Mechanism of Treatment Methods of Arsenic-Contaminated Water

  • P. V. Nidheesh
  • Ansaf V. Karim
  • T. S. Anantha Singh
  • Dhanashree Dofe
  • Sheetal Sahare
  • M. Suresh Kumar


Water contamination by arsenic and health issues associated with the contaminated water are worldwide problems. Arsenic contamination in drinking water is causing severe health effects leading to death. The removal of arsenic (As) can be achieved by different methods, and it depends upon the composition of contaminated water. Treatment methods either transfer the pollutants from one phase to another or chemically oxidize to less toxic form. Separation and degradation methods include adsorption, chemical coagulation, membrane processes, electrocoagulation, chemical oxidation, and advanced oxidation processes; and biological methods including biological oxidation, phytoremediation, etc. are found to be efficient for the removal of As from water medium. There are several factors which have influence on each process; the removal efficiency depends upon the optimized conditions. This chapter provides a detailed review on the existing efforts for the As removal from aqueous medium, their advantages and limitations, etc.


Arsenic Water treatment Arsenite Arsenate Drinking water 


  1. Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahsan H, Chen Y, Parvez F et al (2006) Arsenic exposure from drinking water and risk of premalignant skin lesions in Bangladesh: baseline results from the Health Effects of Arsenic Longitudinal Study. Am J Epidemiol 163:1138–1148CrossRefGoogle Scholar
  3. Alarcon-Herrera MT, Olmos-Marquez MA, Valles-Aragon C et al (2013) Assessments of plants for phytoremediation of arsenic-contaminated water and soil. Eur Chem Bull 2:121–125Google Scholar
  4. Ali I (2014) Water treatment by adsorption columns: evaluation at ground level. Sep Purif Rev 43:175–205CrossRefGoogle Scholar
  5. Ali I, Jain CK (2004) Advances in arsenic speciation techniques. Int J Environ Anal Chem 84:947–964CrossRefGoogle Scholar
  6. Altundoǧan HS, Altundoǧan S, Tümen F, Bildik M (2000) Arsenic removal from aqueous solutions by adsorption on red mud. Waste Manag 20:761–767CrossRefGoogle Scholar
  7. Alvarado S, Guédez M, Lué-merú MP et al (2008) Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Bioresour Technol 99:8436–8440PubMedCrossRefGoogle Scholar
  8. Amin MN, Kaneco S, Kitagawa T et al (2006) Removal of arsenic in aqueous solutions by adsorption onto waste rice husk. Ind Eng Chem Res 45:8105–8110CrossRefGoogle Scholar
  9. Amstaetter K, Borch T, Larese-Casanova P, Kappler A (2010) Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environ Sci Technol 44:102–108PubMedCrossRefGoogle Scholar
  10. Anantha Singh TS, Ramesh ST (2013) New trends in electrocoagulation for the removal of dyes from wastewater: a review. Environ Eng Sci 30:333–349CrossRefGoogle Scholar
  11. Anantha Singh TS, Ramesh ST (2014) An experimental study of CI Reactive Blue 25 removal from aqueous solution by electrocoagulation using aluminum sacrificial electrode: kinetics and influence of parameters on electrocoagulation performance. Desalin Water Treat 52:2634–2642CrossRefGoogle Scholar
  12. Andreoni V, Zanchi R, Cavalca L et al (2012) Arsenite oxidation in ancylobacter dichloromethanicus As3-1b strain: detection of genes involved in arsenite oxidation and CO 2 fixation. Curr Microbiol 65:212–218PubMedCrossRefGoogle Scholar
  13. Bajpai S, Chaudhuri M (1999) Removal of as from ground water by manganese dioxide-coated sand. J Environ Eng 125:243–250CrossRefGoogle Scholar
  14. Balasubramanian N, Kojima T, Basha CA, Srinivasakannan C (2009) Removal of arsenic from aqueous solution using electrocoagulation. J Hazard Mater 167:966–969PubMedCrossRefGoogle Scholar
  15. Balsamo M, Di Natale F, Erto A et al (2010) Arsenate removal from synthetic wastewater by adsorption onto fly ash. Desalination 263:58–63.035CrossRefGoogle Scholar
  16. Baskan MB, Pala A (2009) Determination of arsenic removal efficiency by ferric ions using response surface methodology. J Hazard Mater 166:796–801PubMedCrossRefGoogle Scholar
  17. Battaglia-Brunet F, Dictor M-C, Garrido F et al (2002) An arsenic(III)-oxidizing bacterial population: selection, characterization, and performance in reactors. J Appl Microbiol 93:656–667PubMedCrossRefGoogle Scholar
  18. Benefield LD, Judkins JF, Weand BL (1982) Process chemistry for water and wastewater treatment. Prentice-Hall, Englewood CliffsGoogle Scholar
  19. Benga G (2009) Water channel proteins (later called aquaporins) and relatives: past, present, and future. IUBMB Life 61:112–133PubMedCrossRefGoogle Scholar
  20. Bilici Baskan M, Pala A (2010) A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate. Desalination 254:42–48CrossRefGoogle Scholar
  21. Bisceglia KJ, Rader KJ, Carbonaro RF et al (2005) Iron(II)-catalyzed oxidation of arsenic(III) in a sediment column. Environ Sci Technol 39:9217–9222PubMedCrossRefGoogle Scholar
  22. Bissen M, Frimmel FH (2003) Arsenic – a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydrochim Hydrobiol 31:9–18CrossRefGoogle Scholar
  23. Bokare AD, Choi W (2014) Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J Hazard Mater 275:121–135PubMedCrossRefGoogle Scholar
  24. Bordoloi S, Nath SK, Gogoi S, Dutta RK (2013) Arsenic and iron removal from groundwater by oxidation-coagulation at optimized pH: laboratory and field studies. J Hazard Mater 260:618–626PubMedCrossRefGoogle Scholar
  25. Borgono JM, Vicent P, Venturino H, Infante A (1977) Arsenic in the drinking water of the city of Antofagasta: epidemiological and clinical study before and after the installation of a treatment plant. Environ Health Perspect 19:103–105PubMedPubMedCentralGoogle Scholar
  26. Bouhezila F, Hariti M, Lounici H, Mameri N (2011) Treatment of the OUED SMAR town landfill leachate by an electrochemical reactor. Desalination 280:347–353CrossRefGoogle Scholar
  27. Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631PubMedCrossRefGoogle Scholar
  28. Brook RR, Robinson BH (1998) Aquatic phytoremediation by accumulator plants. In: Brook RR (ed) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaecology, mineral exploration and phytomining. CABI International, Wallingford, pp 203–226Google Scholar
  29. Cañizares P, Carmona M, Lobato J et al (2005) Electrodissolution of aluminum electrodes in electrocoagulation processes. Ind Eng Chem Res 44:4178–4185CrossRefGoogle Scholar
  30. Cañizares P, Jiménez C, Martínez F et al (2007) Study of the electrocoagulation process using aluminum and iron electrodes. Ind Eng Chem Res 46:6189–6195CrossRefGoogle Scholar
  31. Cañizares P, Jiménez C, Martínez F et al (2009) The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters. J Hazard Mater 163:158–164PubMedCrossRefGoogle Scholar
  32. Caussy D (2006) A field guide: detection, management and surveillance of Arsenicosis. Technical Publication No. 30; World Health Organization, Regional Office for South-East AsiaGoogle Scholar
  33. Chakraborti D, Rahman MM, Das B et al (2010) Status of groundwater arsenic contamination in Bangladesh: a 14-year study report. Water Res 44:5789–5802PubMedCrossRefGoogle Scholar
  34. Chakraborti D, Rahman MM, Das B et al (2013) Groundwater arsenic contamination in Ganga-Meghna-Brahmaputra plain, its health effects and an approach for mitigation. Environ Earth Sci 70:1993–2008CrossRefGoogle Scholar
  35. Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38:11–41CrossRefGoogle Scholar
  36. Chen Y, Ahsan H (2004) Cancer burden from arsenic in drinking water in Bangladesh. Am J Public Health 94:741–744PubMedPubMedCentralCrossRefGoogle Scholar
  37. Chen W, Parette R, Zou J et al (2007) Arsenic removal by iron-modified activated carbon. Water Res 41:1851–1858PubMedCrossRefGoogle Scholar
  38. Choong TSY, Chuah TG, Robiah Y et al (2007) Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217:139–166CrossRefGoogle Scholar
  39. Chowdhury TR, Basu GK, Mandal BK et al (1999a) Arsenic poisoning in the Ganges delta. Nature (6753):545–546PubMedCrossRefGoogle Scholar
  40. Chowdhury UK, Biswas BK, Dhar RK et al (1999b) Groundwater arsenic contamination and suffering of people in Bangladesh. In: Chappell WR, Abernathy CO, Calderon RL (eds) Arsenic Exposure and Health Effects {III}. Elsevier Science Ltd, Oxford, pp 165–182CrossRefGoogle Scholar
  41. Chowdhury UK, Biswas BK, Chowdhury TR et al (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect 108:393–397PubMedPubMedCentralCrossRefGoogle Scholar
  42. Chowdhury R, Sen AK, Karak P et al (2009) Isolation and characterization of an arsenic-resistant bacterium from a bore-well in West Bengal, India. Ann Microbiol 59:253–258CrossRefGoogle Scholar
  43. Ciardelli MC, Xu H, Sahai N (2008) Role of Fe(II), phosphate, silicate, sulfate, and carbonate in arsenic uptake by coprecipitation in synthetic and natural groundwater. Water Res 42:615–624PubMedCrossRefGoogle Scholar
  44. Corsini A, Zaccheo P, Muyzer G et al (2014) Arsenic transforming abilities of groundwater bacteria and the combined use of Aliihoeflea sp. strain 2WW and goethite in metalloid removal. J Hazard Mater 269:89–97PubMedCrossRefGoogle Scholar
  45. Cui M, Jang M, Lee S et al (2011) Arsenite oxidation and treatment by ultrasound/iron in aqueous solutions. Jpn J Appl Phys 50:07HE08CrossRefGoogle Scholar
  46. Cullen WR (2008) Is arsenic an aphrodisiac? The Royal Society of Chemistry, CambridgeGoogle Scholar
  47. Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ćurko J, Mijatović I, Matošić M et al (2011) As(V) removal from drinking water by coagulation and filtration through immersed membrane. Desalination 279:404–408CrossRefGoogle Scholar
  49. Davis CC, Knocke WR, Edwards M (2001) Implications of aqueous silica sorption to iron hydroxide: mobilization of iron colloids and interference with sorption of arsenate and humic substances. Environ Sci Technol 35:3158–3162PubMedCrossRefGoogle Scholar
  50. Donahoe-Christiansen J, D’Imperio S, Jackson CR et al (2004) Arsenite-oxidizing hydrogenobaculum strain isolated from an acid-sulfate-chloride geothermal spring in Yellowstone National Park. Appl Environ Microbiol 70:1865–1868PubMedPubMedCentralCrossRefGoogle Scholar
  51. Done AK, Peart AJ (1971) Acute toxicities of arsenical herbicides. Clin Toxicol 4:343–355PubMedCrossRefGoogle Scholar
  52. Dutré V, Vandecasteele C (1995) Solidification/stabilisation of arsenic-containing waste: leach tests and behaviour of arsenic in the leachate. Waste Manag 15:55–62CrossRefGoogle Scholar
  53. Dutta PK, Pehkonen SO, Sharma VK, Ray AK (2005) Photocatalytic oxidation of arsenic (III): evidence of hydroxyl radicals. Environ Sci Technol 39:1827–1834PubMedCrossRefGoogle Scholar
  54. Dwivedi AK, Srivastava S, Dwivedi S, Tripathi V (2015) Natural bio-remediation of arsenic contamination: a short review. Hydrol Curr Res 6:186. CrossRefGoogle Scholar
  55. Elcik H, Celik SO, Cakmakci M, Özkaya B (2016) Performance of nanofiltration and reverse osmosis membranes for arsenic removal from drinking water. Desalin Water Treat 57:20422–20429CrossRefGoogle Scholar
  56. Ellis PJ, Conrads T, Hille R, Kuhn P (2001) Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 Å and 2.03 Å. Structure 9:125–132PubMedCrossRefGoogle Scholar
  57. Fang J, Deng B, Whitworth TM (2005) Arsenic removal from drinking water using clay membranes. In: O’Day PA, Vlassopoulos D, Meng X, Benning LG (eds) Advances in arsenic research. American Chemical Society, Washington, DC, pp 294–305CrossRefGoogle Scholar
  58. Ferreccio C, Sancha AM (2006) Arsenic exposure and its impact on health in Chile. J Heal Popul Nutr 24:164–175Google Scholar
  59. Figoli A, Cassano A, Criscuoli A et al (2010) Influence of operating parameters on the arsenic removal by nanofiltration. Water Res 44:97–104PubMedCrossRefGoogle Scholar
  60. Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. J Soil Contam 7:415–432CrossRefGoogle Scholar
  61. Gadgil A, Addy S, Van Genuchten C (2010) A novel technology to remove arsenic from drinking water for Bangladesh tubewells. 2010 AIChE Annual Meeting 10AIChE, pp 1–12Google Scholar
  62. Garai R, Chakraborty AK, Dey SB, Saha KC (1984) Chronic arsenic poisoning from tube-well water. J Indian Med Assoc 82:34–35PubMedGoogle Scholar
  63. Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236PubMedCrossRefGoogle Scholar
  64. George SJ, Gandhimathi R, Nidheesh PV, Ramesh ST (2014) Electro-fenton oxidation of salicylic acid from aqueous solution: batch studies and degradation pathway. Clean-Soil Air Water 42:1701–1711CrossRefGoogle Scholar
  65. Goldberg S (2002) Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci Soc Am J 66:413. CrossRefGoogle Scholar
  66. Gomes JAG, Daida P, Kesmez M et al (2007) Arsenic removal by electrocoagulation using combined Al-Fe electrode system and characterization of products. J Hazard Mater 139:220–231PubMedCrossRefGoogle Scholar
  67. Guha Mazumder D, Dasgupta UB (2011) Chronic arsenic toxicity: studies in West Bengal, India. Kaohsiung J Med Sci 27:360–370PubMedCrossRefGoogle Scholar
  68. Guha Mazumder DN, Chakraborty AK, Ghose A et al (1988) Chronic arsenic toxicity from drinking tubewell water in rural West Bengal. Bull World Health Organ 66:499–506PubMedGoogle Scholar
  69. Guha Mazumer DN, Das Gupta J, Santra A et al (1998) Chronic arsenic toxicity in West Bengal – the worst calamity in the world. J Indian Med Assoc 96:4–7Google Scholar
  70. Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal – a review. J Environ Manage 90:2313–2342PubMedCrossRefGoogle Scholar
  71. Gupta VK, Saini VK, Jain N (2005) Adsorption of As(III) from aqueous solutions by iron oxide-coated sand. J Colloid Interface Sci 288:55–60PubMedCrossRefGoogle Scholar
  72. Ha NTH, Sakakibara M, Sano S (2009) Phytoremediation of Sb, As, Cu, and Zn from contaminated water by the aquatic macrophyte Eleocharis acicularis. Clean Soil Air Water 37:720–725CrossRefGoogle Scholar
  73. Hambsch B, Raue B, Brauch H-J (1995) Determination of arsenic(III) for the investigation of the microbial oxidation of arsenic(III) to arsenic(V). Acta Hydrochim Hydrobiol 23:166–172CrossRefGoogle Scholar
  74. Hering Janet G, Chen Pen Y, Wilkie Jennifer A et al (1996) Arsenic removal by ferric chloride. J Am Water Work Assoc 88:155–167CrossRefGoogle Scholar
  75. Holt P, Barton G, Mitchell C (1999) Electrocoagulation as a wastewater treatment. In: The Third Annual Australian Environmental Engineering Research Event. Castlemaine, Victoria, pp 1–6Google Scholar
  76. Holt PK, Barton GW, Mitchell CA (2005) The future for electrocoagulation as a localized water treatment technology. Chemosphere 59:355–367PubMedCrossRefGoogle Scholar
  77. Hsu LC, Chen KY, Chan YT et al (2016) MS title: catalytic oxidation and removal of arsenite in the presence of Fe ions and zero-valent Al metals. J Hazard Mater 317:237–245PubMedCrossRefGoogle Scholar
  78. Hu C, Liu H, Chen G, Qu J (2012) Effect of aluminum speciation on arsenic removal during coagulation process. Sep Purif Technol 86:35–40CrossRefGoogle Scholar
  79. Hug SJ, Leupin O (2003) Iron-catalyzed oxidation of Arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ Sci Technol 37:2734–2742PubMedCrossRefGoogle Scholar
  80. Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16CrossRefGoogle Scholar
  81. IARC (2004) Some drinking-water disinfectants and contaminants, including arsenic. IARC Monogr Eval Carcinog Risks Hum 84:1–477Google Scholar
  82. Ilyaletdinov AN, Abdrashitova SA (1981) Autotrophic arsenic oxidation by a Pseudomonas arsenitoxidans culture. Mikrobiologiia 50:197–204Google Scholar
  83. International Agency for Cancer Research (2002) IARC monographs on the evaluation of carcinogenic risks to humans. Some drinking-water disinfectants and contaminants including arsenic. International Agency for Cancer Research, Lyon 84:15–22Google Scholar
  84. Ito A, Miura JI, Ishikawa N, Umita T (2012) Biological oxidation of arsenite in synthetic groundwater using immobilised bacteria. Water Res 46:4825–4831PubMedCrossRefGoogle Scholar
  85. Jaatinen T (2011) Bio-oxidation and bioleaching of arsenic- containing and refractory gold concentrates. Tampere University of Technology, TampereGoogle Scholar
  86. Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. African J Biotechnol 8:921–928Google Scholar
  87. Kang M, Chen H, Sato Y et al (2003) Rapid and economical indicator for evaluating arsenic removal with minimum aluminum residual during coagulation process. Water Res 37:4599–4604PubMedCrossRefGoogle Scholar
  88. Karami A, Sahmsuddin ZH (2010) Phytoremediation of heavy metals with several efficiency enhancer methods - Review. African J Biotechnol 9:3689–3698Google Scholar
  89. Katsoyiannis IA, Zouboulis AI (2002) Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Res 36:5141–5155PubMedCrossRefGoogle Scholar
  90. Khan MS, Zaidi A, Musarrat J (2009) Microbial strategies for crop improvement. Springer, BerlinCrossRefGoogle Scholar
  91. Khuntia S, Majumder SK, Ghosh P (2014) Oxidation of As(III) to As(V) using ozone microbubbles. Chemosphere 97:120–124PubMedCrossRefGoogle Scholar
  92. Kim MJ, Nriagu J (2000) Oxidation of arsenite in groundwater using ozone and oxygen. Sci Total Environ 247:71–79PubMedCrossRefGoogle Scholar
  93. Kim Y, Kim C, Rengaraj S, Yi J (2004) Arsenic removal using mesoporous alumina prepared via a templating method. Environ Sci Technol 38:924–931PubMedCrossRefGoogle Scholar
  94. Kim DH, Kim KW, Cho J (2006) Removal and transport mechanisms of arsenics in UF and NF membrane processes. J Water Health 4:215–223PubMedCrossRefGoogle Scholar
  95. Kim D-G, Palacios RJS, Ko S-O (2014) Characterization of sludge generated by electrocoagulation for the removal of heavy metals. Desalin Water Treat 52:909–919CrossRefGoogle Scholar
  96. Kinniburgh DG, Kosmus W (2002) Arsenic contamination in groundwater: some analytical considerations. Talanta 58:165–180PubMedCrossRefGoogle Scholar
  97. Kinniburgh DG, Smedley PL, Davies J et al (2003) The scale and causes of the groundwater arsenic problem in Bangladesh. In: Welch AH, Stollenwerk KG (eds) Arsenic in groundwater: geochemistry and occurrence. Springer, Boston, pp 211–257Google Scholar
  98. Košutić K, Furač L, Sipos L, Kunst B (2005) Removal of arsenic and pesticides from drinking water by nanofiltration membranes. Sep Purif Technol 42:137–144CrossRefGoogle Scholar
  99. Kumar NS, Goel S (2010) Factors influencing arsenic and nitrate removal from drinking water in a continuous flow electrocoagulation (EC) process. J Hazard Mater 173:528–533PubMedCrossRefGoogle Scholar
  100. Lakshmanan D, Clifford DA, Samanta G (2010) Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation. Water Res 44:5641–5652PubMedCrossRefGoogle Scholar
  101. Lee C, Low K, Hew N (1991) Accumulation of arsenic by aquatic plants. Sci Total Environ 103:215–227CrossRefGoogle Scholar
  102. Lee Y, Um IH, Yoon J (2003) Arsenic(III) oxidation by iron(VI) (Ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation. Environ Sci Technol 37:5750–5756PubMedCrossRefGoogle Scholar
  103. Lescano MR, Zalazar CS, Cassano AE, Brandi RJ (2011) Arsenic (iii) oxidation of water applying a combination of hydrogen peroxide and UVC radiation. Photochem Photobiol Sci 10:1797–1803PubMedCrossRefGoogle Scholar
  104. Li Y, Liu Z (2015) Arsenic toxicity: toxicity, manifestation, and geographical distribution. In: Chakrabarty N (ed) Arsenic toxicity: prevention and treatment. CRC Press, Boca Raton, pp 45–78CrossRefGoogle Scholar
  105. Li Z, Deng S, Yu G et al (2010) As(V) and As(III) removal from water by a Ce-Ti oxide adsorbent: behavior and mechanism. Chem Eng J 161:106–113CrossRefGoogle Scholar
  106. Li H, Zeng XC, He Z et al (2016) Long-term performance of rapid oxidation of arsenite in simulated groundwater using a population of arsenite-oxidizing microorganisms in a bioreactor. Water Res 101:393–401PubMedCrossRefGoogle Scholar
  107. Liao VHC, Chu YJ, Su YC et al (2011) Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. J Contam Hydrol 123:20–29PubMedCrossRefGoogle Scholar
  108. Lim KT, Shukor MY, Wasoh H (2014) Physical, chemical, and biological methods for the removal of arsenic compounds. Biomed Res Int 2014:503784PubMedPubMedCentralGoogle Scholar
  109. Long X, Yang X, Ni W (2002) Current situation and prospect on the remediation of soils contaminated by heavy metals. Ying Yong Sheng Tai Xue Bao 13:757–762PubMedGoogle Scholar
  110. López-Muñoz MJ, Arencibia A, Segura Y, Raez JM (2017) Removal of As(III) from aqueous solutions through simultaneous photocatalytic oxidation and adsorption by TiO2 and zero-valent iron. Catal Today 280:149–154CrossRefGoogle Scholar
  111. Lorenzen L, van Deventer JSJ, Landi WM (1995) Factors affecting the mechanism of the adsorption of arsenic species on activated carbon. Miner Eng 8:557–569CrossRefGoogle Scholar
  112. Ma JF, Yamaji N, Mitani N et al (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci 105:9931–9935CrossRefGoogle Scholar
  113. Macy JM, Santini JM, Pauling BV et al (2000) Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Arch Microbiol 173:49–57PubMedCrossRefGoogle Scholar
  114. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235PubMedCrossRefPubMedCentralGoogle Scholar
  115. Mandal BK, Chowdhury TR, Samanta G et al (1996) Arsenic in groundwater in seven districts of West Bengal, India – the biggest arsenic calamity in the world. Curr Sci 70:976–986Google Scholar
  116. Mandal S, Sahu MK, Patel RK (2013) Adsorption studies of arsenic(III) removal from water by zirconium polyacrylamide hybrid material (ZrPACM-43). Water Resour Ind 4:51–67CrossRefGoogle Scholar
  117. Manju GN, Raji C, Anirudhan TS (1998) Evaluation of coconut husk carbon for the removal of arsenic from water. Water Res 32:3062–3070CrossRefGoogle Scholar
  118. Martínez-Villafañe JF, Montero-Ocampo C, García-Lara AM (2009) Energy and electrode consumption analysis of electrocoagulation for the removal of arsenic from underground water. J Hazard Mater 172:1617–1622PubMedCrossRefGoogle Scholar
  119. Matsui Y, Shirasaki N, Yamaguchi T et al (2017) Characteristics and components of poly-aluminum chloride coagulants that enhance arsenate removal by coagulation: detailed analysis of aluminum species. Water Res 118:177–186PubMedCrossRefGoogle Scholar
  120. Mazumder DN, Das Gupta J, Chakraborty a K et al (1992) Environmental pollution and chronic arsenicosis in south Calcutta. Bull World Health Organ 70:481–485PubMedPubMedCentralGoogle Scholar
  121. Meharg AA, Jardine L (2003) Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol 157:39–44CrossRefGoogle Scholar
  122. Meng X, Korfiatis GP, Bang S, Bang KW (2002) Combined effects of anions on arsenic removal by iron hydroxides. Toxicol Lett 133:103–111PubMedPubMedCentralCrossRefGoogle Scholar
  123. Mertens J, Casentini B, Masion A et al (2012) Polyaluminum chloride with high Al 30 content as removal agent for arsenic-contaminated well water. Water Res 46:53–62PubMedCrossRefGoogle Scholar
  124. Milton AH, Hore SK, Hossain MZ, Rahman M (2012) Bangladesh arsenic mitigation programs: lessons from the past. Emerg Health Threats J 5:7269CrossRefGoogle Scholar
  125. Mishra VK, Upadhyay AR, Pandey SK, Tripathi BD (2008) Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coal mining effluent. Environ Monit Assess 141:49–58PubMedCrossRefGoogle Scholar
  126. Mkandawire M, Taubert B, Dudel EG (2004) Capacity of Lemna gibba L. (Duckweed) for uranium and arsenic phytoremediation in mine tailing waters. Int J Phytoremediation 6:347–362PubMedCrossRefGoogle Scholar
  127. Mohora E, Rončeví S, Dalmacija B et al (2012) Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor. J Hazard Mater 235:257–264PubMedCrossRefGoogle Scholar
  128. Mokashi SA, Paknikar KM (2002) Arsenic (III) oxidizing Microbacterium lacticum and its use in the treatment of arsenic contaminated groundwater. Lett Appl Microbiol 34:258–262PubMedCrossRefGoogle Scholar
  129. Mondal P, Majumder CB, Mohanty B (2006) Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J Hazard Mater 137:464–479PubMedCrossRefGoogle Scholar
  130. Mondal P, Majumder CB, Mohanty B (2008a) Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon. J Hazard Mater 150:695–702PubMedCrossRefGoogle Scholar
  131. Mondal P, Majumder CB, Mohanty B (2008b) Treatment of arsenic contaminated water in a batch reactor by using Ralstonia eutropha MTCC 2487 and granular activated carbon. J Hazard Mater 153:588–599PubMedCrossRefPubMedCentralGoogle Scholar
  132. Mukhopadhyay R, Rosen BP (2002) Arsenate reductases in prokaryotes and eukaryotes. Environ Health Perspect 110:745–748PubMedPubMedCentralCrossRefGoogle Scholar
  133. Muller D, Médigue C, Koechler S et al (2007) A tale of two oxidation states: bacterial colonization of arsenic-rich environments. PLoS Genet 3:0518–0530CrossRefGoogle Scholar
  134. Musingarimi W, Tuffin M, Cowan D (2010) Characterisation of the arsenic resistance genes in Bacillus sp. UWC isolated from maturing fly ash acid mine drainage Neutralised solids. S Afr J Sci 106:59–63Google Scholar
  135. Mustafa S, Zaman MI, Gul R, Khan S (2008) Effect of Ni2+ loading on the mechanism of phosphate anion sorption by iron hydroxide. Sep Purif Technol 59:108–114CrossRefGoogle Scholar
  136. National Research Council (1999) Arsenic in drinking water. National Academy Press, Washington, DCGoogle Scholar
  137. National Research Council (2001) Arsenic in drinking water: 2001 update. National Academy Press, Washington, DCGoogle Scholar
  138. Neppolian B, Celik E, Choi H (2008) Photochemical oxidation of arsenic(III) to arsenic(V) using peroxydisulfate ions as an oxidizing agent. Environ Sci Technol 42:6179–6184PubMedCrossRefPubMedCentralGoogle Scholar
  139. Neppolian B, Doronila A, Grieser F, Ashokkumar M (2009) Simple and efficient sonochemical method for the oxidation of arsenic(III) to arsenic(V). Environ Sci Technol 43:6793–6798PubMedCrossRefPubMedCentralGoogle Scholar
  140. Neppolian B, Doronila A, Ashokkumar M (2010) Sonochemical oxidation of arsenic(III) to arsenic(V) using potassium peroxydisulfate as an oxidizing agent. Water Res 44:3687–3695PubMedCrossRefPubMedCentralGoogle Scholar
  141. Ng KS, Ujang Z, Le-Clech P (2004) Arsenic removal technologies for drinking water treatment. Rev Environ Sci Bio/Technol 3:43–53CrossRefGoogle Scholar
  142. Nguyen CM, Bang S, Cho J, Kim KW (2009) Performance and mechanism of arsenic removal from water by a nanofiltration membrane. Desalination 245:82–94CrossRefGoogle Scholar
  143. Nicholas DR, Ramamoorthy S, Palace V et al (2003) Biogeochemical transformations of arsenic in circumneutral freshwater sediments. Biodegradation 14:123–137PubMedCrossRefGoogle Scholar
  144. Nickson R, Sengupta C, Mitra P et al (2007) Current knowledge on the distribution of arsenic in groundwater in five states of India. J Environ Sci Heal – Part A Toxic/Hazardous Subst Environ Eng 42:1707–1718CrossRefGoogle Scholar
  145. Nidheesh PV (2015) Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv 5:40552–40577CrossRefGoogle Scholar
  146. Nidheesh PV, Gandhimathi R (2012) Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination 299:1–15CrossRefGoogle Scholar
  147. Nidheesh PV, Gandhimathi R (2014a) Comparative removal of rhodamine B from aqueous solution by electro-fenton and electro-fenton-like processes. Clean Soil Air Water 42:779–784CrossRefGoogle Scholar
  148. Nidheesh PV, Gandhimathi R (2014b) Effect of solution pH on the performance of three electrolytic advanced oxidation processes for the treatment of textile wastewater and sludge characteristics. RSC Adv 4:27946–27954CrossRefGoogle Scholar
  149. Nidheesh PV, Rajan R (2016) Removal of rhodamine B from a water medium using hydroxyl and sulphate radicals generated by iron loaded activated carbon. RSC Adv 6:5330–5340CrossRefGoogle Scholar
  150. Nidheesh PV, Singh TSA (2017) Arsenic removal by electrocoagulation process: recent trends and removal mechanism. Chemosphere 181:418–432PubMedCrossRefPubMedCentralGoogle Scholar
  151. Nidheesh PV, Gandhimathi R, Ramesh ST (2013) Degradation of dyes from aqueous solution by Fenton processes: a review. Environ Sci Pollut Res 20:2099–2132CrossRefGoogle Scholar
  152. Nidheesh PV, Gandhimathi R, Velmathi S, Sanjini NS (2014) Magnetite as a heterogeneous electro Fenton catalyst for the removal of Rhodamine B from aqueous solution. RSC Adv 4:5698–5708CrossRefGoogle Scholar
  153. Ning RY (2002) Arsenic removal by reverse osmosis. Desalination 143:237–241CrossRefGoogle Scholar
  154. Nordstrom DK (2000) An overview of arsenic mass-poisoning in Bangladesh and West Bengal, India In: Processing and environmental aspects of As, Sb, Se, Te, and Bi. Society for Mining, Metallurgy and Exploration, pp 21–30Google Scholar
  155. Nriagu JO, Bhattahcharya P, Mukherjee AB, et al (2007) Arsenic in soil and groundwater : an overview. In: Bhattacharya Mukherjee, AB, Bundschuh, J, Zevenhoven R, Loeppert RHP (eds) Arsenic in soil and groundwater environment: biogeochemical interactions, health effects and remediation, trace metals and other contaminants in the environment, 9th edn. Elsevier, Land and Water Resources Engineering, School of Architecture and the Built Environment (ABE), KTH, pp 3–60Google Scholar
  156. Ociński D, Jacukowicz-Sobala I, Kociołek-Balawejder E (2014) Oxidation and adsorption of arsenic species by means of hybrid polymer containing manganese oxides. J Appl Polym Sci 131:20–229CrossRefGoogle Scholar
  157. Oehmen A, Valerio R, Llanos J et al (2011) Arsenic removal from drinking water through a hybrid ion exchange membrane – coagulation process. Sep Purif Technol 83:137–143CrossRefGoogle Scholar
  158. Ona-Nguema G, Morin G, Wang Y et al (2010) XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O2 via Fe2+-mediated reactions. Environ Sci Technol 44:5416–5422PubMedCrossRefPubMedCentralGoogle Scholar
  159. Onishi H (1969) Arsenic. In: Wedepohl KH (ed) Handbook of geochemistry. Springer, New YorkGoogle Scholar
  160. Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13:45–49PubMedCrossRefPubMedCentralGoogle Scholar
  161. Páez-Espino D, Tamames J, De Lorenzo V, Cánovas D (2009) Microbial responses to environmental arsenic. BioMetals 22:117–130PubMedCrossRefPubMedCentralGoogle Scholar
  162. Pal P, Chakrabortty S, Linnanen L (2014) A nanofiltration-coagulation integrated system for separation and stabilization of arsenic from groundwater. Sci Total Environ 476–477:601–6101PubMedCrossRefPubMedCentralGoogle Scholar
  163. Parga JR, Cocke DL, Valenzuela JL et al (2005) Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in la Comarca Lagunera Mexico. J Hazard Mater 124:247–254PubMedCrossRefPubMedCentralGoogle Scholar
  164. Pettine M, Millero FJ (2000) Effect of metals on the oxidation of As(III) with H2O2. Mar Chem 70:223–234CrossRefGoogle Scholar
  165. Pettine M, Campanella L, Millero FJ (1999) Arsenite oxidation by H2O2 in aqueous solutions. Geochim Cosmochim Acta 63:2727–27354CrossRefGoogle Scholar
  166. Prescott LM, Harley JP, Klein DA (2002) Microbiology. McGraw-Hill Higher Education, DubuqueGoogle Scholar
  167. Qin J, Rosen BP, Zhang Y et al (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci USA 103:2075–2080PubMedCrossRefPubMedCentralGoogle Scholar
  168. Rahman MA, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83:633–646CrossRefGoogle Scholar
  169. Rahman MM, Sengupta MK, Ahamed S et al (2005) The magnitude of arsenic contamination in groundwater and its health effects to the inhabitants of the Jalangi—one of the 85 arsenic affected blocks in West Bengal, India. Sci Total Environ 338:189–2002PubMedCrossRefPubMedCentralGoogle Scholar
  170. Rahman MA, Hasegawa H, Ueda K et al (2008) Influence of EDTA and chemical species on arsenic accumulation in Spirodela polyrhiza L. (duckweed). Ecotoxicol Environ Saf 70:311–318PubMedCrossRefPubMedCentralGoogle Scholar
  171. Randall PM (2012) Arsenic encapsulation using Portland cement with ferrous sulfate/lime and Terra-BondTM technologies – microcharacterization and leaching studies. Sci Total Environ 420:300–312PubMedCrossRefPubMedCentralGoogle Scholar
  172. Ratna Kumar P, Chaudhari S, Khilar KC, Mahajan SP (2004) Removal of arsenic from water by electrocoagulation. Chemosphere 55:1245–1252PubMedCrossRefPubMedCentralGoogle Scholar
  173. Rhine ED, Phelps CD, Young LY (2006) Anaerobic arsenite oxidation by novel denitrifying isolates. Environ Microbiol 8:899–908PubMedCrossRefPubMedCentralGoogle Scholar
  174. Rivera-Reyna N, Hinojosa-Reyes L, Guzman-Mar JL et al (2013) Photocatalytical removal of inorganic and organic arsenic species from aqueous solution using zinc oxide semiconductor. Photochem Photobiol Sci 12:653–659PubMedPubMedCentralCrossRefGoogle Scholar
  175. Roberts LC, Hug SJ, Ruettimann T et al (2004) Arsenic removal with iron (II) and iron (III) in waters with high silicate and phosphate concentrations. Environ Sci Technol 38:307–315PubMedCrossRefGoogle Scholar
  176. Robertson FN (1989) Arsenic in ground-water under oxidizing conditions, south-west United States. Environ Geochem Health 11:171–185PubMedCrossRefGoogle Scholar
  177. Robinson B, Marchetti M, Moni C et al (2005) Arsenic accumulation by aquatic and terrestrial plants. Manag Arsen Environ 1:235–247Google Scholar
  178. Robinson B, Kim N, Marchetti M et al (2006) Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ Exp Bot 58:206–215CrossRefGoogle Scholar
  179. Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92PubMedCrossRefGoogle Scholar
  180. Rosen BP, Ajees AA, Mcdermott TR (2011) Life and death with arsenic. BioEssays 33:350–357PubMedPubMedCentralCrossRefGoogle Scholar
  181. Roychowdhury T (2010) Groundwater arsenic contamination in one of the 107 arsenic-affected blocks in West Bengal, India: Status, distribution, health effects and factors responsible for arsenic poisoning. Int J Hyg Environ Health 213:414–427PubMedCrossRefGoogle Scholar
  182. Saha KC (2003) Saha’s grading of arsenicosis progression and treatment. In: Arsenic exposure and health effects V. Elsevier Inc., Amsterdam, pp 391–414CrossRefGoogle Scholar
  183. Sahai N, Lee YJ, Xu H et al (2007) Role of Fe(II) and phosphate in arsenic uptake by coprecipitation. Geochim Cosmochim Acta 71:3193–3210CrossRefGoogle Scholar
  184. Sánchez Calvo L, Leclerc JP, Tanguy G et al (2003) An electrocoagulation unit for the purification of soluble oil wastes of high COD. Environ Prog 22:57–65CrossRefGoogle Scholar
  185. Sass BM, Rai D (1987) Solubility of amorphous chromium(III)-iron(III) hydroxide solid solutions. Inorg Chem 26:2228–2232CrossRefGoogle Scholar
  186. Sato Y, Kang M, Kamei T, Magara Y (2003) Performance of nanofiltration for arsenic removal. Water Res 36:3371–3377CrossRefGoogle Scholar
  187. Sen M, Manna A, Pal P (2010) Removal of arsenic from contaminated groundwater by membrane-integrated hybrid treatment system. J Memb Sci 354:108–113CrossRefGoogle Scholar
  188. Shao B, Guan Y, Tian Z et al (2016) Advantages of aeration in arsenic removal and arsenite oxidation by structural Fe(II) hydroxides in aqueous solution. Colloids Surfaces A Physicochem Eng Asp 506:703–710CrossRefGoogle Scholar
  189. Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35:743–759PubMedPubMedCentralCrossRefGoogle Scholar
  190. Sharma A, Adapureddy SM, Goel S (2014) Arsenic removal from aqueous samples in batch electrocoagulation studies. Int Proc Chem Biol Environ Eng 64:40–43Google Scholar
  191. Shih MC (2005) An overview of arsenic removal by pressure-driven membrane processes. Desalination 172:85–97CrossRefGoogle Scholar
  192. Smedley PL, Kinniburgh DG, Huq I et al (2001) International perspective on naturally occurring arsenic problems in groundwater. Arsenic exposure and health effects IV. Elsevier, Amsterdam, pp 9–25Google Scholar
  193. Smith S, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic, New YorkGoogle Scholar
  194. Smith AH, Hopenhayn-Rich C, Bates MN et al (1992) Cancer risks from arsenic in drinking water. Env Heal Perspect 97:259–267CrossRefGoogle Scholar
  195. Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78:1093–1103PubMedPubMedCentralGoogle Scholar
  196. Song S, Lopez-Valdivieso A, Hernandez-Campos DJ et al (2006) Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite. Water Res 40:364–372PubMedCrossRefGoogle Scholar
  197. Song P, Yang Z, Xu H et al (2014) Investigation of influencing factors and mechanism of antimony and arsenic removal by electrocoagulation using Fe-Al electrodes. Ind Eng Chem Res 53:12911–12919CrossRefGoogle Scholar
  198. Sorlini S, Gialdini F (2010) Conventional oxidation treatments for the removal of arsenic with chlorine dioxide, hypochlorite, potassium permanganate and monochloramine. Water Res 44:5653–5659PubMedCrossRefGoogle Scholar
  199. Sorlini S, Gialdini F, Stefan M (2014) UV/H2O2 oxidation of arsenic and terbuthylazine in drinking water. Environ Monit Assess 186:1311–1316PubMedCrossRefGoogle Scholar
  200. Su C, Puls RW (2001) Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation. Environ Sci Technol 35:1487–1492PubMedCrossRefGoogle Scholar
  201. Su H, Ye Z, Hmidi N (2017) High-performance iron oxide–graphene oxide nanocomposite adsorbents for arsenic removal. Colloids Surfaces A Physicochem Eng Asp 522:161–172CrossRefGoogle Scholar
  202. Sullivan C, Tyrer M, Cheeseman CR, Graham NJD (2010) Disposal of water treatment wastes containing arsenic – a review. Sci Total Environ 408:1770–1778PubMedCrossRefGoogle Scholar
  203. Sun W, Sierra-Alvarez R, Milner L, Field JA (2010) Anaerobic oxidation of arsenite linked to chlorate reduction. Appl Environ Microbiol 76:6804–68110PubMedPubMedCentralCrossRefGoogle Scholar
  204. Sun Y, Zhou G, Xiong X et al (2013) Enhanced arsenite removal from water by Ti(SO4)2 coagulation. Water Res 47:4340–4348PubMedCrossRefGoogle Scholar
  205. Swash PM, Monhemius AJ (1995) Synthesis, charecterisation and solubility testing of solids in the Ca-Fe-AsO4 system. In: Conference on mining and the environment, pp 17–28Google Scholar
  206. Tong M, Yuan S, Zhang P et al (2014) Electrochemically induced oxidative precipitation of Fe(II) for As(III) oxidation and removal in synthetic groundwater. Environ Sci Technol 48:5145–5153PubMedCrossRefGoogle Scholar
  207. Tripathi RD, Srivastava S, Mishra S et al (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165CrossRefGoogle Scholar
  208. Uddin MT, Mozumder MSI, Figoli A et al (2007a) Arsenic removal by conventional and membrane technology: an overview. Ind J Chem Technol 14:441–450Google Scholar
  209. Uddin MT, Mozumder MSI, Islam MA et al (2007b) Nanofiltration membrane process for the removal of arsenic from drinking water. Chem Eng Technol 30:1248–1254CrossRefGoogle Scholar
  210. van Genuchten CM, Bandaru SRS, Surorova E et al (2016) Formation of macroscopic surface layers on Fe(0) electrocoagulation electrodes during an extended field trial of arsenic treatment. Chemosphere 153:270–279PubMedCrossRefGoogle Scholar
  211. Vasavi A, Usha R, Swamy PM (2010) Phytoremediation – an overview review. J Ind Pollut Control 26:83–88Google Scholar
  212. Vasudevan S, Mohan S, Sozhan G et al (2006) Studies on the oxidation of As(III) to As(V) by in-situ-generated hypochlorite. Ind Eng Chem Res 45:7729–7732CrossRefGoogle Scholar
  213. Ventura-Lima J, Bogo MR, Monserrat JM (2011) Arsenic toxicity in mammals and aquatic animals: a comparative biochemical approach. Ecotoxicol Environ Saf 74:211–218PubMedCrossRefGoogle Scholar
  214. Viraraghavan T, Subramanian KS, Aruldoss JA (1999) Arsenic in drinking water – problems and solutions. Water Sci Technol 56:25–34Google Scholar
  215. Vrijenhoek EM, Waypa JJ (2000) Arsenic removal from drinking water by a “loose” nanofiltration membrane. Desalination 130:265–277CrossRefGoogle Scholar
  216. Wan W, Pepping TJ, Banerji T et al (2011) Effects of water chemistry on arsenic removal from drinking water by electrocoagulation. Water Res 45:384–392PubMedCrossRefGoogle Scholar
  217. Wang HJ, Gong WX, Liu RP et al (2011) Treatment of high arsenic content wastewater by a combined physical-chemical process. Colloids Surfaces A Physicochem Eng Asp 379:116–120CrossRefGoogle Scholar
  218. Wang XQ, Liu CP, Yuan Y, bai LF (2014) Arsenite oxidation and removal driven by a bio-electro-Fenton process under neutral pH conditions. J Hazard Mater 275:200–209PubMedCrossRefGoogle Scholar
  219. Wang Y, Duan J, Li W et al (2016) Aqueous arsenite removal by simultaneous ultraviolet photocatalytic oxidation-coagulation of titanium sulfate. J Hazard Mater 303:162–170PubMedCrossRefGoogle Scholar
  220. Wasserman GA, Liu X, Parvez F et al (2004) Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect 112:1329–1333PubMedPubMedCentralCrossRefGoogle Scholar
  221. Wasserman GA, Liu X, Parvez F et al (2007) Water arsenic exposure and intellectual function in 6-year-old children in Araihazar. Bangladesh. Environ Health Perspect 115:285–289PubMedCrossRefGoogle Scholar
  222. WHO (2011) Arsenic in drinking-water, background document for development of WHO guidelines for drinking-water quality. WHO Press, World Health Organization, GenevaGoogle Scholar
  223. Wilkie JA, Hering JG (1996) Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids Surf A Physicochem Eng Asp 107:97–110CrossRefGoogle Scholar
  224. Wong WW, Wong HY, Badruzzaman AB, Goh HH, Zaman M (2017) Recent advances in exploitation of nanomaterial for arsenic removal from water: a review. Nanotechnology 28:42001PubMedCrossRefGoogle Scholar
  225. Wu Y, Ma X, Feng M, Liu M (2008) Behavior of chromium and arsenic on activated carbon. J Hazard Mater 159:380–384PubMedCrossRefGoogle Scholar
  226. Wu CC, Hus LC, Chiang PN et al (2013) Oxidative removal of arsenite by Fe(II)- and polyoxometalate (POM)-amended zero-valent aluminum (ZVAl) under oxic conditions. Water Res 47:2583–2591PubMedCrossRefGoogle Scholar
  227. Xu YH, Nakajima T, Ohki A (2002) Adsorption and removal of arsenic(V) from drinking water by aluminum-loaded Shirasu-zeolite. J Hazard Mater 92:275–287PubMedCrossRefGoogle Scholar
  228. Zaspalis V, Pagana A, Sklari S (2007) Arsenic removal from contaminated water by iron oxide sorbents and porous ceramic membranes. Desalination 217:167–180CrossRefGoogle Scholar
  229. Zeng L (2004) Arsenic adsorption from aqueous solutions on an Fe (III)-Si binary oxide adsorbent. Water Qual Res J Canada 39:267–275CrossRefGoogle Scholar
  230. Zhang X, Zhao FJ, Huang Q et al (2009) Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. New Phytol 182:421–428PubMedCrossRefPubMedCentralGoogle Scholar
  231. Zhang P, Tong M, Yuan S, Liao P (2014) Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation. J Contam Hydrol 164:299–307PubMedCrossRefGoogle Scholar
  232. Zhang J, Zhou W, Liu B et al (2015) Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil. Environ Sci Technol 49:5956–5964PubMedCrossRefGoogle Scholar
  233. Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794CrossRefGoogle Scholar
  234. Zhou L, Zheng W, Ji Y et al (2013) Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system. J Hazard Mater 263:422–430PubMedCrossRefGoogle Scholar
  235. Zouboulis A, Katsoyiannis I (2002) Removal of arsenates from contaminated water by coagulation–direct filtration. Sep Sci Technol 37:2859–2873CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • P. V. Nidheesh
    • 1
  • Ansaf V. Karim
    • 2
  • T. S. Anantha Singh
    • 3
  • Dhanashree Dofe
    • 1
  • Sheetal Sahare
    • 1
  • M. Suresh Kumar
    • 1
  1. 1.CSIR-National Environmental Engineering Research InstituteNagpurIndia
  2. 2.Centre for Environmental Science and EngineeringIndian Institute of TechnologyBombayIndia
  3. 3.Department of Civil Engineering, School of TechnologyPandit Deendayal Petroleum UniversityGandhinagarIndia

Personalised recommendations