses of peanut roots exposed to realistic groundwater doses of arsenate: identification of glutathione S-transferase as a suitable biomarker for metalloid toxicity. Chemosphere 181:551–561PubMedCrossRefPubMedCentralGoogle Scholar
  25. Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of as(OH)3 and Sb(OH)3 across membranes. BMC Biol 6(1):26PubMedPubMedCentralCrossRefGoogle Scholar
  26. Bissen M, Frimmel FH (2003) Arsenic- a review. Part II. Oxidation of arsenic and its removal in water treatment. Acta Hydrochim Hydrobiol 31:97–107CrossRefGoogle Scholar
  27. Bleeker PM, Schat H, Vooijs R, Verkleij JAC, Ernst WHO (2003) Mechanisms of arsenate tolerance in Cytisus striatus. New Phytol 157:33–38CrossRefGoogle Scholar
  28. Bona E, Cattaneo C, Cesaro P, Marsano F, Lingua G, Cavaletto M, Berta G (2010) Proteomic analysis of P. vittata fronds: two arbuscular mycorrhizal fungi differentially modulate protein expression under arsenic contamination. Proteomics 10:3811–3834CrossRefGoogle Scholar
  29. Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plnt Physiol Plant Mol Biol 43:83–116CrossRefGoogle Scholar
  30. Bun-Ya MA, Harashima SA, Oshima YA (1992) Putative GTP-binding protein, Gtr1, associated with the function of the Pho84 inorganic phosphate transporter in Saccharomyces cerevisiae. Mol Cell Biol 112:2958–2966CrossRefGoogle Scholar
  31. Buschmann J, Kappeler A, Lindauer A, Kistler U, Berg M, Sigg L (2006) Arsenite and arsenate binding to dissolved humic acids: Influence of pH, type of humic acid, and aluminium. Environ Sci Technol 40:6015–6020PubMedCrossRefPubMedCentralGoogle Scholar
  32. Campos NV, Loureiro ME, Azevedo AA (2014) Differences in phosphorus translocation contributes to differential arsenic tolerance between plants of Borreria verticillata (Rubiaceae) from mine and non-mine sites. Environ Sci Pollut Res 21:5586–5596CrossRefGoogle Scholar
  33. Capdevila M, Atrian S (2011) Metallothionein protein evolution: a miniassay. J Biol Inorg Chem 16:977–989PubMedCrossRefPubMedCentralGoogle Scholar
  34. Carbonell-Barrachina AA, Burlo F, Burgos-Hernandez A, Lopez E, Mataix J (1997) The influence of arsenite concentration on arsenic accumulation in tomato and bean plants. Sci Hortic 71:167–176CrossRefGoogle Scholar
  35. Carbonell-Barrachina AA, Burlo F, Lopez E, Mataix J (1998) Tomato plant nutrition as affected by arsenite concentration. J Plant Nutr 21:235–244CrossRefGoogle Scholar
  36. Catarecha P, Segura MD, Franco-Zorrilla JM, García-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007) A mutant of the Arabidopsis phosphate transporter PHT1; 1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133PubMedPubMedCentralCrossRefGoogle Scholar
  37. Chakrabarty D, Trivedi PK, Misra P, Tiwari M, Shri M, Shukla D, Kumar S, Rai A, Pandey A, Nigam D, Tripathi RD (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74:688–702CrossRefGoogle Scholar
  38. Chao D-Y, Yi C, Chen J, Shi S, Chen Z, Wang C, Danku JM, Zhao F-J, Salt DE, Maloof JN (2014) Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol 12(12):e1002009PubMedPubMedCentralCrossRefGoogle Scholar
  39. Chen W, Taylor NL, Chi Y, Millar AH, Lambers H, Finnegan PM (2014) The metabolic acclimation of Arabidopsis thaliana to arsenate is sensitized by the loss of mitochondrial Lipoamide Dehydrogenase 2, a key enzyme in oxidative metabolism. Plant Cell Environ 37:684–695PubMedCrossRefPubMedCentralGoogle Scholar
  40. Chen XW, Li H, Chan WF, Wu C, Wu FY, Wu SC, Wong MH (2012) Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress. Chemosphere 89:1248–1254PubMedCrossRefPubMedCentralGoogle Scholar
  41. Chen XW, Wu FY, Li H, Chan WF, Wu C, Wu SC, Wong MH (2013) Phosphate transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenate stress. Environ Exp Bot 87:92–99CrossRefGoogle Scholar
  42. Chen Y, Han YH, Cao Y, Zhu YG, Rathinasabapathi B, Ma LQ (2017) Arsenic transport in rice and biological solutions to reduce arsenic risk from rice. Front Plant Sci 8:268. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Christophersen HM, Smith FA, Smith SE (2009) Arbuscular mycorrhizal colonization reduces arsenate uptake in barley via down regulation of transporters in the direct epidermal phosphate uptake pathway. New Phytol 184:962–974PubMedPubMedCentralCrossRefGoogle Scholar
  44. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Ann Rev Plant Biol 53:159–182CrossRefGoogle Scholar
  45. Cozzolino V, Pigna M, Di Meo V, Caporale AG, Violante A (2010) Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth of Lactuca sativa L. and arsenic and phosphorus availability in an arsenic polluted soil under non-sterile conditions. Appl Soil Ecol 45:262–268CrossRefGoogle Scholar
  46. Das DK, Sur P, Das K (2008) Mobilization of arsenic in soils and in rice (Oryza sativa L.) plant affected by organic matter and zinc application in irrigation water contaminated with arsenic. Plant Soil Environ 54:30–37CrossRefGoogle Scholar
  47. Dave R, Singh PK, Tripathi P, Shri M, Dixit G, Dwivedi S, Chakrabarty D, Trivedi PK, Sharma YK, Dhankher OP, Corpas FJ (2013) Arsenite tolerance is related to proportional thiolic metabolite synthesis in rice (Oryza sativa L.). Arch Environ Contam 64:235–242CrossRefGoogle Scholar
  48. Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228CrossRefGoogle Scholar
  49. Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci U S A 103:5413–5418PubMedPubMedCentralCrossRefGoogle Scholar
  50. Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant Cell Environ 25:687–693CrossRefGoogle Scholar
  51. Dong Y, Zhu YG, Smith FA, Wang Y, Chen B (2008) Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens L.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environ Pollut 155:174–181PubMedCrossRefPubMedCentralGoogle Scholar
  52. Duan GL, Liu WJ, Chen XP, Hua Y, Zhu YG (2013) Association of arsenic with nutrient elements in rice plants. Metallomics 5:784–792PubMedCrossRefPubMedCentralGoogle Scholar
  53. Duan GL, Zhou Y, Tong YP, Mukhopadhyay R, Rosen BP, Zhu YG (2007) A CDC25 homologue from rice functions as an arsenate reductase. New Phytol 174:311–321PubMedCrossRefPubMedCentralGoogle Scholar
  54. Duman F, Ozturk F, Aydin Z (2010) Biological responses of duckweed (Lemna minor L.) exposed to the inorganic arsenic species As (III) and As (V): effects of concentration and duration of exposure. Ecotoxicology 19:983–993CrossRefGoogle Scholar
  55. Duporque D, Kun E (1969) Malate dehydrogenase of Ox Kidney. Two substrate kinetics and inhibition analyses. Eur J Biochem 7:242–252Google Scholar
  56. Dutta P, Mondal S (2014) Changes in pigments and photosynthetic parameters of cowpea under two inorganic arsenicals. IOSR-JAVS 7:99–103CrossRefGoogle Scholar
  57. Dwivedi S, Tripathi RD, Srivastava S, Singh R, Kumar A, Tripathi P, Dave R, Rai UN, Chakrabarty D, Trivedi PK, Tuli R (2010) Arsenic affects mineral nutrients in grains of various Indian rice (Oryza sativa L.) genotypes grown on arsenic-contaminated soils of West Bengal. Protoplasma 245:113–124PubMedPubMedCentralCrossRefGoogle Scholar
  58. Epstein E (1999) Silicon. Ann Rev Plant Biol 50:641–664CrossRefGoogle Scholar
  59. Farnese FS, Oliveira JA, Gusman GS, Leão GA, Silveira NM, Silva PM, Ribeiro C, Cambraia J (2014) Effects of adding nitroprusside on arsenic stressed response of Pistia stratiotes L. under hydroponic conditions. Int J Phytoremed 16:123–137CrossRefGoogle Scholar
  60. Farnese FS, Oliveira JA, Paiva EA, Menezes-Silva PE, da Silva AA, Campos FV, Ribeiro C (2017) The involvement of nitric oxide in integration of plant physiological and ultrastructural adjustments in response to arsenic. Front Plant Sci 8:516. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278PubMedPubMedCentralCrossRefGoogle Scholar
  63. Fleck AT, Mattusch J, Schenk MK (2013) Silicon decreases the arsenic level in rice grain by limiting arsenite transport. J Soil Sci Plant Nutr 176:785–794Google Scholar
  64. Flora SJ (2015) Arsenic: chemistry, occurrence, and exposure. In: Handbook of Arsenic toxicology, vol 2015. Academic Press, Oxford, pp 1–49Google Scholar
  65. Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59CrossRefGoogle Scholar
  66. Furini A (ed) (2012) Plants and heavy metals. Springer, DordrechtGoogle Scholar
  67. Gadepalle VP, Ouki SK, Van Herwijnen R, Hutchings T (2007) Immobilization of heavy metals in soil using natural and waste materials for vegetation establishment on contaminated sites. Soil Sedim Contam 16:233–251CrossRefGoogle Scholar
  68. García I, Diez M, Martín F, Simón M, Dorronsoro C (2009) Mobility of arsenic and heavy metals in a sandy-loam textured and carbonated soil. Pedosphere 19:166–175CrossRefGoogle Scholar
  69. Garg N, Bhandari P (2016) Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul 78:371–387CrossRefGoogle Scholar
  70. Garg N, Bhandari P, Kashyap L, Singh S (2017) Arbuscular mycorrhizal symbiosis: a boon for sustainable legume production under salinity and heavy metal stress. In: Aggarwal A, Yadav K (eds) Mycorrhizal fungi. Daya Publishing House, New Delhi, pp 247–274Google Scholar
  71. Garg N, Chandel S (2011) Effect of mycorrhizal inoculation on growth, nitrogen fixation, and nutrient uptake in Cicer arietinum (L.) under salt stress. Turk J Agric For 35:205–214Google Scholar
  72. Garg N, Kashyap L (2017) Silicon and Rhizophagus irregularis: potential candidates for ameliorating negative impacts of arsenate and arsenite stress on growth, nutrient acquisition and productivity in Cajanus cajan (L.) Millsp. genotypes. Environ Sci Pollut Res 24:18520–18535CrossRefGoogle Scholar
  73. Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosys 143:81–96CrossRefGoogle Scholar
  74. Garg N, Singh S (2017) Arbuscular mycorrhiza Rhizophagus irregularis and silicon modulate growth, proline biosynthesis and yield in Cajanus cajan L. Millsp.(pigeonpea) genotypes under cadmium and zinc stress. J Plant Growth Regul 37:46–63CrossRefGoogle Scholar
  75. Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9:303–321CrossRefGoogle Scholar
  76. Garg N, Singla P (2012) The role of Glomus mosseae on key physiological and biochemical parameters of pea plants grown in arsenic contaminated soil. Scientia Hortic 143:92–101CrossRefGoogle Scholar
  77. Garg N, Singla P, Bhandari P (2015) Metal uptake, oxidative metabolism, and mycorrhization in pigeonpeaand pea under arsenic and cadmium stress. Turk J Agric For 39:234–250CrossRefGoogle Scholar
  78. Gasic K, Korban SS (2007) Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64:361–369CrossRefGoogle Scholar
  79. Georgiadis M, Cai Y, Solo-Gabriele HM (2006) Extraction of arsenate and arsenite species from soils and sediments. Environ Pollut 141:22–29PubMedCrossRefPubMedCentralGoogle Scholar
  80. Goldberg S, Glaubig RA (1988) Anion sorption on a calcareous, montmorillonitic soil – arsenic. Soil Sci Soc A J 52:1154–1157Google Scholar
  81. Gomes MP, Moreira Duarte D, Silva Miranda PL, Carvalho Barreto L, Matheus MT, Garcia QS (2012) The effects of arsenic on the growth and nutritional status of Anadenanthera peregrina, a Brazilian savanna tree. J Plant Nutr Soil Sci 175:466–473CrossRefGoogle Scholar
  82. Gonzalez-Chavez C, Harris PJ, Dodd J, Meharg AA (2002) Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytol 155:163–171CrossRefGoogle Scholar
  83. Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols K (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323PubMedCrossRefPubMedCentralGoogle Scholar
  84. González-Chávez MD, del Pilar Ortega-Larrocea M, Carrillo-González R, López-Meyer M, Xoconostle-Cázares B, Gomez SK, Harrison MJ, Figueroa-López AM, Maldonado-Mendoza IE (2011) Arsenate induces the expression of fungal genes involved in As transport in arbuscular mycorrhiza. Fungal Biol 115:1197–1209CrossRefGoogle Scholar
  85. Grafe M, Sparks DL (2006) Solid phase speciation of arsenic. Doctoral dissertation, CSIRO PublishingGoogle Scholar
  86. Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494CrossRefGoogle Scholar
  87. Gunes A, Pilbeam DJ, Inal A (2009) Effect of arsenic–phosphorus interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil 314:211–220CrossRefGoogle Scholar
  88. Guo W, Hou YL, Wang SG, Zhu YG (2005) Effect of silicate on the growth and arsenate uptake by rice (Oryza sativa L.) seedlings in solution culture. Plant Soil 272:173–181CrossRefGoogle Scholar
  89. Guo W, Zhang J, Teng M, Wang LH (2009) Arsenic uptake is suppressed in a rice mutant defective in silicon uptake. J Plant Nutr Soil Sci 172:867–874CrossRefGoogle Scholar
  90. Gupta DK, Srivastava S, Huang HG, Romero-Puertas MC, Sandalio LM (2011) Arsenic tolerance and detoxification mechanisms in plants. In: Sherameti I, Varma A (eds) Detoxification of heavy metals. Soil biology, vol 30. Springer, Berlin, pp 169–179CrossRefGoogle Scholar
  91. Gupta DK, Tripathi RD, Mishra S, Srivastava S, Dwivedi S, Rai UN, Yang XE, Huang H, Inouhe M (2008) Arsenic accumulation in roots and shoots vis-a`-vis its effects on growth and level of phytochelatins in seedlings of Cicer arietinum L. J Environ Biol 29:281–286PubMedPubMedCentralGoogle Scholar
  92. Gusman GS, Oliveira JA, Farnese FS, Cambraia J (2013) Arsenate and arsenite: the toxic effects on photosynthesis and growth of lettuce plants. Acta Physio Planta 35:1201–1209CrossRefGoogle Scholar
  93. Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322PubMedPubMedCentralCrossRefGoogle Scholar
  94. Hancock JT, Henson D, Nvirenda M, Desikan R, Harrison J, Lewis M, Hughes J, Neill SJ (2005) Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis. Plant Physiol Biochem 43:828–835PubMedCrossRefPubMedCentralGoogle Scholar
  95. Hartley TN, Macdonald AJ, McGrath SP, Zhao FJ (2003) Historical arsenic contamination of soil due to long-term phosphate fertiliser applications. Environ Pollut 180:259–264CrossRefGoogle Scholar
  96. Hartley-Whitaker J, Ainsworth G, Meharg AA (2001) Copper and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–722CrossRefGoogle Scholar
  97. Harvey CF, Swartz CH, Badruzzaman ABM, Keonblute N, Yu W, Ali MA, Jay J, Beckie R, Niedam V, Brabander D, Oates PM, Ashfaque KN, Islam S, Hemond HF, Ahmed MF (2002) Arsenic mobility and groundwater extraction in Bangladesh. Science 298:1602–1606PubMedCrossRefPubMedCentralGoogle Scholar
  98. Hasan MM, Hasan MM, da Silva JA, Li X (2016) Regulation of phosphorus uptake and utilization: transitioning from current knowledge to practical strategies. Cell Mol Biol Lett 21(1):7Google Scholar
  99. Hasanuzzaman M, Fujita M (2013) Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology 22:584–596PubMedCrossRefPubMedCentralGoogle Scholar
  100. Hasanuzzaman M, Nahar K, Hakeem KR, Öztürk M, Fujita M (2015) Arsenic toxicity in plants and possible remediation. In: Hakeem K, Sabir M, Öztürk M, Murmet A (eds) Soil remediation and plants: prospects and challenges. Academic press, London, pp 433–501CrossRefGoogle Scholar
  101. Hattori T, Inanaga S, Tanimoto E, Lux A, Luxová M, Sugimoto Y (2003) Silicon-induced changes in viscoelastic properties of sorghum root cell walls. Plant Cell Physiol 44:743–749PubMedCrossRefPubMedCentralGoogle Scholar
  102. Heikens A, Panaullah GM, Meharg AA (2007) Arsenic behavior from groundwater and soil to crops: impacts on agriculture and food safety. Rev Environ Contam Toxicol 189:43–87PubMedPubMedCentralGoogle Scholar
  103. Henke KR, Hutchison A (2009) Arsenic chemistry. In: Arsenic: environmental chemistry, health threats and waste treatment, vol 6, pp 9–68Google Scholar
  104. Hindmarsh JT, McCurdy RF, Savory J (1986) Clinical and environmental aspects of arsenic toxicity. CRC Crit Rev Clin Lab Sci 23:315–347CrossRefGoogle Scholar
  105. Hudson-Edwards KA, Santini JM (2013) Arsenic-microbe-mineral interactions in mining-affected environments. Minerals 3:337–351CrossRefGoogle Scholar
  106. Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123:305–332PubMedPubMedCentralCrossRefGoogle Scholar
  107. Huq SI, Joardar JC, Parvin S, Correll R, Naidu R (2006) Arsenic contamination in food-chain: transfer of arsenic into food materials through groundwater irrigation. J Health Popul Nutr 24:305PubMedPubMedCentralGoogle Scholar
  108. Imran MA, Khan RM, Ali Z, Mahmood T (2013) Toxicity of arsenic (As) on seed germination of sunflower (Helianthus annuus L.). Int J Phys Sci 8:840–847CrossRefGoogle Scholar
  109. Indriolo E, Na G, Ellis D, Salt DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2057PubMedPubMedCentralCrossRefGoogle Scholar
  110. Isayenkov SV, Maathuis FJM (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett 8:722–733Google Scholar
  111. Islamit MK, Khanam S, Lee SY, Alam I, Huhl MR (2014) The interaction of arsenic (As) and chromium (Cr) influences growth and antioxidant status in tossa jute (‘’Corchorus olitorius’). Plant Omics 7:499Google Scholar
  112. Jaiswal P, Bafna A, Rangwala T, Vyas N, Gupta R (2017) Role of soluble silica in reducing oxidative stress in Trigonella Foenum - Graecum (Methi) grown hydroponically in sewage water. Int J Agric Innov Res 5:2319–1473Google Scholar
  113. Jang YC, Somanna Y, Kim H (2016) Source, distribution, toxicity and remediation of arsenic in the environment–a review. Inter J App Environ Sci 11:559–581Google Scholar
  114. Javaid A (2011) Importance of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. In: Khan MS (ed) Biomanagement of metal-contaminated soils. Springer, Dordrecht, pp 125–141CrossRefGoogle Scholar
  115. Jeke M (1994) Removal of arsenic in drinking water treatment. In: Nriagu JO (ed) Arsenic in the environment. Part I: cycling and characterization. Wiley, New York, pp 119–132Google Scholar
  116. Jha AB, Dubey RS (2004) Arsenic exposure alters activity behaviour of key nitrogen assimilatory enzymes in growing rice plants. Plant Growth Regul 43:259–268CrossRefGoogle Scholar
  117. Jia H, Ren H, Gu M, Zhao J, Sun S, Zhang X, Chen J, Wu P, Xu G (2011) The phosphate transporter gene OsPht1; 8 is involved in phosphate homeostasis in rice. Plant Physiol 156:1164–1175PubMedPubMedCentralCrossRefGoogle Scholar
  118. Ju S, Yin N, Wang L, Zhang C, Wang Y (2017) Effects of silicon on Oryza sativa L. seedling roots under simulated acid rain stress. PloS One 12:e0173378. CrossRefPubMedPubMedCentralGoogle Scholar
  119. Kamiya T, Fujiraw T (2011) A novel allele of the Arabidopsis phytochelatin synthase 1 gene conferring high sensitivity to arsenic and antimony. Soil Sci Plant Nutr 57:272–278CrossRefGoogle Scholar
  120. Karimi N, Ghaderian SM, Raab A, Feldmann J, Meharg AA (2008) An arsenic accumulating, hypertolerant brassica, Isatis capadocica. New Phytol 184:41–47CrossRefGoogle Scholar
  121. Klei TR, Carbonell-Barrachina AA, Burlo F, Burgos-Hernandez A, Lopez E, Mataix J (1997) The influence of arsenite concentration on arsenic accumulation in tomato and bean plants. Sci Hort 71:167–176CrossRefGoogle Scholar
  122. Kumari A, Pandey N, Pandey-Rai S (2017) Protection of Artemisia annua roots and leaves against oxidative stress induced by arsenic. Biol Planta 61:367–377CrossRefGoogle Scholar
  123. Lafuente A, Pajuelo E, Caviedes MA, Rodríguez-Llorente ID (2010) Reduced nodulation in alfalfa induced by arsenic correlates with altered expression of early nodulins. J Plant Physiol 167:286–291CrossRefGoogle Scholar
  124. Lafuente A, Pérez-Palacios P, Doukkali B, Molina-Sánchez MD, Jiménez-Zurdo JI, Caviedes MA, Rodríguez-Llorente ID, Pajuelo E (2015) Unraveling the effect of arsenic on the model Medicago–Ensifer interaction: a transcriptomic meta-analysis. New Phytol 205:255–272PubMedPubMedCentralCrossRefGoogle Scholar
  125. LeBlanc MS, McKinney EC, Meagher RB, Smith AP (2013) Hijacking membrane transporters for arsenic phytoextraction. J Biotechnol 163:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  126. Leung HM, Leung AO, Ye ZH, Cheung KC, Yung KK (2013) Mixed arbuscular mycorrhizal (AM) fungal application to improve growth and arsenic accumulation of Pteris vittata (As hyperaccumulator) grown in As-contaminated soil. Chemosphere 92:1367–1374PubMedCrossRefPubMedCentralGoogle Scholar
  127. Li C, Sl F, Yun S, Jiang L, Xy L, Hou X (2007) Effects of arsenic on seed germination and physiological activities of wheat seedlings. J Environ Sci 19:725–732CrossRefGoogle Scholar
  128. Li N, Wang J, Song WY (2016) Arsenic uptake and translocation in plants. Plant Cell Physiol 57:4–13CrossRefGoogle Scholar
  129. Li RY, Stroud JL, Ma JF, McGrath SP, Zhao FJ (2009) Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol 43:3778–3783PubMedCrossRefPubMedCentralGoogle Scholar
  130. Li SF, Pu HP, Wang HB (2008) Advances in the study of effects of arsenic on plant photosynthesis. Soils 40:330–366Google Scholar
  131. Li WX, Chen TB, Huang ZC, Lei M, Liao XY (2006) Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L. Chemosphere 62:803–809CrossRefGoogle Scholar
  132. Liu W, Schat H, Bliek M, Chen Y, McGrath SP, George G, Salt DE, Zhao FJ (2012) Knocking out ACR2 does not affect arsenic redox status in Arabidopsis thaliana: implications for as detoxification and accumulation in plants. PloS One 7:e42408. CrossRefPubMedPubMedCentralGoogle Scholar
  133. Liu X, Zhang S, Shan X, Zhu YG (2005a) Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Chemosphere 1:293–301CrossRefGoogle Scholar
  134. Liu Y, Zhu YG, Chen BD, Christie P, Li XL (2005b) Yield and arsenate uptake of arbuscular mycorrhizal tomato colonized by Glomus mosseae BEG167 in As spiked soil under glasshouse conditions. Environ Int 31:867–873PubMedCrossRefPubMedCentralGoogle Scholar
  135. Luengo C, Brigante M, Avena M (2007) Adsorption kinetics of phosphate and arsenate on goethite. A comparative study. J Colloid Interface Sci 311:354–360PubMedCrossRefPubMedCentralGoogle Scholar
  136. Lyubenova L, Schröder P (2010) Uptake and effect of heavy metals on the plant detoxification cascade in the presence and absence of organic pollutants. In: Sherameti I, Varma A (eds) Soil heavy metals. Soil Biol, vol 9. Springer, Berlin, pp 65–85CrossRefGoogle Scholar
  137. Ma JF (2003) Function of silicon in higher plants. Prog Mol Subcell Biol 33:127–147PubMedCrossRefPubMedCentralGoogle Scholar
  138. Ma JF, Goto S, Tamai K, Ichii M (2001) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol 127:1773–1780PubMedPubMedCentralCrossRefGoogle Scholar
  139. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440(7084):688CrossRefPubMedPubMedCentralGoogle Scholar
  140. Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U S A 105:9931–9935PubMedPubMedCentralCrossRefGoogle Scholar
  141. Maciaszczyk-Dziubinska E, Wawrzycka D, Wysocki R (2012) Arsenic and antimony transporters in eukaryotes. Int J Mol Sci 13:3527–3548PubMedPubMedCentralCrossRefGoogle Scholar
  142. Mahdieh S, Ghaderian SM, Karimi N (2013) Effect of arsenic on germination, photosynthesis and growth parameters of two winter wheat varieties in Iran. J Plant Nutr 36:651–664CrossRefGoogle Scholar
  143. Malik JA, Goel S, Kaur N, Sharma S, Singh I, Nayyar H (2012) Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environ Exp Bot 77:242–248CrossRefGoogle Scholar
  144. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235PubMedCrossRefPubMedCentralGoogle Scholar
  145. Mandal SM, Gouri SS, De D, Das BK, Mondal KC, Pati BR (2011) Effect of arsenic on nodulation and nitrogen fixation of blackgram (Vigna mungo). Indian J Microbiol 51:44–47PubMedPubMedCentralCrossRefGoogle Scholar
  146. Marin AR, Masscheleyn PH, Patrick WH (1993) Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice. Plant Soil 152:245–253CrossRefGoogle Scholar
  147. Marmiroli M, Pigoni V, Savo-Sardaro ML, Marmiroli N (2014) The effect of silicon on the uptake and translocation of arsenic in tomato (Solanum lycopersicum L.). Environ Exp Bot 99:9–17CrossRefGoogle Scholar
  148. Masscheleyn PH, Delaune RD, Patrick WH Jr (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol 25:1414–1419CrossRefGoogle Scholar
  149. Mateos-Naranjo E, Andrades-Moreno L, Redondo-Gómez S (2012) Tolerance to and accumulation of arsenic in the cordgrass Spartina densiflora Brongn. Biores Technol 104:187–194CrossRefGoogle Scholar
  150. Mathews S, Rathinasabapathi B, Ma LQ (2011) Uptake and translocation of arsenite by Pteris vittata L.: effects of glycerol, antimonite and silver. Environ Pollut 159:3490–3495PubMedCrossRefGoogle Scholar
  151. Matschullat J (2000) Arsenic in the geosphere– a review. Sci Tot Environ 249:297–312CrossRefGoogle Scholar
  152. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43CrossRefGoogle Scholar
  153. Meharg AA, Macnair MR (1990) An altered phosphate uptake system in arsenate-tolerant Holcus lanatus L. New Phytol 116:29–35CrossRefGoogle Scholar
  154. Meharg AA, Macnair MR (1992) Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524CrossRefGoogle Scholar
  155. Melo EE, Costa ET, Guilherme LR, Faquin V, Nascimento CW (2009) Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. J Hazard Mater 168:479–483PubMedCrossRefGoogle Scholar
  156. Messens J, Silver S (2006) Arsenate reduction: thiol cascade chemistry with convergent evolution. J Mol Biol 362:1–17PubMedCrossRefGoogle Scholar
  157. Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248:565–577PubMedCrossRefGoogle Scholar
  158. Mishra S, Srivastava S, Tripathi RD, Trivedi PK (2008) Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquat Toxicol 86:205–215PubMedCrossRefPubMedCentralGoogle Scholar
  159. Mitani N, Yamaji N, Ma JF (2008) Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflugers Archiv 456:679–686PubMedCrossRefPubMedCentralGoogle Scholar
  160. Miteva E, Merakchiyska M (2002) Response of chloroplasts and photosynthetic mechanism of bean plants to excess arsenic in soil. Bulg J Agric Sci:151–156Google Scholar
  161. Mitra A, Chatterjee S, Moogouei R, Gupta DK (2017) Arsenic accumulation in rice and probable mitigation approaches: a review. Agronomy 7:67. CrossRefGoogle Scholar
  162. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410CrossRefGoogle Scholar
  163. Mokgalaka-Matlala NS, Flores-Tavizón E, Castillo-Michel H, Peralta-Videa JR (2008) Gardea-Torresdey JL. Toxicity of arsenic (III) and (V) on plant growth, element uptake, and total amylolytic activity of mesquite (Prosopis juliflora x P. velutina). Int J Phytorem 10:47–60CrossRefGoogle Scholar
  164. Mondal NK, Sen K, Banerjee A, Datta JK (2016) Toxicity of As (III) and As (V) on morphological traits and pigments of Gram Seed (Cicer arietinum) during germination and early seedling growth. Commun Plant Sci 6:1–6Google Scholar
  165. Moore KL, Chen Y, Meene AM, Hughes L, Liu W, Geraki T, Mosselmans F, McGrath SP, Grovenor C, Zhao FJ (2014) Combined NanoSIMS and synchrotron X-ray fluorescence reveal distinct cellular and subcellular distribution patterns of trace elements in rice tissues. New Phytol 201:104–115PubMedCrossRefPubMedCentralGoogle Scholar
  166. Moreno-Jiménez E, Esteban E, Peñalosa JM (2012) The fate of arsenic in soil-plant systems. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology. Springer, New York, pp 1–37Google Scholar
  167. Mosa KA, Kumar K, Chhikara S, Mcdermott J, Liu Z, Musante C, White JC, Dhankher OP (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21:1265–1277CrossRefPubMedPubMedCentralGoogle Scholar
  168. Mubarak H, Mirza N, Chai LY, Yang ZH, Yong W, Tang CJ, Mahmood Q, Pervez A, Farooq U, Fahad S, Nasim W (2016) Biochemical and Metabolic Changes in Arsenic Contaminated Boehmeria nivea L. BioMed Res Int 2016:1423828. CrossRefPubMedPubMedCentralGoogle Scholar
  169. Mukherjee A, Das D, Mondal SK, Biswas R, Das TK, Boujedaini N, Khuda-Bukhsh AR (2010) Tolerance of arsenate-induced stress in Aspergillus niger, a possible candidate for bioremediation. Ecotoxicol Environ Saf 73:172–182PubMedCrossRefPubMedCentralGoogle Scholar
  170. Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbial Rev 26:311–325CrossRefGoogle Scholar
  171. Murtaza G, Rasool F, Habib R, Javed T, Sardar K, Ayub MM, Ayub MA, Rasool A (2016) A review of morphological, physiological and biochemical responses of plants under drought stress conditions. Imp J Interdiscip Res 2:1600–1606Google Scholar
  172. Mylona PV, Polidoros AN, Scandalios JG (1998) Modulation of antioxidant responses by arsenic in maize. Free Radic Biol Med 25:576–585CrossRefGoogle Scholar
  173. Neu S, Schaller J, Dudel EG (2017) Silicon availability modifies nutrient use efficiency and content, C: N: P stoichiometry, and productivity of winter wheat (Triticum aestivum L.). Scientific Rep 7:40829. CrossRefGoogle Scholar
  174. Niste M, Vidican R, Pop R, Rotar I (2013) Stress factors affecting symbiosis activity and nitrogen fixation by Rhizobium cultured in vitro. PoEnvironment/ProMediu 6:42–45Google Scholar
  175. Páez-Espino D, Tamames J, de Lorenzo V, Cánovas D (2009) Microbial responses to environmental arsenic. Biometals 22:117–130PubMedCrossRefPubMedCentralGoogle Scholar
  176. Pajuelo E, Rodríguez-Llorente ID, Dary M, Palomares AJ (2007) Toxic effects of arsenic on SinorhizobiumMedicago sativa symbiotic interaction. Environ Pollut 54:203–211Google Scholar
  177. Palmieri L, Picault N, Arrigoni R, Besin E, Palmieri F, Hodges M (2008) Molecular identification of three Arabidopsis thaliana mitochondrial dicarboxylate carrier isoforms: organ distribution, bacterial expression, reconstitution into liposomes and functional characterization. Biochem J 410:621–629PubMedCrossRefPubMedCentralGoogle Scholar
  178. Panda SK, Chaudhury I, Khan MH (2003) Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves. Biol Plant 46:289–294CrossRefGoogle Scholar
  179. Pandey S, Rai R, Rai LC (2012) Proteomics combines morphological, physiological and biochemical attributes to unravel the survival strategy of Anabaena sp. PCC7120 under arsenic stress. J Proteomics 75:921–937PubMedCrossRefPubMedCentralGoogle Scholar
  180. Patel KS, Shrivas K, Brandt R, Jakubowski N, Corns W, Hoffmann P (2005) Arsenic contamination in water, soil, sediment and rice of central India. Environ Geochem Health 27:131–145PubMedCrossRefPubMedCentralGoogle Scholar
  181. Persson BL, Lagerstedt JO, Pratt JR, Pattison-Granberg J, Lundh K, Shokrollahzadeh S, Lundh F (2003) Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr Genet 43:225–244PubMedCrossRefPubMedCentralGoogle Scholar
  182. Punshon T, Jackson BP, Meharg AA, Warczack T, Scheckel K, Guerinot ML (2017) Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Sci Tot Environ 581:209–220CrossRefGoogle Scholar
  183. Quanji LI, Chengxiao HU, Qiling TA, Xuecheng SU, Jingjun SU, Liang Y (2008) Effects of As on As uptake, speciation, and nutrient uptake by winter wheat (Triticum aestivum L.) under hydroponic conditions. J Environ Sci 20:326–331CrossRefGoogle Scholar
  184. Quazi S, Datta R, Sarkar D (2011) Effect of soil types and forms of arsenical pesticide on rice growth and development. Int J Environ Sci Technol 8:445–460CrossRefGoogle Scholar
  185. Rahman MA, Hasegawa H, Rahman MM, Islam MN, Miah MAM, Tasmen A (2007) Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh. Chemosphere 67:1072–1079CrossRefGoogle Scholar
  186. Rai R, Pandey S, Shrivastava AK, Pandey Rai S (2014) Enhanced photosynthesis and carbon metabolism favor arsenic tolerance in Artemisia annua, a medicinal plant as revealed by homology-based proteomics. Int J Proteomics 2014:163962. CrossRefPubMedPubMedCentralGoogle Scholar
  187. Rai A, Tripathi P, Dwivedi S, Dubey S, Shri M, Kumar S, Tripathi PK, Dave R, Kumar A, Singh R, Adhikari B (2011) Arsenic tolerances in rice (Oryza sativa) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and antioxidant system. Chemosphere 82:986–995PubMedCrossRefPubMedCentralGoogle Scholar
  188. Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216:23–37CrossRefGoogle Scholar
  189. Ravenscroft P, Brammer H, Richards K (2009) Hydrogeochemistry of Arsenic. Arsenic pollution: a global synthesis. Wiley-Blackwell, Oxford, pp 25–114CrossRefGoogle Scholar
  190. Raza MM, Ullah S, Ahmad Z, Saqib S, Ahmad S, Bilal HM, Wali F (2016) Silicon mediated arsenic reduction in rice by limiting its uptake. Agric Sci 7(01):1Google Scholar
  191. Redman AD, Macalady DL, Ahmann D (2002) Natural organic matter affects arsenic speciation and sorption onto hematite. Environ Sci Technol 36:2889–2896PubMedCrossRefPubMedCentralGoogle Scholar
  192. Reed ST, Ayala-Silva T, Dunn CB, Gordon GG (2015) Effects of arsenic on nutrient accumulation and distribution in selected ornamental plants. Agric Sci 6:1513. CrossRefGoogle Scholar
  193. Requejo R, Tena M (2005) Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Phytochem 66:1519–1528CrossRefGoogle Scholar
  194. Roy S, Parveen Z, Huq SI (2012) Effect of Arsenic on the nutrient uptake pattern of Amaranthus. Dhaka University J Biol Sci 21:87–96Google Scholar
  195. Sachs RM, Michaels JL (1971) Comparative phytotoxicity among four arsenical herbicides. Weed Sci 19:558–564Google Scholar
  196. Saha GC (2006) Accumulation of arsenic in agricultural soil and selected crops. PhD thesis, Department of Civil Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, BangladeshGoogle Scholar
  197. Saha J, Dutta M, Biswas AK (2017) Influence of arsenate and phosphate on the regulation of growth and TCA cycle in the rice (Oryza sativa L.) Cultivars IR64 and Nayanmani. Am J Plant Sci 8:1868. CrossRefGoogle Scholar
  198. Sahoo PK, Kim K (2013) A review of the arsenic concentration in paddy rice from the perspective of geoscience. Geosci J 17:107–122CrossRefGoogle Scholar
  199. Sanal F, Şeren G, Güner U (2014) Effects of arsenate and arsenite on germination and some physiological attributes of barley Hordeum vulgare L. Bull Environ Contam Toxicol 92:483–489PubMedCrossRefPubMedCentralGoogle Scholar
  200. Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111:743–767PubMedPubMedCentralCrossRefGoogle Scholar
  201. Sánchez-Bermejo E, Castrillo G, del Llano B, Navarro C, Zarco-Fernández S, Martinez-Herrera DJ, Leo-del Puerto Y, Muñoz R, Cámara C, Paz-Ares J, Alonso-Blanco C (2014) Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana. Nat Commun 5:4617. CrossRefPubMedPubMedCentralGoogle Scholar
  202. Saunders JK, Rocap G (2016) Genomic potential for arsenic efflux and methylation varies among global Prochlorococcus populations. ISME journal 10:197–209PubMedCrossRefPubMedCentralGoogle Scholar
  203. Savci S (2012) Investigation of effect of chemical fertilizers on environment. Apcbee Procedia 1:287–292CrossRefGoogle Scholar
  204. Schmitt FJ, Renger G, Friedrich T, Kreslavksi VD, Zharmukhadmedov SK, Los DA et al (2014) Reactive oxygen species: re-evaluation of generation, monitoring and role in stress-signaling in phototrophicorgan- isms. Biochim Biophys Acta 1837:835–848PubMedCrossRefPubMedCentralGoogle Scholar
  205. Schneider J, Stürmer SL, Guilherme LR, de Souza Moreira FM, de Sousa Soares CR (2013) Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil. J Hazard Mat 262:1105–1115CrossRefGoogle Scholar
  206. Schüβler A (2014) Glomeromycota: species list. [WWW document]. Accessed 9 Nov 2013
  207. Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7:187. CrossRefPubMedPubMedCentralGoogle Scholar
  208. Shaibur MR, Kitajima N, Sugawara R, Kondo T, Imamul Huq SM, Kawai S (2008) Physiological and mineralogical properties of arsenic-induced chlorosis in barley seedlings grown hydroponically. J Plant Nutr 31:333–353CrossRefGoogle Scholar
  209. Sharma I (2013) Arsenic stress in plants: an inside story. In: Hakeem K, Ahmad P, Ozturk M (eds) Crop improvement. Springer, Boston, pp 379–400CrossRefGoogle Scholar
  210. Sharma P, Jha AB, Dubey RS (2014) Arsenic toxicity and tolerance mechanisms in crop plants. In: Pessarakli M (ed) Handbook of plant and crop physiology, 3rd edn. CRC Press, Taylor & Francis Publishing Company, Florida, pp 733–782Google Scholar
  211. Sharma S, Anand G, Singh N, Kapoor R (2017) Arbuscular mycorrhiza augments arsenic tolerance in wheat (Triticum aestivum L.) by strengthening antioxidant defense system and thiol metabolism. Front Plant Sci 8:906. CrossRefPubMedPubMedCentralGoogle Scholar
  212. Sharma SS, Dietz KJ, Mimura T (2016) Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant Cell Environ 39:1112–1126PubMedCrossRefPubMedCentralGoogle Scholar
  213. Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) Mechanisms of arsenate resistance in the ericoid mycorrhizal fungus, Hymenoscyphu ericae. Plant Physiol 124:1327–1334PubMedPubMedCentralCrossRefGoogle Scholar
  214. Shi Q, Bao Z, Zhu Z, He Y, Qian Q, Yu J (2005) Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry 66:1551–1159PubMedCrossRefPubMedCentralGoogle Scholar
  215. Shi S, Wang T, Chen Z, Tang Z, Wu Z, Salt DE, Chao DY, Zhao F (2016) OsHAC1; 1 and OsHAC1; 2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiol 172:1708–1719PubMedPubMedCentralCrossRefGoogle Scholar
  216. Shri M, Kumar S, Chakrabarty D, Trivedi PK, Mallick S, Misra P, Shukla D, Mishra S, Srivastava S, Tripathi RD, Tuli R (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72:1102–1110PubMedPubMedCentralCrossRefGoogle Scholar
  217. Shrivastava A, Ghosh D, Dash A, Bose S (2015) Arsenic contamination in soil and sediment in India: sources, effects, and remediation. Curr Pollut Rep 1:35–46CrossRefGoogle Scholar
  218. Shukla D, Kesari R, Mishra S, Dwivedi S, Tripathi RD, Nath P, Trivedi PK (2012) Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. Plant Cell Rep 31:1687–1699PubMedCrossRefPubMedCentralGoogle Scholar
  219. Shukla D, Tiwari M, Tripathi RD, Nath P, Trivedi PK (2013) Synthetic phytochelatins complement a phytochelatin-deficient Arabidopsis mutant and enhance the accumulation of heavy metal(loid)s. Biochem Biophys Res Commu 434:664–669CrossRefGoogle Scholar
  220. Siddiqui F, Tandon PK, Srivastava S (2015a) Arsenite and arsenate impact the oxidative status and antioxidant responses in Ocimum tenuiflorum L. Physiol Mol Biol Plant 21:453–458CrossRefGoogle Scholar
  221. Siddiqui F, Tandon PK, Srivastava S (2015b) Analysis of arsenic induced physiological and biochemical responses in a medicinal plant, Withania somnifera. Physiol Mol Biol Plant 21:61–69CrossRefGoogle Scholar
  222. Silva AJ, Nascimento CW, Neto G, da Silva A, Silva Junior EA (2015) Effects of silicon on alleviating arsenic toxicity in maize plants. R Bras Ci Solo 39:289–296CrossRefGoogle Scholar
  223. Singh HP, Batish DR, Kohli RK, Arora K (2007) Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul 53:65–73CrossRefGoogle Scholar
  224. Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plant Sci 170:274–282CrossRefGoogle Scholar
  225. Singh N, Ma LQ, Vu JC, Raj A (2009) Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns. Environ Pollut 157:2300–2305PubMedCrossRefPubMedCentralGoogle Scholar
  226. Singh N, Raj A, Khare PB, Tripathi RD, Jamil S (2010) Arsenic accumulation pattern in 12 Indian ferns and assessing the potential of Adiantum capillus-veneris, in comparison to Pteris vittata, as arsenic hyperaccumulator. Biores Tech 101:8960–8968CrossRefGoogle Scholar
  227. Singh S, Shrivastava AK, Singh VK (2014) Arsenic and cadmium are inhibitors of cyanobacterial dinitrogenase reductase (nifH1) gene. Funct Integr Genomics 14:571–580PubMedCrossRefPubMedCentralGoogle Scholar
  228. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568CrossRefGoogle Scholar
  229. Smith JD (2016) The chemistry of arsenic, antimony and bismuth. In: Trotman-Dickenson AF (ed) Pergamon texts in inorganic chemistry. Pergamon Press, New York, pp 547–681Google Scholar
  230. Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20CrossRefGoogle Scholar
  231. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, San Diego, p 787Google Scholar
  232. Song A, Li Z, Zhang J, Xue G, Fan F, Liang Y (2009) Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. J Hazard Mat 172:74–83CrossRefGoogle Scholar
  233. Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proceed Nat Acad Sci 107:21187–21192CrossRefGoogle Scholar
  234. Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma JF (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proceed Nat Acad Sci 111:15699–15704CrossRefGoogle Scholar
  235. Spagnoletti F, Lavado RS (2015) The arbuscular mycorrhiza Rhizophagus intraradices reduces the negative effects of arsenic on soybean plants. Agronomy 5:188–199CrossRefGoogle Scholar
  236. Spagnoletti FN, Balestrasse K, Lavado RS, Giacometti R (2016) Arbuscular mycorrhiza detoxifying response against arsenic and pathogenic fungus in soybean. Ecotoxicol Environ Saf 133:47–56PubMedPubMedCentralCrossRefGoogle Scholar
  237. Sridhar BB, Han FX, Diehl SV, Monts DL, Su Y (2011) Effect of phytoaccumulation of arsenic and chromium on structural and ultrastructural changes of brake fern (Pteris vittata). Braz J Plant Physiol 23:285–293CrossRefGoogle Scholar
  238. Srivastava M, Ma LQ, Singh N, Singh S (2005) Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 56:1335–1342CrossRefGoogle Scholar
  239. Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409:2430–2442PubMedCrossRefPubMedCentralGoogle Scholar
  240. Srivastava S, D’souza SF (2010) Effect of variable sulfur supply on arsenic tolerance and antioxidant responses in Hydrilla verticillata (Lf) Royle. Ecotoxicol Environ Saf 73:1314–1322PubMedCrossRefPubMedCentralGoogle Scholar
  241. Srivastava S, Sharma YK (2013) Arsenic occurrence and accumulation in soil and water of eastern districts of Uttar Pradesh, India. Environ Monit Assess 185:4995–5002PubMedCrossRefPubMedCentralGoogle Scholar
  242. Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2013) Quantitative real-time expression profiling of aquaporin-isoforms and growth response of Brassica juncea under arsenite stress. Mol Biol Rep 40:2879–2886PubMedPubMedCentralCrossRefGoogle Scholar
  243. Srivastava S, Srivastava AK, Suprasanna P, D'souza SF (2009) Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J Expl Bot 60:3419–3431CrossRefGoogle Scholar
  244. Stazi SR, Marabottini R, Papp R, Moscatelli MC (2015) Arsenic in soil: Availability and interactions with soil microorganisms. In: Sherameti I, Varma A (eds) Heavy metal contamination of soils. Soil biology, vol 44. Springer, Cham, pp 113–126Google Scholar
  245. Stoeva N, Berova M, Zlatev Z (2005) Effect of arsenic on some physiological parameters in bean plants. Biol Plant 49:293–306CrossRefGoogle Scholar
  246. Stoeva N, Bineva T (2003) Oxidative changes and photosynthesis in Oat plants grown in As-contaminated soil. Bulg J Plant Physiol 29:87–95Google Scholar
  247. Streat M, Hellgardt K, Newton NL (2008) Hydrous ferric oxide as an adsorbent in water treatment (Part 3). Process Saf Environ Prot 6:1–9CrossRefGoogle Scholar
  248. Sultana R, Rahman A, Kibria KQ, Islam MS, Haque MM (2012) Effect of arsenic contaminated irrigation water on growth, yield and nutrient accumulation of Vigna Radiata. IJID 1:682–686Google Scholar
  249. Swarnakar A (2016) Mitigation of toxic effects of sodium arsenate on germination, seedling growth and amylolytic enzyme of mungbean seedlings with macronutrients, micronutrients and organic acids. Int J Curr Microb Appl Sci 5:151–160CrossRefGoogle Scholar
  250. Talukdar D (2011) Effect of arsenic-induced toxicity on morphological traits of Trigonella foenum-graecum L. and Lathyrus sativus L during germination and early seedling growth. Curr Res J Biol Sci 3:116–123Google Scholar
  251. Talukdar D (2013) Arsenic-induced oxidative stress in the common bean legume, Phaseolus vulgaris L. seedlings and its amelioration by exogenous nitric oxide. Physiol Mol Biol Plant 19:69–79CrossRefGoogle Scholar
  252. Tamaki S, Frankenberger WT (1992) Environmental biochemistry of arsenic. Rev Environ Contam Toxicol 124:79–110PubMedPubMedCentralGoogle Scholar
  253. Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:939161. CrossRefGoogle Scholar
  254. Thiagalingam K, Silva JA, Fox RL (1977) Effect of calcium silicate on yield and nutrient uptake in plants grown on a humic ferruginous latosol. In: Conference on Chemistry and Fertility of Tropical Soils, Kuala Lumpur, 5–10 Nov 1973 1977 PSTMGoogle Scholar
  255. Tlustos P, Szakova J, Hruby J, Hartman I, Najmanova J, Nedelnik J, Pavlikova D, Batysta M (2006) Removal of As, Cd, Pb, and Zn from contaminated soil by high biomass producing plants. Plant Soil Environ 52:413–423CrossRefGoogle Scholar
  256. Torres MA, Jones JD, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403PubMedPubMedCentralCrossRefGoogle Scholar
  257. Tripathi DK, Kumar R, Pathak AK, Chauhan DK, Rai AK (2012) Laser-induced breakdown spectroscopy and Phytolith analysis: an approach to study the deposition and distribution pattern of silicon in different parts of wheat (Triticum aestivum L.) plant. Agri Res 1:352–361CrossRefGoogle Scholar
  258. Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81PubMedCrossRefPubMedCentralGoogle Scholar
  259. Tripathi P, Tripathi RD, Singh RP, Dwivedi S, Goutam D, Shri M, Trivedi PK, Chakrabarty D (2013) Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system. Ecol Eng 52:96–103CrossRefGoogle Scholar
  260. Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJ (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165CrossRefGoogle Scholar
  261. Tu C, Ma LQ (2005) Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L. Environ Pollution 135:333–340CrossRefGoogle Scholar
  262. Turpeinen R, Kallio MP, Kairesalo T (2002) Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils. Sci Total Environ 285:133–145PubMedCrossRefGoogle Scholar
  263. Turpeinen R, Pantsar-Kallio M, Kairesalo T (2001) Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils. Sci Total Environ 285:133–145CrossRefGoogle Scholar
  264. Ultra VUY, Tanaka S, Sakurai K, Iwasaki K (2007) Arbuscular mycorrhizal fungus (Glomus aggregatum) influences biotransformation of arsenic in the rhizosphere of sunflower (Helianthus annus L.). Soil Sci Plant Nutr 53:499−508CrossRefGoogle Scholar
  265. Upadhyaya H, Panda SK, Bhattacharjee MK, Dutta S (2010) Role of arbuscular mycorrhiza in heavy metal tolerance in plants: prospects for phytoremediation. J Phytol 2:16–27Google Scholar
  266. Upadhyaya H, Shome S, Roy D, Bhattacharya MK (2014) Arsenic induced changes in growth and physiological responses in Vigna radiata seedling: effect of curcumin interaction. Am J Plant Sci 5:3609. CrossRefGoogle Scholar
  267. USDI (2009) Mineral commodity summaries. USGS. Accessed 15 July 2009
  268. Vega L, Styblo M, Patterson R, Cullen W, Wang C, Germolec D (2001) Differential effects of trivalent and pentavalent arsenicals on cell proliferation and cytokine secretion in normal human epidermal keratinocytes. Toxicol Appl Pharmacol 172:225–232PubMedCrossRefGoogle Scholar
  269. Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Boil 12:364–372CrossRefGoogle Scholar
  270. Walker DJ, Clemente R, Bernal MP (2004) Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 57:215–224PubMedCrossRefGoogle Scholar
  271. Wang HB, Xie F, Yao YZ, Zhao B, Xiao QQ, Pan YH, Wang HJ (2012) The effects of arsenic and induced-phytoextraction methods on photosynthesis in Pteris species with different arsenic-accumulating abilities. Environ Exp Bot 75:298–306CrossRefGoogle Scholar
  272. Weng L, Van Riemsdijk WH, Hiemstra T (2009) Effects of fulvic and humic acids on arsenate adsorption to goethite: experiments and modeling. Environ Sci Technol 43:7198–7204PubMedCrossRefPubMedCentralGoogle Scholar
  273. Wolterbeek HT, Meer AJGM (2002) Transport rate of arsenic, cadmium, copper and zinc in Potamogeton pectinatus L.: radiotracer experiments with 76 As, 109,115Cd, 64 Cu and 65,69m Zn. Sci Tot Environ 287:13–30CrossRefGoogle Scholar
  274. Wu Z, Ren H, McGrath SP, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508PubMedPubMedCentralCrossRefGoogle Scholar
  275. Xu W, Dai W, Yan H, Li S, Shen H, Chen Y, Xu H, Sun Y, He Z, Ma M (2015) Arabidopsis NIP3; 1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8:722–733PubMedCrossRefPubMedCentralGoogle Scholar
  276. Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599CrossRefGoogle Scholar
  277. Xu J, Shi S, Wang L, Tang Z, Lv T, Zhu X, Ding X, Wang Y, Zhao FJ, Wu Z (2017) OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytol 15:1090–1101CrossRefGoogle Scholar
  278. Yang HC, Fu HL, Lin YF, Rosen BP (2012) Pathways of arsenic uptake and efflux. Curr Top Membr 69:325–358PubMedPubMedCentralCrossRefGoogle Scholar
  279. Yadav RK, Srivastava SK (2015) Effect of arsenite and arsenate on lipid peroxidation, enzymatic and non-enzymatic antioxidants in Zea mays Linn. Biochem Physiol 4:186.Google Scholar
  280. Yin X, Chen J, Qin J, Sun G, Rosen B, Zhu Y (2011) Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol 156:1631–1638PubMedPubMedCentralCrossRefGoogle Scholar
  281. Yu Y, Zhang S, Huang H, Wu N (2010) Uptake of arsenic by maize inoculated with three different arbuscular mycorrhizal fungi. Commun Soil Sci Plant Anal 41:735–743CrossRefGoogle Scholar
  282. Zhang H, Selim HM (2008) Reaction and transport of arsenic in soils: equilibrium and kinetic modeling. Adv Agron 98:45–115CrossRefGoogle Scholar
  283. Zhang X, Ren BH, Wu SL, Sun YQ, Lin G, Chen BD (2015) Arbuscular mycorrhizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic-contaminated soil. Chemosphere 119:224–230PubMedCrossRefPubMedCentralGoogle Scholar
  284. Zhang Y, Yu Z, Fu X, Liang C (2002) Noc3p, a bHLH protein, plays an integral role in the initiation of DNA replication in budding yeast. Cell 109:849–860PubMedCrossRefPubMedCentralGoogle Scholar
  285. Zhao FJ, Ago Y, Mitani N, Li RY, Su YH, Yamaji N, McGrath SP, Ma JF (2010) The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytol 186:392–399PubMedCrossRefPubMedCentralGoogle Scholar
  286. Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:392–399CrossRefGoogle Scholar
  287. Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, McGrath SP (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159:403–410CrossRefGoogle Scholar
  288. Zheng R, Sun G, Zhu Y (2013) Effects of microbial processes on the fate of arsenic in paddy soil. Chin Sci Bull 1:1–8Google Scholar
  289. Zu YQ, Sun JJ, He YM, Wu J, Feng GQ, Li Y (2016) Effects of arsenic on growth, photosynthesis and some antioxidant parameters of Panax notoginseng growing in shaded conditions. Int J Adv Agri Res 4:78–88Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Lakita Kashyap
    • 1
  • Neera Garg
    • 1
  1. 1.Department of BotanyPanjab UniversityChandigarhIndia

Personalised recommendations