Advertisement

Transcriptomics of Arsenic Tolerance in Plants

  • Kinga Kłodawska
  • Monika Bojko
  • Dariusz Latowski
Chapter

Abstract

Transcriptome analysis is a potent method for characterizing the global response to stress conditions of any organism. Main high-throughput techniques of genome-wide transcriptomic investigation are RNA microarray and RNA-seq. Global differential expression of genes upon plant exposure to arsenite As(III) and/or arsenate As(V) studied using different methods is presented in this chapter. Microarray studies of rice (Oryza sativa) response to As revealed that there is a set of genes expressed differently upon As(III) and As(V) challenge. As(V) was found to affect cell wall proteins and primary and secondary metabolism, while As(III) treatment affected hormonal and signaling processes. In Arabidopsis thaliana, As(V) treatment resulted in a repression of transcription of genes involved in the phosphate starvation response and some transcription factors. Of the genes involved in oxidative stress response, some were found to be upregulated, whereas others were downregulated. RNA-seq analysis of rice transcriptome revealed that genes involved in heavy metal transport, transcription, hormone biosynthesis, and lipid metabolism respond to As(III) exposure in rice. Differential regulation of miRNAs was also discovered. Differential gene expression upon As(III) and As(V) challenge with implication on metabolic pathways involved in plant response to As is discussed in this chapter.

Keywords

Metalloids mRNA Microarray technology Plant molecular biology Secondary metabolism Soil pollution 

References

  1. Abedin MJ, Meharg AA (2002) Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice (Oryza sativa L). Plant Soil 243:57–66Google Scholar
  2. Abercrombie JM, Halfhill MD, Ranjan P, Rao MR, Saxton AM, Yuan JS, Stewart CN (2008) Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biol 8:87.  https://doi.org/10.1186/1471-2229-8-87 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andres J, Arsène-Ploetze F, Barbe V, Brochier-Armanet C, Cleiss-Arnold J, Coppée J-Y, Dillies M-A, Geist L, Joublin A, Koechler S, Lassalle F, Marchal M, Médigue C, Muller D, Nesme X, Plewniak F, Proux C, Ramírez-Bahena MH, Schenowitz C, Sismeiro O, Vallenet D, Santini JM, Bertin PN (2013) Life in an arsenic-containing gold mine: genome and physiology of the autotrophic arsenite-oxidizing bacterium rhizobium sp. NT-26. Genome Biol Evol 5:934–953PubMedPubMedCentralCrossRefGoogle Scholar
  4. Asada K (1992) Ascorbate peroxidase–a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85:235–241CrossRefGoogle Scholar
  5. Bernier F, Berna A (2001) Germins and germin-like proteins: plant do-all proteins. But what do they do exactly? Plant Physiol Biochem 39:545–554CrossRefGoogle Scholar
  6. Bleeker PM, Hakvoort HWJ, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J 45:917–929CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chakrabarty D, Trivedi PK, Misra P, Tiwari M, Shri M, Shukla D, Kumar S, Rai A, Pandey A, Nigam D, Tripathi R, Tuli R (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74:688–702CrossRefGoogle Scholar
  8. Cleiss-Arnold J, Koechler S, Proux C, Fardeau ML, Dillies MA, Coppee JY, Arsène-Ploetze F, Bertin PN (2010) Temporal transcriptomic response during arsenic stress in Herminiimonas arsenicoxydans. BMC Genomics 11:709.  https://doi.org/10.1186/1471-2164-11-709 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832PubMedPubMedCentralCrossRefGoogle Scholar
  10. Correa-Aragunde N, Foresi N, Lamattina L (2015) Nitric oxide is a ubiquitous signal for maintaining redox balance in plant cells: regulation of ascorbate peroxidase as a case study. J Exp Bot 66:2913–2921PubMedCrossRefPubMedCentralGoogle Scholar
  11. Cummins I, Cole DJ, Edwards R (1999) A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J 18:285–292PubMedCrossRefPubMedCentralGoogle Scholar
  12. Dang Y, Walker DJ, Vautour KE, Dixon S, Holmes DE (2017) Arsenic detoxification by Geobacter species. Appl Environ Microbiol 83:e02689-02616.  https://doi.org/10.1128/AEM.02689-16 CrossRefGoogle Scholar
  13. Deng F, Yamaji N, Xia J, Ma JF (2013) A member of the heavy metal P-type ATPase OsHMA5 is involved in xylem loading of copper in rice. Plant Physiol 163:1353–1362.  https://doi.org/10.1104/pp.113.226225 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci 103:5413–5418PubMedCrossRefPubMedCentralGoogle Scholar
  15. Diatchenko L, Lau Y, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci 93:6025–6030PubMedCrossRefPubMedCentralGoogle Scholar
  16. Diatchenko L, Lukyanov S, Lau Y-FC, Siebert PD (1999) Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol 303:349–380PubMedCrossRefPubMedCentralGoogle Scholar
  17. Dixon D, Edwards R (2015) Glutathione transferase [M/OL]. Arabidopsis Book 8:e0131CrossRefGoogle Scholar
  18. Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3:3004.1.  https://doi.org/10.1186/gb-2002-3-3-reviews3004 CrossRefGoogle Scholar
  19. Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5:193–198PubMedCrossRefPubMedCentralGoogle Scholar
  20. FAO (2017) FAO rice market monitor. vol XX. FAOGoogle Scholar
  21. Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278PubMedCrossRefPubMedCentralGoogle Scholar
  22. Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–159CrossRefGoogle Scholar
  23. Gergen JP, Stern RH, Wensink PC (1979) Filter replicas and permanent collections of recombinant DNA plasmids. Nucleic Acids Res 7:2115–2136PubMedPubMedCentralCrossRefGoogle Scholar
  24. Grill E, Winnacker E-L, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–677PubMedCrossRefPubMedCentralGoogle Scholar
  25. Grill E, Winnacker E-L, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci U S A 84:439–443PubMedPubMedCentralCrossRefGoogle Scholar
  26. Grill E, Löffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci 86:6838–6842PubMedCrossRefPubMedCentralGoogle Scholar
  27. Grunstein M, Hogness DS (1975) Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci 72:3961–3965PubMedCrossRefPubMedCentralGoogle Scholar
  28. Hartley-Whitaker J, Ainsworth G, Meharg AA (2001) Copper and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–722CrossRefGoogle Scholar
  29. Hassinen V, Vallinkoski V-M, Issakainen S, Tervahauta A, Kärenlampi S, Servomaa K (2009) Correlation of foliar MT2b expression with Cd and Zn concentrations in hybrid aspen (Populus tremula×tremuloides) grown in contaminated soil. Environ Pollut 157:922–930PubMedCrossRefPubMedCentralGoogle Scholar
  30. Hassinen VH, Tervahauta AI, Schat H, Kärenlampi SO (2011) Plant metallothioneins – metal chelators with ROS scavenging activity? Plant Biol 13:225–232PubMedCrossRefGoogle Scholar
  31. Hayat S, Ali B, Ahmad A (2007) Salicylic acid: biosynthesis, metabolism and physiological role in plants. In: Hayat S, Ahmad A (eds) Salicylic acid: a plant hormone. Springer, Dordrecht, pp 1–14CrossRefGoogle Scholar
  32. Huang T-L, Nguyen QTT, Fu S-F, Lin C-Y, Chen Y-C, Huang H-J (2012) Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Mol Biol 80:587–608CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hurkman WJ, Tao HP, Tanaka CK (1991) Germin-like polypeptides increase in barley roots during salt stress. Plant Physiol 97:366–374PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hurkman WJ, Lane BG, Tanaka CK (1994) Nucleotide sequence of a transcript encoding a germin-like protein that is present in salt-stressed barley (Hordeum vulgare L.) roots. Plant Physiol 104:803–804PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ji W, Zhu Y, Li Y, Yang L, Zhao X, Cai H, Bai X (2010) Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett 32:1173–1179PubMedCrossRefGoogle Scholar
  36. Kampranis SC, Damianova R, Atallah M, Toby G, Kondi G, Tsichlis PN, Makris AM (2000) A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J Biol Chem 275:29207–29216PubMedCrossRefGoogle Scholar
  37. Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829–837PubMedGoogle Scholar
  38. Kilili KG, Atanassova N, Vardanyan A, Clatot N, Al-Sabarna K, Kanellopoulos PN, Makris AM, Kampranis SC (2004) Differential roles of tau class glutathione S-transferases in oxidative stress. J Biol Chem 279:24540–24551PubMedCrossRefGoogle Scholar
  39. Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218PubMedCrossRefGoogle Scholar
  40. Kruger MC, Bertin PN, Heipieper HJ, Arsène-Ploetze F (2013) Bacterial metabolism of environmental arsenic—mechanisms and biotechnological applications. Appl Microbiol Biotechnol 97(9):3827–3841. https://doi.org/10.1007/s00253-013-4838-5 PubMedCrossRefGoogle Scholar
  41. Krzesłowska M (2011) The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant 33:35–51CrossRefGoogle Scholar
  42. Lafuente A, Pérez-Palacios P, Doukkali B, Molina-Sánchez MD, Jiménez-Zurdo JI, Caviedes MA, Rodríguez-Llorente ID, Pajuelo E (2015) Unraveling the effect of arsenic on the model MedicagoEnsifer interaction: a transcriptomic meta-analysis. New Phytol 205:255–272PubMedPubMedCentralCrossRefGoogle Scholar
  43. Lane BG (2002) Oxalate, germins, and higher-plant pathogens. IUBMB Life 53:67–75PubMedCrossRefGoogle Scholar
  44. Lee S, Kim Y-Y, Lee Y, An G (2007) Rice P(1B)-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145:831–842PubMedPubMedCentralCrossRefGoogle Scholar
  45. Lisitsyn N, Lisitsyn N, Wigler M (1993) Cloning the differences between two complex genomes. Science 259:946–951PubMedCrossRefGoogle Scholar
  46. Lomax C, Liu W-J, Wu L, Xue K, Xiong J, Zhou J, McGrath SP, Meharg AA, Miller AJ, Zhao F-J (2012) Methylated arsenic species in plants originate from soil microorganisms. New Phytol 193:665–672CrossRefGoogle Scholar
  47. Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lou Y, Baldwin IT (2006) Silencing of a germin-like gene in Nicotiana attenuata improves performance of native herbivores. Plant Physiol 140:1126–1136PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lu M, Han Y-P, Gao J-G, Wang X-J, Li W-B (2010) Identification and analysis of the germin-like gene family in soybean. BMC Genomics 11:620–620PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212PubMedPubMedCentralCrossRefGoogle Scholar
  52. Ma JF, Yamaji N, Mitani N, Xu X-Y, Su Y-H, McGrath SP, Zhao F-J (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U S A 105:9931–9935PubMedPubMedCentralCrossRefGoogle Scholar
  53. Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177.  https://doi.org/10.1007/s11738-007-0036-3 CrossRefGoogle Scholar
  54. Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z (2005) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J Plant Physiol 162:1338–1346PubMedCrossRefGoogle Scholar
  55. Manosalva PM, Davidson RM, Liu B, Zhu X, Hulbert SH, Leung H, Leach JE (2009) A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiol 149:286–296PubMedPubMedCentralCrossRefGoogle Scholar
  56. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedPubMedCentralCrossRefGoogle Scholar
  57. Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Biol 47:127–158CrossRefGoogle Scholar
  58. McConn M, Creelman RA, Bell E, Mullet JE (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci U S A 94:5473–5477PubMedPubMedCentralCrossRefGoogle Scholar
  59. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43CrossRefGoogle Scholar
  60. Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, Moreno-Sánchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29:653–671PubMedCrossRefGoogle Scholar
  61. Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551–1566PubMedCrossRefPubMedCentralGoogle Scholar
  62. Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD (2017) PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res 45:183–189CrossRefGoogle Scholar
  63. Nakata M, Watanabe Y, Sakurai Y, Hashimoto Y, Matsuzaki M, Takahashi Y, Satoh T (2004) Germin-like protein gene family of a moss, Physcomitrella patens, phylogenetically falls into two characteristic new clades. Plant Mol Biol 56:381–395PubMedCrossRefPubMedCentralGoogle Scholar
  64. Norton GJ, Lou-Hing DE, Meharg AA, Price AH (2008a) Rice–arsenate interactions in hydroponics: whole genome transcriptional analysis. J Exp Bot 59:2267–2276PubMedPubMedCentralCrossRefGoogle Scholar
  65. Norton GJ, Nigar M, Williams PN, Dasgupta T, Meharg AA, Price AH (2008b) Rice–arsenate interactions in hydroponics: a three-gene model for tolerance. J Exp Bot 59:2277–2284PubMedPubMedCentralCrossRefGoogle Scholar
  66. Pandey S, Rai R, Rai LC (2015) Biochemical and molecular basis of arsenic toxicity and tolerance in microbes and plants A2 – Flora, S.J.S. In: SJS F (ed) Handbook of arsenic toxicology. Academic, Oxford, pp 627–674CrossRefGoogle Scholar
  67. Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9:534–540PubMedCrossRefPubMedCentralGoogle Scholar
  68. Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265PubMedCrossRefPubMedCentralGoogle Scholar
  69. Paulose B, Kandasamy S, Dhankher OP (2010) Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification. BMC Plant Biol 10:108.  https://doi.org/10.1186/1471-2229-10-108 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295PubMedCrossRefPubMedCentralGoogle Scholar
  71. Penninckx IA, Thomma BP, Buchala A, Métraux JP, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2113PubMedPubMedCentralCrossRefGoogle Scholar
  72. Pinto E, Sigaud-kutner T, Leitao MA, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal–induced oxidative stress in algae. J Phycol 39:1008–1018CrossRefGoogle Scholar
  73. Rakwal R, Tamogami S, Kodama O (1996) Role of jasmonic acid as a signaling molecule in copper chloride-elicited rice phytoalexin production. Biosci Biotechnol Biochem 60:1046–1048CrossRefGoogle Scholar
  74. Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Biol 43:439–463CrossRefGoogle Scholar
  75. Ronaghi M, Uhlén M, Nyren P (1998) A sequencing method based on real-time pyrophosphate. Science 281:363–365PubMedCrossRefPubMedCentralGoogle Scholar
  76. Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234PubMedCrossRefPubMedCentralGoogle Scholar
  77. Schmöger ME, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–802PubMedPubMedCentralCrossRefGoogle Scholar
  78. Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365PubMedPubMedCentralGoogle Scholar
  79. Schweizer P, Christoffel A, Dudler R (1999) Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance. Plant J 20:541–552PubMedCrossRefPubMedCentralGoogle Scholar
  80. Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plant Sci 170:274–282CrossRefGoogle Scholar
  81. Smith B (1998) The emergence of agriculture. Scientific American Library, New YorkGoogle Scholar
  82. Sneller F, Van Heerwaarden L, Kraaijeveld-Smit F, Ten Bookum W, Koevoets P, Schat H, Verkleij J (1999) Toxicity of arsenate in Silene vulgaris, accumulation and degradation of arsenate-induced phytochelatins. New Phytol 144:223–232CrossRefGoogle Scholar
  83. Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci 107:21187–21192PubMedCrossRefPubMedCentralGoogle Scholar
  84. Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2009) Comparative biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J Exp Bot 60:3419–3431CrossRefGoogle Scholar
  85. Srivastava S, Srivastava AK, Sablok G, Deshpande TU, Suprasanna P (2015) Transcriptomics profiling of Indian mustard (Brassica juncea) under arsenate stress identifies key candidate genes and regulatory pathways. Front Plant Sci 6:646.  https://doi.org/10.3389/fpls.2015.00646 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Tamogami S, Rakwal R, Kodama O (1997) Phytoalexin production by amino acid conjugates of jasmonic acid through induction of naringenin-7-O-methyltransferase, a key enzyme on phytoalexin biosynthesis in rice (Oryza sativa L.). FEBS Lett 401:239–242PubMedCrossRefPubMedCentralGoogle Scholar
  87. Thomas PD, Kejariwal A, Guo N, Mi H, Campbell MJ, Muruganujan A, Lazareva-Ulitsky B (2006) Applications for protein sequence–function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nucleic Acids Res 34:W645–W650PubMedPubMedCentralCrossRefGoogle Scholar
  88. Thomma BP, Eggermont K, Penninckx IA, Mauch-Mani B, Vogelsang R, Cammue BP, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci U S A 95:15107–15111PubMedPubMedCentralCrossRefGoogle Scholar
  89. Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJ (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165CrossRefGoogle Scholar
  90. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487PubMedCrossRefPubMedCentralGoogle Scholar
  91. Verma S, Verma PK, Meher AK, Bansiwal AK, Tripathi RD, Chakrabarty D (2018) A novel fungal arsenic methyltransferase, Waars M reduces grain arsenic accumulation in the transgenic rice plant. J Hazard Mater 344:626–634PubMedCrossRefPubMedCentralGoogle Scholar
  92. Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20PubMedCrossRefPubMedCentralGoogle Scholar
  93. Wang T, Chen X, Zhu F, Li H, Li L, Yang Q, Chi X, Yu S, Liang X (2013) Characterization of peanut germin-like proteins, AhGLPs in plant development and defense. PLoS One 8:e61722.  https://doi.org/10.1371/journal.pone.0061722 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Weiss S, Carapito C, Cleiss J, Koechler S, Turlin E, Coppee JY, Heymann M, Kugler V, Stauffert M, Cruveiller S (2009) Enhanced structural and functional genome elucidation of the arsenite-oxidizing strain Herminiimonas arsenicoxydans by proteomics data. Biochimie 91:192–203PubMedCrossRefPubMedCentralGoogle Scholar
  95. Wenzel W, Bunkowski M, Puschenreiter M, Horak O (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ Pollut 123:131–138PubMedCrossRefPubMedCentralGoogle Scholar
  96. Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550PubMedPubMedCentralCrossRefGoogle Scholar
  97. Yanitch A, Brereton NJB, Gonzalez E, Labrecque M, Joly S, Pitre FE (2017) Transcriptomic response of purple willow (Salix purpurea) to arsenic stress. Front Plant Sci 8:1115.  https://doi.org/10.3389/fpls.2017.01115 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:293–297CrossRefGoogle Scholar
  99. Yoshida K, Kaothien P, Matsui T, Kawaoka A, Shinmyo A (2003) Molecular biology and application of plant peroxidase genes. Appl Microbiol Biotechnol 60:665–670PubMedCrossRefPubMedCentralGoogle Scholar
  100. Yu LJ, Luo YF, Liao B, Xie LJ, Chen L, Xiao S, Li JT, Hu SN, Shu WS (2012) Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol 195:97–112CrossRefGoogle Scholar
  101. Zhang Y, Chen S, Hao X, Su J-Q, Xue X, Yan Y, Zhu Y-G, Ye J (2016) Transcriptomic analysis reveals adaptive responses of an Enterobacteriaceae strain LSJC7 to arsenic exposure. Front Microbiol 7:636.  https://doi.org/10.3389/fmicb.2016.00636 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Zhao F, Zhang H (2006) Expression of Suaeda salsa glutathione S-transferase in transgenic rice resulted in a different level of abiotic stress resistance. J Agr Sci 144:547–554CrossRefGoogle Scholar
  103. Zimeri AM, Dhankher OP, McCaig B, Meagher RB (2005) The plant MT1 metallothioneins are stabilized by binding cadmiums and are required for cadmium tolerance and accumulation. Plant Mol Biol 58:839–855PubMedCrossRefPubMedCentralGoogle Scholar
  104. Zimmermann G, Bäumlein H, Mock H-P, Himmelbach A, Schweizer P (2006) The multigene family encoding germin-like proteins of barley. Regulation and function in basal host resistance. Plant Physiol 142:181–192PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Kinga Kłodawska
    • 1
  • Monika Bojko
    • 1
  • Dariusz Latowski
    • 1
  1. 1.Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and BiochemistryJagiellonian University in KrakowKrakowPoland

Personalised recommendations