Arsenic-Induced Oxidative Stress in Plants

  • Anna Kostecka-Gugała
  • Dariusz Latowski


Oxidative stress is a common phenomenon in organisms that are exposed to arsenic (As), as well as many other abiotic or biotic stresses. This chapter describes the influence of As on the production of individual reactive oxygen species (ROS) in various pathways of a plant cell. Inorganic As(V) disrupts the phosphorylation metabolism, interfering with, inter alia, the flow of cellular energy. During As(V) to As(III) reduction, the electron leakage leads to ROS formation, and the accompanying redox-driven methylation contributes further to more ROS generation. Inorganic As(III) reacts with sulfhydryl groups of proteins, glutathione (GSH), and phytochelatins, affecting several important cellular functions including those related to the oxidative stress. The description of As toxicity includes the As-induced ROS reactions with macromolecules: lipid peroxidation and protein and nucleic acid damage. Some cellular processes are affected by As, e.g., As-induced ROS are involved in the activation of MAPK signaling cascades resulting in targeting transcription factors and the gene expression. Redox imbalances influence the enzymatic antioxidant system and mobilize the cell to synthesize low-molecular-weight antioxidants which are important in the prevention of ROS-induced damage. Other metabolic consequences of As-induced oxygen stress in the plant cell are also described in the chapter.


Antioxidant defense Oxidative stress Metalloids Reactive oxygen species Soil pollution 


  1. Abercrombie JM, Halfhill MD, Ranjan P, Rao MR, Saxton AM, Yuan JS, Stewart CN (2008) Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biol 8:87. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agrawal GK, Tamogami S, Iwahashi H et al (2003) Transient regulation of jasmonic acid-inducible rice MAP kinase gene (OsBWMK1) by diverse biotic and abiotic stresses. Plant Physiol Biochem 41(4):355–361. CrossRefGoogle Scholar
  3. Ahsan N, Lee DG, Alam I, Kim PJ, Lee JJ, Ahn YO, Kwak SS, Lee IJ, Bahk JD, Kang KY, Renaut J, Komatsu S, Lee BH (2008) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 8:3561–3576PubMedCrossRefPubMedCentralGoogle Scholar
  4. Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry 70:200–214PubMedPubMedCentralGoogle Scholar
  5. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399PubMedCrossRefPubMedCentralGoogle Scholar
  6. Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signaling molecule in plant stress responses. Plant Sci 172:876–887CrossRefGoogle Scholar
  7. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983PubMedCrossRefPubMedCentralGoogle Scholar
  8. Baker A, Graham AI (eds) (2002) Plant peroxisomes: biochemistry, cell biology and biotechnological applications. Kluwer, DordrechtGoogle Scholar
  9. Barchowsky A, Dudek EJ, Treadwell MD, Wetterhahn KE (1996) Arsenic induces oxidant stress and NF kappa B activation in cultured aortic endothelial cells. Free Radic Biol Med 21:783–790PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bela K, Horváth E, Gallé A, Szabados L, Tari I, Csiszár J (2015) Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J Plant Physiol 176:192–201PubMedCrossRefPubMedCentralGoogle Scholar
  11. Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129:1642–1650PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bergquist ER, Fischer RJ, Sugden KD, Martin BD (2009) Inhibition by methylated organo-arsenicals of the respiratory 2-oxo-acid dehydrogenases. J Organomet Chem 694:973–980PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bethke PC, Jones RL (2001) Cell death of barley aleurone protoplasts is mediated by reactive oxygen species. Plant J 25:19–29PubMedCrossRefPubMedCentralGoogle Scholar
  14. Betteridge DJ (2000) What is oxidative stress? Metabolism 49(2 suppl 1):3–8PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR, Ausubel FM, Bolwell GP (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47:851–863PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bleeker PM, Schat H, Vooijs R et al (2003) Mechanisms of arsenate tolerance in Cytisus striatus. New Phytol 157:33–381CrossRefGoogle Scholar
  17. Bleeker PM, Hakvoort HWJ, Bliek M et al (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J 45:917–929PubMedCrossRefPubMedCentralGoogle Scholar
  18. Boradia VM, Raje M, Raje CI (2014) Protein moonlighting in iron metabolism: glyceraldehyde-3-phosphate dehyrogenase (GAPDH). Biochem Soc Trans 42:1796–1801PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cao X, Ma LQ, Tub C (2004) Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environ Pollut 128:317–325CrossRefGoogle Scholar
  20. Chakrabarty N (2015) Introduction to arsenic toxicity. In: Chakrabarty N (ed) Arsenic toxicity. CRC Press, Boca Raton, pp 3–14CrossRefGoogle Scholar
  21. Chakrabarty D, Trivedi PK, Misra P et al (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74:688–702CrossRefGoogle Scholar
  22. Chan Z, Yokawa K, Kim W-Y et al (2016) Editorial: ROS regulation during plant abiotic stress responses. Front Plant Sci 7:1536PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chen YC, Lin-Shiau SY, Lin JK (1998) Involvement of reactive oxygen species and caspase 3 activation in arsenite induced apoptosis. J Cell Physiol 177:324–333PubMedCrossRefPubMedCentralGoogle Scholar
  24. Chou WC, Jie C, Kenedy AA et al (2004) Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proc Natl Acad Sci U S A 101:4578–4583PubMedPubMedCentralCrossRefGoogle Scholar
  25. Choudhury S, Panda P, Sohoo L et al (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8:e23681. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cleland RE, Grace SC (1999) Voltometric detection of superoxide production by photosystem II. FEBS Lett 457:348–352PubMedCrossRefPubMedCentralGoogle Scholar
  27. Cozzolino V, Pigna M, Di Meo V et al (2010) Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth of Lactuca sativa L. and arsenic and phosphorus availability in an arsenic polluted soil under non-sterile conditions. Appl Soil Ecol 45:262–268CrossRefGoogle Scholar
  28. Czech V, Czövek P, Fodor J et al (2008) Investigation of arsenate phytotoxicity in cucumber plants. Acta Biol Szeged 52:79–80Google Scholar
  29. Dave R, Mishra A, Tripathi RD et al (2013) Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice (Oryza sativa L.) genotypes. J Hazard Mater 262:1123–1131PubMedPubMedCentralCrossRefGoogle Scholar
  30. Delnomdedieu M, Basti MM, Otvos JD et al (1994) Reduction and binding of arsenate and dimethylarsinate by glutathione – a magnetic resonance study. Chem Biol Interact 90:139–155PubMedCrossRefPubMedCentralGoogle Scholar
  31. Desikan R, Neill SJ, Hancock JT (2000) Hydrogen peroxide-induced gene expression in Arabidopsis thaliana. Free Radic Biol Med 28:773–778PubMedCrossRefPubMedCentralGoogle Scholar
  32. Desikan R, Mackerness SA-H, Hancock JT et al (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dho S, Camusso W, Mucciarelli M et al (2010) Arsenate toxicity on the apices of Pisum sativum L. seedling root: effect on mitotic activity, chromatin integrity and microtubules. Environ Exp Bot 69:17–23CrossRefGoogle Scholar
  34. Ding W, Hudson LG, Liu KJ (2005) Inorganic arsenic compounds cause oxidative damage to DNA and protein by inducing ROS and RNS generation in human keratinocytes. Mol Cell Biochem 279:105–112PubMedCrossRefPubMedCentralGoogle Scholar
  35. Domingos P, Prado AM, Wong A (2015) Nitric oxide: a multitasked signaling gas in plants. Mol Plant 8:506–520PubMedCrossRefPubMedCentralGoogle Scholar
  36. Duan G-L, Hu Y, Liu Wen-Ju et al (2011) Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain. Environ Exp Bot 71:416–421Google Scholar
  37. Duman F, Ozturk F, Aydin Z (2010) Biological responses of duckweed (Lemna minor L.) exposed to the inorganic arsenic species As(III) and As(V): effects of concentration and duration of exposure. Ecotoxicology 19:983–993CrossRefGoogle Scholar
  38. Dwivedi S, Tripathi RD, Tripathi P et al (2010) Arsenate exposure affects amino acids, mineral nutrient status and antioxidants in rice (Oryza sativa L.) genotypes. Environ Sci Technol 44:9542–9549PubMedCrossRefGoogle Scholar
  39. Ellis DR, Gumaelius L, Indriolo E et al (2006) A novel arsenate reductase from the arsenic hyperaccumulating Pteris vittata. Plant Physiol 141:1544–1554PubMedPubMedCentralCrossRefGoogle Scholar
  40. Elstner EF (1991) Mechanism of oxygen activation in different compartments of plant cells. In: Pell EJ, Steffen KL (eds) Active oxygen/oxidative stress and plant metabolism. American Society of Plant Physiologists, Rockville, pp 13–25Google Scholar
  41. Erb TJ, Kiefer P, Hattendorf B et al (2012) GFAJ-1 is an arsenate-resistant, phosphate-dependent organism. Science 337:467–470PubMedCrossRefPubMedCentralGoogle Scholar
  42. Espinosa-Diez C, Miguel V, Mennerich D et al (2015) Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 6:183–197PubMedPubMedCentralCrossRefGoogle Scholar
  43. Farnese FS, Oliveira JA, Paiva EAS et al (2017) The involvement of nitric oxide in integration of plant physiological and ultrastructural adjustments in response to arsenic. Front Plant Sci 8:516. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Farooq MA, Gill RA, Ali B et al (2016) Subcellular distribution, modulation of antioxidant and stress-related genes response to arsenic in Brassica napus L. Ecotoxicology 25:350–366PubMedCrossRefPubMedCentralGoogle Scholar
  45. Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:1–18CrossRefGoogle Scholar
  46. Flora SJS, Bhadauria S, Kannan GM et al (2007) Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: a review. J Environ Biol 28:333–347PubMedPubMedCentralGoogle Scholar
  47. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875PubMedPubMedCentralCrossRefGoogle Scholar
  48. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18PubMedPubMedCentralCrossRefGoogle Scholar
  49. Fridovich I (1995) Superoxide radical and superoxide dismutase. Annu Rev Biochem 64:97–112PubMedCrossRefPubMedCentralGoogle Scholar
  50. Galvez-Valdivieso G, Mullineaux PM (2010) The role of reactive oxygen species in signalling from chloroplasts to the nucleus. Physiol Plant 138:430–439PubMedCrossRefPubMedCentralGoogle Scholar
  51. Geng CN, Zhu YG, Hu Y et al (2006) Arsenate causes differential acute toxicity to two P-deprived genotypes of rice seedlings (Oryza sativa L.). Plant Soil 279:297–306CrossRefGoogle Scholar
  52. Ghelfi A, Gaziola SA, Cia MC et al (2011) Cloning, expression, molecular modelling and docking analysis of glutathione transferase from Saccharum officinarum. Ann Appl Biol 159:267–280CrossRefGoogle Scholar
  53. Ghosh S, Shaw AK, Azahar I et al (2016) Arsenate (AsV) stress response in maize (Zea mays L.). Environ Exp Bot 130:53–67CrossRefGoogle Scholar
  54. Gresser MJ (1981) ADP-arsenate. Formation by submitochondrial particles under phosphorylating conditions. J Biol Chem 256:5981–5983PubMedPubMedCentralGoogle Scholar
  55. Gross F, Durner J, Gaupels F (2013) Nitric oxide, antioxidants and prooxidants in plant defence responses. Front Plant Sci 4:419PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gupta M, Sharma P, Sarin NB et al (2009) Differential response of arsenic stress in two varieties of Brassica juncea L. Chemosphere 74:1201–1208PubMedCrossRefPubMedCentralGoogle Scholar
  57. Gupta DK, Inouhe M, Rodríguez-Serrano M et al (2013) Oxidative stress and arsenic toxicity: role of NADPH oxidases. Chemosphere 90:1987–1996CrossRefGoogle Scholar
  58. Gurr JR, Liu F, Lynn S et al (1998) Calcium dependent nitric oxide production is involved in arsenite induced micronuclei. Mutat Res 416:137–148PubMedCrossRefPubMedCentralGoogle Scholar
  59. Halliwell B (1994) Free radicals, antioxidants and human disease: curiosity, cause or consequence. Lancet 344:721–724PubMedCrossRefPubMedCentralGoogle Scholar
  60. Halliwell B, Gutteridge JM (1986) Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys 246:501–514PubMedCrossRefPubMedCentralGoogle Scholar
  61. Hancock J, Desikan R, Neill S (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29:345–349PubMedCrossRefPubMedCentralGoogle Scholar
  62. Hartley-Whitaker J, Ainsworth G, Meharg A (2001a) Copper and-arsenic induced oxidative stress in Holcus lanatus L. cloned with differential sensitivity. Plant Cell Environ 24:713–722CrossRefGoogle Scholar
  63. Hartley-Whitaker J, Ainsworth G, Vooijs R et al (2001b) Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol 126:299–306PubMedPubMedCentralCrossRefGoogle Scholar
  64. Heyno E, Mary V, Schopfer P et al (2011) Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes. Planta 234:35–45PubMedCrossRefPubMedCentralGoogle Scholar
  65. Hosseini MJ, Shaki F, Ghazi-Khansari M et al (2013) Toxicity of arsenic (III) on isolated liver mitochondria: a new mechanistic approach. Iran J Pharm Res 12:121–138PubMedPubMedCentralGoogle Scholar
  66. Huang X, von Rad U, Durner J (2002) Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta 215:914–923PubMedCrossRefPubMedCentralGoogle Scholar
  67. Huang C, Qingdong K, Costa M et al (2004) Molecular mechanisms of arsenic carcinogenesis. Mol Cell Biochem 255:57–66PubMedCrossRefPubMedCentralGoogle Scholar
  68. Huang TL, Nguyen QT, Fu SF et al (2012) Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Mol Biol 80:587–608PubMedCrossRefPubMedCentralGoogle Scholar
  69. Hunt KM, Srivastava RK, Elmets CA et al (2014) The mechanistic basis of arsenicosis: pathogenesis of skin cancer. Cancer Lett 354:211–219PubMedPubMedCentralCrossRefGoogle Scholar
  70. Islam E, Khan MT, Irem S (2015) Biochemical mechanisms of signaling: perspectives in plants under arsenic stress. Ecotoxicol Environ Saf 114:126–133PubMedCrossRefPubMedCentralGoogle Scholar
  71. Jena NR (2012) DNA damage by reactive species: mechanisms, mutation and repair. J Biosci 37:503–517PubMedCrossRefPubMedCentralGoogle Scholar
  72. Jin J-W, Xu Y-F, Huang Y-F (2010) Protective effect of nitric oxide against arsenic-induced oxidative damage in tall fescue leaves. Afr J Biotechnol 9:1619–1627CrossRefGoogle Scholar
  73. Jomova K, Jenisova Z, Feszterova M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107PubMedPubMedCentralGoogle Scholar
  74. Jonak C, Okresz L, Bogre L et al (2002) Complexity, cross talk and integration of plant MAP kinase signaling. Curr Opin Plant Biol 5:415–424PubMedCrossRefPubMedCentralGoogle Scholar
  75. Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060PubMedPubMedCentralCrossRefGoogle Scholar
  76. Khan I, Ahmad A, Iqbal M (2009) Modulation of antioxidant defence system for arsenic detoxification in Indian mustard. Ecotoxicol Environ Saf 72:626–634PubMedCrossRefPubMedCentralGoogle Scholar
  77. Kiffin R, Bandyopadhyay U, Cuervo AM (2006) Oxidative stress and autophagy. Antioxid Redox Signal 8:152–162PubMedCrossRefPubMedCentralGoogle Scholar
  78. Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98:551–564PubMedCrossRefPubMedCentralGoogle Scholar
  79. Kröncke KD, Klotz LO (2009) Zinc fingers as biologic redox switches? Antioxid Redox Signal 11:1015–1027PubMedCrossRefPubMedCentralGoogle Scholar
  80. Kumagai Y (2009) Fusion of field and laboratory studies on the investigation of arsenic. Yakugaku Zasshi 129:1177–1185PubMedCrossRefPubMedCentralGoogle Scholar
  81. Kumagai Y, Sumi D (2007) Arsenic: signal transduction, transcription factor, and biotransformation involved in cellular response and toxicity. Annu Rev Pharmacol Toxicol 47:243–262PubMedCrossRefPubMedCentralGoogle Scholar
  82. Kumar S, Dubey RS, Tripathi RD (2015) Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ Int 74:221–230PubMedCrossRefPubMedCentralGoogle Scholar
  83. Kwak JM, Mori IC, Pei ZM et al (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lamattina L, Garcia-Mata C, Graziano M et al (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136PubMedCrossRefPubMedCentralGoogle Scholar
  85. Lau A, Zheng Y, Tao S et al (2013) Arsenic inhibits autophagic flux activating the Nrf2-Keap1 pathway in a p62-dependent manner. Mol Cell Biol 33:2436–2446PubMedPubMedCentralCrossRefGoogle Scholar
  86. Li Y, Dhankher OP, Carreira L et al (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:787–1797Google Scholar
  87. Li WX, Chen TB, Huang ZC et al (2006) Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L. Chemosphere 62:803–809CrossRefGoogle Scholar
  88. Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260PubMedCrossRefPubMedCentralGoogle Scholar
  89. Litwin I, Bocer T, Dziadkowiec D et al (2013) Oxidative stress and replication-independent DNA breakage induced by arsenic in Saccharomyces cerevisiae. PLoS Genet 9:e1003640. CrossRefPubMedPubMedCentralGoogle Scholar
  90. López-Huertas E, Corpas FJ, Sandalio LM et al (1999) Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation. Biochem J 337:531–536PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lushchak VI, Semchuk NM (2012) Tocopherol biosynthesis: chemistry, regulation and effects of environmental factors (Review). Acta Physiol Plant 34:1607–1628CrossRefGoogle Scholar
  92. Lynn S, Gurr JR, Lai HT et al (2000) NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells. Circ Res 86:514–519PubMedCrossRefPubMedCentralGoogle Scholar
  93. Mäder M, Ungemach J, Schloss P (1980) The role of peroxidase isozyme groups of Nicotiana tabacum in hydrogen peroxide formation. Planta 147:467–470PubMedCrossRefPubMedCentralGoogle Scholar
  94. Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187CrossRefGoogle Scholar
  95. Mascher R, Lippman B, Holzinger S et al (2002) Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci 163:961–969CrossRefGoogle Scholar
  96. Meadows R (2014) How plants control arsenic accumulation. PLoS Biol 12:e1002008. CrossRefPubMedPubMedCentralGoogle Scholar
  97. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43Google Scholar
  98. Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489PubMedCrossRefPubMedCentralGoogle Scholar
  99. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410CrossRefGoogle Scholar
  100. Mittler R, Vanderauwera S, Suzuki N et al (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309PubMedCrossRefPubMedCentralGoogle Scholar
  101. Mokgalaka-Matlala NS, Flores-Tavizon E, Castillo-Michel H (2009) Arsenic tolerance in mesquite (Prosopis sp.): low molecular weight thiols synthesis and glutathione activity in response to arsenic. Plant Physiol Biochem 47:822–826CrossRefGoogle Scholar
  102. Moon H, Lee B, Choi G et al (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci U S A 100:358–363PubMedCrossRefPubMedCentralGoogle Scholar
  103. Mucha S, Berezowski M, Markowska K (2017) Mechanisms of arsenic toxicity and transport in microorganisms. Adv Microbiol 56:88–99Google Scholar
  104. Muller-Delp JM, Gurovich AN, Christou DD et al (2012) Redox balance in the aging microcirculation: new friends, new foes, and new clinical directions. Microcirculation 19:19–28PubMedCrossRefPubMedCentralGoogle Scholar
  105. Murphy MP (2009) How mitochondria produce reactive species. Biochem J 417:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  106. Mylona PV, Polidoros AN, Scandalios JG (1998) Modulation of antioxidant responses by arsenic in maize. Free Radic Biol Med 25:576–585CrossRefGoogle Scholar
  107. Naranmandura H, Xu S, Sawata T et al (2011) Mitochondria are the main target organelle for trivalent monomethylarsonous acid (MMAIII)-induced cytotoxicity. Chem Res Toxicol 24:1094–1103PubMedCrossRefPubMedCentralGoogle Scholar
  108. Nath S, Panda P, Mishra S et al (2014) Arsenic stress in rice: redox consequences and regulation by iron. Plant Physiol Biochem 80:203–210PubMedCrossRefPubMedCentralGoogle Scholar
  109. Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395PubMedCrossRefPubMedCentralGoogle Scholar
  110. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol 49:249–279CrossRefGoogle Scholar
  111. Noctor G, Mhamdi A, Chaouch S et al (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35(2):454–484. Scholar
  112. Norton GJ, Lou-Hing DE, Meharg AA et al (2008) Rice-arsenate interaction in hydroponics: whole genome transcriptional analysis. J Exp Bot 59:2267–22761PubMedPubMedCentralCrossRefGoogle Scholar
  113. Nott A, Jung H-S, Koussevitzky S et al (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759PubMedCrossRefPubMedCentralGoogle Scholar
  114. Oz MT, Eyidogan F, Yucel M et al (2015) Functional role of nitric oxide under abiotic stress conditions. In: Khan M, Mobin M, Mohammad F, Corpas F (eds) Nitric oxide action in abiotic stress responses in plants. Springer, Cham, pp 21–41Google Scholar
  115. Ozyigit II, Filiz E, Vatansever R et al (2016) Identification and comparative analysis of H2O2 -scavenging enzymes (ascorbate peroxidase and glutathione peroxidase) in selected plants employing bioinformatics approaches. Front Plant Sci 7:301. CrossRefPubMedPubMedCentralGoogle Scholar
  116. Padmanabhan MS, Dinesh-Kumar SP (2010) All hands on deck – the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity. Mol Plant-Microbe Interact 23:1368–1380PubMedCrossRefPubMedCentralGoogle Scholar
  117. Palmieri MC, Sell S, Huang X et al (2008) Nitric oxide-responsive genes and promotes in Arabidopsis thaliana: a bioinformatics approach. J Exp Bot 59:177–186PubMedCrossRefPubMedCentralGoogle Scholar
  118. Pandey S, Rai R, Rai LC (2015) Biochemical and molecular basis on arsenic toxicity and tolerance in microbes and plants. In: Flora SJS (ed) Handbook of arsenic toxicology. Academic, Oxford, pp 641–655Google Scholar
  119. Pavlík M, Pavlíková D, Staszková L et al (2010) The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. Ecotoxicol Environ Saf 73:1309–1313CrossRefGoogle Scholar
  120. Pfannschmidt T, Schutze K, Fey V (2003) Chloroplast redox control of nuclear gene expression – a new class of plastid signals in interorganellar communication. Antioxid Redox Signal 5:95–101PubMedCrossRefPubMedCentralGoogle Scholar
  121. Price AH, Taylor A, Ripley SJ et al (1994) Oxidative signals in tobacco increase cytosolic calcium. Plant Cell Online 6:1301–1310CrossRefGoogle Scholar
  122. Qi Y, Li H, Zhang M et al (2014) Autophagy in arsenic carcinogenesis. Exp Toxicol Pathol 66:163–168PubMedCrossRefPubMedCentralGoogle Scholar
  123. Raab A, Feldmann J, Meharg AA (2004) The nature of arsenic–phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134:1113–1122PubMedPubMedCentralCrossRefGoogle Scholar
  124. Raab A, Schat H, Meharg A et al (2005) Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic–phytochelatin complexes during exposure to high arsenic concentrations. New Phytol 168:551–558CrossRefGoogle Scholar
  125. Rao KP, Vani G, Kumar K et al (2011) Arsenic stress activates MAP kinase in rice roots and leaves. Arch Biochem Biophys 506:73–82PubMedCrossRefPubMedCentralGoogle Scholar
  126. Rasmusson AG, Geisler DA, Møller IM (2008) The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion 8:47–60PubMedCrossRefPubMedCentralGoogle Scholar
  127. Rathinasabapathi B, Wu S, Sundaram S et al (2006) Arsenic resistance in Pteris vittata L.: identification of a cytosolic triosephosphate isomerase based on cDNA expression cloning in Escherichia coli. Plant Mol Biol 62:845–857PubMedCrossRefPubMedCentralGoogle Scholar
  128. Reaves ML, Sinha S, Rabinowitz JD et al (2012) Absence of detectable arsenate in DNA from arsenate-grown GFAJ-1 cells. Science 337:470–473PubMedCrossRefPubMedCentralGoogle Scholar
  129. Requejo R, Tena M (2005) Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Phytochemistry 66:1519–1528CrossRefGoogle Scholar
  130. Sahay S, Gupta M (2017) An update on nitric oxide and its benign role in plant responses under metal stress. Nitric Oxide 67:39–52PubMedCrossRefPubMedCentralGoogle Scholar
  131. Sánchez-Bermejo E, Castrillo G, del Llano B et al (2014) Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana. Nat Commun.
  132. Sandalio L, Rodríguez-Serrano M, Gupta D et al (2012) Reactive oxygen species and nitric oxide in plants under cadmium stress: from toxicity to signaling. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 199–215CrossRefGoogle Scholar
  133. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462PubMedPubMedCentralCrossRefGoogle Scholar
  134. Schmöger MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801PubMedPubMedCentralCrossRefGoogle Scholar
  135. Shapiguzov A, Vainonen JP, Wrzaczek M (2012) ROS-talk – how the apoplast, the chloroplast, and the nucleus get the message through. Front Plant Sci 3:292. CrossRefPubMedPubMedCentralGoogle Scholar
  136. Sharma I (2012) Arsenic induced oxidative stress in plants. Biologia 67:447–453CrossRefGoogle Scholar
  137. Sharma P, Jha AB, Dubey RS (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26CrossRefGoogle Scholar
  138. Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255:67–78PubMedPubMedCentralCrossRefGoogle Scholar
  139. Shi S, Wang G, Wang Y et al (2005) Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide 13:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  140. Shri M, Kumar S, Chakrabarty D et al (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedling. Ecotoxicol Environ Saf 72:1102–1110PubMedPubMedCentralCrossRefGoogle Scholar
  141. Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248:447. CrossRefPubMedPubMedCentralGoogle Scholar
  142. Simola LK (1997) The effect of lead, cadmium, arsenate and fluoride ions on the growth and fine structure of Sphagnum nemoreum in aseptic culture. Can J Bot 90:375–405Google Scholar
  143. Šimonovičová M, Tamás L, Huttová J, Mistrík I (2004) Effect of aluminum on oxidative stress related enzymes activities in barley roots. Biol Plant 48:261–266CrossRefGoogle Scholar
  144. Singh N, Ma LQ, Shrivastava M et al (2006) Metabolic adaptation to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plant Sci 170:274–282CrossRefGoogle Scholar
  145. Singh HP, Batish DR, Kohali RK et al (2007) Arsenic induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul 53:65–73CrossRefGoogle Scholar
  146. Singh HP, Kaur S, Batish DR et al (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide 20:289–297PubMedCrossRefPubMedCentralGoogle Scholar
  147. Singh AP, Dexit G, Kumar A (2016) Nitric oxide alleviated arsenic toxicity by modulation of antioxidants and thiol metabolism in rice (Oryza sativa L.). Front Plant Sci 6:1272. CrossRefPubMedPubMedCentralGoogle Scholar
  148. Singh S, Sounderajan S, Kumar K et al (2017) Investigation of arsenic accumulation and biochemical response of in vitro developed Vetiveria zizanoides plants. Ecotoxicol Environ Saf 145:50–56PubMedCrossRefPubMedCentralGoogle Scholar
  149. Song L, Ding W, Zhao M et al (2006) Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Sci 171(4):449–458PubMedCrossRefPubMedCentralGoogle Scholar
  150. Song WY, Park J, Mendoza-Cózatl DG et al (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A 107:21187–21192PubMedPubMedCentralCrossRefGoogle Scholar
  151. Soto G, Alleva K, Amodeo G et al (2012) New insight into the evolution of aquaporins from flowering plants and vertebrates: orthologous identification and functional transfer is possible. Gene 503:165–176PubMedCrossRefPubMedCentralGoogle Scholar
  152. Srivastava M, Ma LQ, Singh N (2005) Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 56:335–1342CrossRefGoogle Scholar
  153. Srivastava S, Mishra S, Tripathi RD et al (2007) Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 41:2930–2936CrossRefGoogle Scholar
  154. Stoeva VN, Bineva T (2003) Oxidative changes and photosynthesis in oat plants grown in As-contaminated soil. Bulgarian J Plant Physiol 29:87–95Google Scholar
  155. Stoeva N, Berova M, Vassilev A et al (2005a) Effect of exogenous polyamine diethylenetriamine on oxidative changes and photosynthesis in As-treated maize plants (Zea mays L.). J Cent Eur Agric 6:367–374Google Scholar
  156. Stoeva N, Berova M, Zlatev Z (2005b) Effect of arsenic on some physiological parameters in bean plants. Biol Plant 49:293–296CrossRefGoogle Scholar
  157. Strzałka K, Kostecka-Gugała A, Latowski D (2003) Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russ J Plant Physiol 50:168–172CrossRefGoogle Scholar
  158. Sumi D, Taguchi K, Sun Y et al (2005) Monomethylarsonous acid inhibits endothelial nitric oxide synthase activity. J Health Sci 51:728–730CrossRefGoogle Scholar
  159. Sundaram S, Rathinasabapathi B, Ma LQ (2008) An arsenate-activated glutaredoxin from the arsenic hyperaccumulator fern Pteris vittata L. regulates intracellular arsenite. J Biol Chem 283:6095–6101PubMedCrossRefPubMedCentralGoogle Scholar
  160. Sung DY, Kim TH, Komives EA et al (2009) ARS5 is a component of the 26S proteasome complex, and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis. Plant J 59:802–812PubMedPubMedCentralCrossRefGoogle Scholar
  161. Suzuki N, Miller G, Morales J et al (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699PubMedCrossRefPubMedCentralGoogle Scholar
  162. Talukdar D (2013) Arsenic induced changes in growth and antioxidant metabolism of fenugreek. Russ J Plant Physiol 60:652–660CrossRefGoogle Scholar
  163. Talukdar D (2016) Exogenous thiourea modulates antioxidant defense and glyoxalase systems in lentil genotypes under arsenic stress. J Plant Stress Physiol 2:9–21CrossRefGoogle Scholar
  164. Talukdar D, Talukdar T (2014) Coordinated response of sulfate transport, cysteine biosynthesis, and glutathione-mediated antioxidant defense in lentil (Lens culinaris Medik.) genotypes exposed to arsenic. Protoplasma 251:839–855PubMedCrossRefPubMedCentralGoogle Scholar
  165. Tanaka K, Mitsuhashi H, Kondo N et al (1982) Further evidence for inactivation of fructose-1,6-bisphosphate at arsenic induced oxidative stress in plants 453 the beginning of SO2 fumigation: increase in fructose-1,6-bisphosphate and decrease in fructose-6–phosphate in SO2 fumigated spinach leaves. Plant Cell Physiol 23:1467–1470CrossRefGoogle Scholar
  166. Tang Z, Lv Y, Chen F et al (2016) Arsenic methylation in Arabidopsis thaliana expressing an algal arsenite methyltransferase gene increases arsenic phytotoxicity. J Agric Food Chem 64:674–2681Google Scholar
  167. Tangahu BV, Abdullah SRS, Basri H et al (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 939161:1–3CrossRefGoogle Scholar
  168. Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403PubMedCrossRefPubMedCentralGoogle Scholar
  169. Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91phox homologues Atrbohd and Atrbohf are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A 99:517–522PubMedCrossRefPubMedCentralGoogle Scholar
  170. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344PubMedPubMedCentralCrossRefGoogle Scholar
  171. Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208CrossRefGoogle Scholar
  172. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. CrossRefGoogle Scholar
  173. Vranová E, Inzé D, Van Berusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236PubMedCrossRefPubMedCentralGoogle Scholar
  174. Wang TS, Kuo CF, Jan KY et al (1996) Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species. J Cell Physiol 169:256–268PubMedCrossRefPubMedCentralGoogle Scholar
  175. Wang Z, Zhang H, Li XF et al (2007) Study of interactions between arsenicals and thioredoxins (human and E.coli) using mass spectrometry. Rapid Commun Mass Spectrom 21:3658–3666PubMedCrossRefPubMedCentralGoogle Scholar
  176. Wang P, Mugume Y, Bassham DC (2017) New advances in autophagy in plants: regulation, selectivity and function. Semin Cell Dev Biol. CrossRefGoogle Scholar
  177. Wink DA, Miranda KM, Espey MG et al (2001) Mechanisms of the antioxidant effects of nitric oxide. Antioxid Redox Signal 3:203–213PubMedCrossRefPubMedCentralGoogle Scholar
  178. Wojas S, Clemens S, Sklodowska A et al (2010) Arsenic response of AtPCS1- and CePCS-expressing plants – effects of external As(V) concentration on As accumulation pattern and NPT metabolism. J Plant Physiol 167:169–175PubMedCrossRefPubMedCentralGoogle Scholar
  179. Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692PubMedPubMedCentralCrossRefGoogle Scholar
  180. Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell Online 10:1539–1550CrossRefGoogle Scholar
  181. Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179CrossRefGoogle Scholar
  182. Yamanaka K, Hayashi H, Tachikawa M et al (1997) Metabolic methylation is a possible genotoxicity-enhancing process of inorganic arsenics. Mutat Res 394:95–101PubMedCrossRefPubMedCentralGoogle Scholar
  183. Yamanaka K, Mizol M, Kato K et al (2001) Oral administration of dimethylarsinic acid, a main metabolite of inorganic arsenic, in mice promotes skin tumorigenesis initiated by dimethylbenz(a)anthracene with or without ultraviolet B as a promoter. Biol Pharm Bull 5:510–514CrossRefGoogle Scholar
  184. Yan Y, Tsuichihara N, Etoh T et al (2007) Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening. Plant Cell Environ 30:1320–1325PubMedCrossRefPubMedCentralGoogle Scholar
  185. Yang T, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8:505–512PubMedCrossRefPubMedCentralGoogle Scholar
  186. You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092. CrossRefPubMedPubMedCentralGoogle Scholar
  187. Young AJ, Britton G (1990) Carotenoids and oxidative stress. In: Baltscheffsky M (ed) Current research in photosynthesis. Springer, Stockholm, pp 3381–3384CrossRefGoogle Scholar
  188. Yu LJ, Luo YF, Liao B et al (2012) Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol 195:97–112CrossRefGoogle Scholar
  189. Zamora PL, Rockenbauer A, Villamena FA (2014) Radical model of arsenic(III) toxicity: theoretical and EPR spin trapping studies. Chem Res Toxicol 27:765–774PubMedCrossRefPubMedCentralGoogle Scholar
  190. Zanella L, Fattorini L, Brunetti P (2016) Overexpression of AtPCS1 in tobacco increases arsenic and arsenic plus cadmium accumulation and detoxification. Planta 243:605–622PubMedCrossRefPubMedCentralGoogle Scholar
  191. Zhang T, Liu Y, Xue L et al (2006) An molecular cloning and characterization of a novel MAP kinase gene in Chorispora bungeana. Plant Physiol Biochem 44:78–84PubMedCrossRefPubMedCentralGoogle Scholar
  192. Zhao FJ, Wang JR, Barker JHA et al (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159:403–410CrossRefGoogle Scholar
  193. Zhao FJ, Ma JF, Meharg AA et al (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794CrossRefGoogle Scholar
  194. Zhao L, Chen S, Jia L et al (2012) Selectivity of arsenite interaction with zinc finger proteins. Metallomics 4:988–994PubMedCrossRefPubMedCentralGoogle Scholar
  195. Zheng C, Jiang D, Liu F, Dai T, Liu W, Jing Q, Cao W (2009) Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ Exp Bot 67:222–227CrossRefGoogle Scholar
  196. Zhou X, Cooper KL, Sun X et al (2015) Selective sensitization of zinc finger protein oxidation by ROS through arsenic binding. J Biol Chem 290:18361–18369PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Anna Kostecka-Gugała
    • 1
  • Dariusz Latowski
    • 2
  1. 1.Unit of Biochemistry, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and HorticultureUniversity of Agriculture in KrakowKrakowPoland
  2. 2.Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and BiochemistryJagiellonian University in KrakowKrakowPoland

Personalised recommendations