Arsenic Uptake and Transportation in Plants

  • Dariusz Latowski
  • Anna Kowalczyk
  • Kamila Nawieśniak
  • Stanisław Listwan


The arsenic uptake and translocation systems in plants are dependent on As species. Uptake of inorganic arsenate [Asin(V)] is conducted via specified group of high-affinity phosphate (Pi) transporters belonging to the PHS family, called Pi transporter 1. Recently identified transcription factors involved in the regulation of Asin(V) intake in plants are also described in this chapter. The role of other proteins such as mitochondrial proteins localized to the inner mitochondrial membrane and responsible for dicarboxylate exchange between the mitochondrial matrix and the cytosol or Pi transporter traffic facilitator 1 located in the endoplasmic reticulum (ER) of A. thaliana is not omitted. Uptake of inorganic arsenite [Asin(III)], as well as the organic derivatives of As from environment and distribution in plants, is conducted by channels created by proteins belonging to three of the five plant aquaporin subfamilies called nodulin 26-like intrinsic protein (NIP), membrane (PIP), and tonoplast intrinsic proteins (TIP). The significance of ABC (ATP-binding cassette) transporters which are responsible for transferring of Asin(III)-phytochelatin complexes across the tonoplast to the vacuole as well as the role of transporters responsible for inositol uptake in As translocation from the xylem into the phloem is explained. Additionally, the meaning of some elements like S, Si, and Fe in As influx in plants is considered.


Arsenic species Ion flux Metalloids Phytochelatins Soil pollution 


  1. Abascal F, Irisarri I, Zardoya R (2014) Diversity and evolution of membrane intrinsic proteins. Biochim Biophys Acta 1840:1468–1481PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abbas MHH, Meharg AA (2008) Arsenate, arsenite and dimethyl arsenic acid (DMA) uptake and tolerance in maize (Zea mays L.). Plant Soil 304:277–289CrossRefGoogle Scholar
  3. Abbas G, Murtaza B, Bibi I et al (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15:59. CrossRefPubMedCentralGoogle Scholar
  4. Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128PubMedPubMedCentralCrossRefGoogle Scholar
  5. Acosta JA, Arocena JM, Faz A (2015) Speciation of arsenic in bulk and rhizosphere soils from artisanal cooperative mines in Bolivia. Chemosphere 138:1014–1020PubMedCrossRefPubMedCentralGoogle Scholar
  6. Ali W, Isner JC, Isayenkov SV et al (2012) Heterologous expression of the yeast arsenite efflux system ACR3 improves Arabidopsis thaliana tolerance to arsenic stress. New Phytol 194:716–723PubMedCrossRefPubMedCentralGoogle Scholar
  7. Andres J, Bertin PN (2016) The microbial genomics of arsenic. FEMS Microbiol Rev 40:299–322PubMedCrossRefPubMedCentralGoogle Scholar
  8. Asher CJ, Keay PF (1979) Arsenic uptake by barley seedlings. Aust J Plant Physiol 6:459–466CrossRefGoogle Scholar
  9. Awasthi S, Chauhan R, Srivastava S et al (2017) The journey of arsenic from soil to grain in rice. Front Plant Sci 8:1007. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Batista BL, Nigar M, Mestrot A et al (2014) Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. J Exp Bot 65:1467–1479PubMedCrossRefPubMedCentralGoogle Scholar
  11. Besserer A, Burnotte E, Bienert GP et al (2012) Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121. Plant Cell 24:3463–3481PubMedPubMedCentralCrossRefGoogle Scholar
  12. BIAM (2002) 4th international conference on arsenic contamination of groundwater in Bangladesh: cause, effect and remedyGoogle Scholar
  13. Bienert MD, Bienert GP (2017) Plant aquaporins and metalloids. In: Chaumont F, Tyerman SD (eds) Plant aquaporins from transport to signaling. Springer, Cham, pp 297–333CrossRefGoogle Scholar
  14. Bienert GP, Moller ALB, Kristiansen KA et al (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bienert GP, Thorsen M, Schüssler MD et al (2008a) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 10:26. CrossRefGoogle Scholar
  16. Bienert GP, Schüssler MD, Jahn TP (2008b) Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends Biochem Sci 33:20–26CrossRefGoogle Scholar
  17. Bleeker PM, Schat H, Vooijs R et al (2003) Mechanisms of arsenate tolerance in Cytisus striatus. New Phytol 157:33–38CrossRefGoogle Scholar
  18. Blute NK, Brabander DJ, Hemond HF et al (2004) Arsenic sequestration by ferric iron plaque on cattail roots. Environ Sci Technol 38:6074–6077CrossRefGoogle Scholar
  19. Borgnia M, Nielsen S, Engel A et al (1999) Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem 68:425–458PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26PubMedCrossRefPubMedCentralGoogle Scholar
  21. Burló F, Guijarro I, Carbonell-Barrachina AA et al (1999) Arsenic species: effects on and accumulation by tomato plants. J Agric Food Chem 47:1247–1253PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cao Y, Sun D, Ai H et al (2017) Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains. Environ Sci Technol 51:12131–12138PubMedCrossRefPubMedCentralGoogle Scholar
  23. Carey AM, Scheckel KG, Lombi E et al (2010) Grain unloading of arsenic species in rice. Plant Physiol 152:309–319PubMedPubMedCentralCrossRefGoogle Scholar
  24. Carey AM, Norton GJ, Deacon C et al (2011) Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytol 192:87–98PubMedPubMedCentralCrossRefGoogle Scholar
  25. Castrillo G, Sanchez-Bermejo E, de Lorenzo L et al (2013) WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell 25:2944–2957PubMedPubMedCentralCrossRefGoogle Scholar
  26. Catarecha P, Segura MD, Franco-Zorrilla JM et al (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chakrabarty N (ed) (2015) Arsenic toxicity: prevention and treatment. CRC Press, LondonGoogle Scholar
  28. Chaumont F, Tyerman SD (2014) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164:1600–1618PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chaumont F, Barrieu F, Wojcik E et al (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chen Z, Zhu Y-G, Liu W-J et al (2005) Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol 165:91–97PubMedCrossRefPubMedCentralGoogle Scholar
  31. Chen J, Liu Y, Ni J et al (2011) OsPHF1 regulates the plasma membrane localization of low and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice. Plant Physiol 157:269–278PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chen Y, Sun S-K, Tang Z et al (2017a) The nodulin 26-like intrinsic membrane protein OsNIP3;2 is involved in arsenite uptake by lateral roots in rice. J Exp Bot 68:3007–3016PubMedCrossRefGoogle Scholar
  33. Chen Y, Hua CY, Jia MR et al (2017b) Heterologous expression of Pteris vittata arsenite antiporter PvACR3;1 reduces arsenic accumulation in plant shoots. Environ Sci Technol 51:10387–10395PubMedCrossRefPubMedCentralGoogle Scholar
  34. Clark GT, Dunlop J, Phung HT (2003) Phosphate absorption by Arabidopsis thaliana: interactions between phosphorus status and inhibition by arsenate. Aust J Plant Physiol 27:959–965Google Scholar
  35. Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330PubMedCrossRefGoogle Scholar
  36. Colmer TD, Cos MCH, Voesenek LACJ (2006) Root aeration in rice (Oryza sativa): evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol 170:767–777PubMedCrossRefGoogle Scholar
  37. Cottingham KL, Karimi R, Gruber JF et al (2013) Diet and toenail arsenic concentrations in a New Hampshire population with arsenic-containing water. Nutr J 12:149. CrossRefPubMedPubMedCentralGoogle Scholar
  38. de Groot BL, Grubmüller H (2001) Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294:2353–2357PubMedCrossRefPubMedCentralGoogle Scholar
  39. Di Tusa SF, Fontenot EB, Wallace RW et al (2016) A member of the phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter. New Phytol 209:762–772CrossRefGoogle Scholar
  40. Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124:1349–1362PubMedPubMedCentralCrossRefGoogle Scholar
  41. Duan G-L, Hu Y, Liu W-J et al (2011) Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain. Environ Exp Bot 71:416–421Google Scholar
  42. Duan G-L, Hu Y, Schneider S et al (2016) Inositol transporters atint2 and atint4 regulate arsenic accumulation in Arabidopsis seeds. Nat Plants 2:15202. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Dunlop J, Phung H, Meeking R et al (1997) The kinetics associated with phosphate absorption by Arabidopsis and its regulation by phosphorus status. Aust J Plant Physiol 24:623–629CrossRefGoogle Scholar
  44. Dwivedi S, Tripathi RD, Srivastava S et al (2010) Arsenic affects mineral nutrients in grains of various Indian rice (Oryza sativa L.) genotypes grown on arsenic-contaminated soils of West Bengal. Protoplasma 245:113–124PubMedCrossRefGoogle Scholar
  45. Ellis BD, MacDonald CLB (2004) Stabilized arsenic(I) iodide: a ready source of arsenic iodide fragments and a useful reagent for the generation of clusters. Inorg Chem 43:5981–5986PubMedCrossRefPubMedCentralGoogle Scholar
  46. Esteban E, Carpena RO, Meharg AA (2003) High affinity phosphate/arsenate transport in white lupin (Lupinus albus) is relatively insensitive to phosphate status. New Phytol 158:165–173CrossRefGoogle Scholar
  47. Fang X, Yang B, Matthay MA et al (2002) Evidence against aquaporin-1-dependent CO2 permeability in lung and kidney. J Physiol 542:63–69PubMedPubMedCentralCrossRefGoogle Scholar
  48. Fendorf S, Kocar BD (2009) Biogeochemical processes controlling the fate and transport of arsenic: implications for south and southeast Asia. Adv Agron 104:137–164CrossRefGoogle Scholar
  49. Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Forrest KL, Bhave M (2007) Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype. Funct Integr Genomics 7:263–289PubMedCrossRefPubMedCentralGoogle Scholar
  51. Frick A, Järvå M, Ekvall M et al (2013a) Mercury increases water permeability of a plant aquaporin through a non-cysteine-related mechanism. Biochem J 454:491–499PubMedCrossRefGoogle Scholar
  52. Frick A, Järvå M, Törnroth-Horsefield S (2013b) Structural basis for pH gating of plant aquaporins. FEBS Lett 587:989–993PubMedCrossRefGoogle Scholar
  53. Frohne T, Rinklebe J, Diaz-Bone RA et al (2011) Controlled variation of redox conditions in a floodplain soil: impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma 160:414–424CrossRefGoogle Scholar
  54. Fu D, Libson A, Miercke LJ et al (2000) Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290:481–486PubMedCrossRefPubMedCentralGoogle Scholar
  55. Gerbeau P, Güclü J, Ripoche P et al (1999) Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant J 18:577–587PubMedCrossRefPubMedCentralGoogle Scholar
  56. González E, Solano R, Rubio V et al (2005) Phosphate transporter traffic facilitator1 is a plant specific SEC12- related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17:3500–3512PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hanaoka H, Uraguchi S, Takano J et al (2014) OsNIP3;1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions. Plant J 78:890–902PubMedCrossRefPubMedCentralGoogle Scholar
  58. Hansel CM, La Force MJ, Fendorf S et al (2002) Spatial and temporal association of As and Fe species on aquatic plant roots. Environ Sci Technol 36:1988–1994PubMedCrossRefPubMedCentralGoogle Scholar
  59. Hayes JE, Pallotta M, Baumann U et al (2013) Germanium as a tool to dissect boron toxicity effects in barley and wheat. Funct Plant Biol 40:618–627CrossRefGoogle Scholar
  60. He Z, Yan H, Chen Y et al (2015) An aquaporin PvTIP4;1 from Pteris vittata may mediate arsenite uptake. New Phytol 209:746–761PubMedCrossRefGoogle Scholar
  61. Hu M, Li F, Liu C et al (2015) The diversity and abundance of As(III)-oxidizers on root iron plaque is critical for arsenic bioavailability to rice. Sci Rep 5:13611. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ilan B, Tajkhorshid E, Schulten K et al (2004) The mechanism of proton exclusion in aquaporin channels. Proteins 55:223–228PubMedCrossRefGoogle Scholar
  63. Indriolo E, Na G, Ellis D et al (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2057PubMedPubMedCentralCrossRefGoogle Scholar
  64. Isayenkov SV, Maathuis FJM (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett 582:1625–1628CrossRefGoogle Scholar
  65. Jahn TP, Møller AL, Zeuthen T et al (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett 574:31–36PubMedCrossRefGoogle Scholar
  66. Janiak C, Meyer HJ, Gudat D et al (2012) Moderne anorganische chemie. De Gruyter, BerlinCrossRefGoogle Scholar
  67. Jauh GY, Phillips TE, Rogers JC (1999) Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 11:1867–1882PubMedPubMedCentralCrossRefGoogle Scholar
  68. Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322PubMedCrossRefGoogle Scholar
  69. Jia HF, Ren HY, Gu M et al (2011) The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiol 156:1164–1175PubMedPubMedCentralCrossRefGoogle Scholar
  70. Johanson U, Gustavsson S (2002) A new subfamily of major intrinsic proteins in plants. Mol Biol Evol 19:456–461PubMedCrossRefPubMedCentralGoogle Scholar
  71. Jung JS, Preston GM, Smith BL et al (1994) Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J Biol Chem 269:14648–14654PubMedPubMedCentralGoogle Scholar
  72. Kaldenhoff R, Bertl A, Otto B et al (2007) Characterization of plant aquaporins. Methods Enzymol 428:505–531PubMedCrossRefGoogle Scholar
  73. Kamiya T, Tanaka M, Mitani N et al (2009) NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem 284:2114–2120PubMedCrossRefPubMedCentralGoogle Scholar
  74. Kamiya T, Islam MR, Duan GL et al (2013) Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil Sci Plant Nutr 59:580–590CrossRefGoogle Scholar
  75. Kammerloher W, Fischer U, Piechottka GP et al (1994) Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. Plant J 6:187–199PubMedCrossRefPubMedCentralGoogle Scholar
  76. Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22–29PubMedCrossRefPubMedCentralGoogle Scholar
  77. Katsuhara M, Sasano S, Horie T et al (2014) Functional and molecular characteristics of rice and barley NIP aquaporins transporting water, hydrogen peroxide and arsenite. Plant Biotechnol 31:213–219CrossRefGoogle Scholar
  78. Khalid S, Shahid M, Niazi NK et al (2017) Arsenic behaviour in soil-plant system: biogeochemical reactions and chemical speciation influences. In: Anjum N, Gill S, Tuteja N (eds) Enhancing cleanup of environmental pollutants. Springer, Berlin, pp 97–140CrossRefGoogle Scholar
  79. Kirscht A, Kaptan SS, Bienert KP et al (2016) Crystal structure of an ammonia-permeable aquaporin. PLoS Biol 14:e1002411. CrossRefPubMedPubMedCentralGoogle Scholar
  80. Kläning UK, Bielski BHJ, Sehested K (1989) Arsenic(IV). A pulse-radiolysis study. Inorg Chem 28:2717–2724CrossRefGoogle Scholar
  81. Kopittke PM, de Jonge MD, Wang P et al (2014) Laterally resolved speciation of arsenic in roots of wheat and rice using fluorescence-XANES imaging. New Phytol 201:1251–1262PubMedCrossRefPubMedCentralGoogle Scholar
  82. Kosinska-Eriksson U, Fischer G, Friemann R et al (2013) Subangstrom resolution X-ray structure details aquaporin-water interactions. Science 340:1346–1349CrossRefGoogle Scholar
  83. Kreida S, Tornroth-Horsefield S (2015) Structural insights into aquaporin selectivity and regulation. Curr Opin Struct Biol 33:126–134PubMedCrossRefPubMedCentralGoogle Scholar
  84. Kuramata M, Abe T, Kawasaki A et al (2013) Genetic diversity of arsenic accumulation in rice and QTL analysis of methylated arsenic in rice grains. Rice (NY) 116:3. CrossRefGoogle Scholar
  85. Larsen EH, Moscholm L, Nielsen MM (1992) Atmospheric deposition of trace elements around point sources and human health risk assessment: II. Uptake of arsenic and chromium by vegetables grown near a wood preservation factory. Sci Total Environ 126:263–275PubMedCrossRefPubMedCentralGoogle Scholar
  86. Li XJ, Cournoyer JJ, Lin C et al (2008) Use of O-18 labels to monitor deamidation during protein and peptide sample processing. J Am Soc Mass Spectrom 19:855–864PubMedPubMedCentralCrossRefGoogle Scholar
  87. Li Y, Wu Z, Ma N et al (2009a) Regulation of the rose Rh-PIP2;1 promoter by hormones and abiotic stresses in Arabidopsis. Plant Cell Rep 28:185–196PubMedCrossRefPubMedCentralGoogle Scholar
  88. Li RY, Ago Y, Liu WJ et al (2009b) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080PubMedPubMedCentralCrossRefGoogle Scholar
  89. Li RY, Stroud JL, Ma JF et al (2009c) Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol 43:3778–3783PubMedCrossRefPubMedCentralGoogle Scholar
  90. Li N, Wang J, Song W-Y (2016) Arsenic uptake and translocation in plants. Plant Cell Physiol 571:4–13CrossRefGoogle Scholar
  91. Liu LH, Ludewig U, Gassert B et al (2003) Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol 133:1220–1228PubMedPubMedCentralCrossRefGoogle Scholar
  92. Liu WJ, Zhu YG, Smith FA et al (2004a) Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture. New Phytol 162:481–488CrossRefGoogle Scholar
  93. Liu Z, Carbrey JM, Agre P et al (2004b) Arsenic trioxide uptake by human and rat aquaglyceroporins. Biochem Biophs Res Commun 316:1178–1185CrossRefGoogle Scholar
  94. Loqué D, Ludewig U, Yuan L et al (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol 137:671–680PubMedPubMedCentralCrossRefGoogle Scholar
  95. Luxton TP, Tadanier CJ, Eick MJ (2006) Mobilization of arsenite by competitive interaction with silicic acid. Soil Sci Soc Am J 70:204–214CrossRefGoogle Scholar
  96. Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, AmsterdamGoogle Scholar
  97. Ma JF, Yamaji N (2015) A cooperative system of silicon transport in plants. Trends Plant Sci 20:435–442PubMedCrossRefPubMedCentralGoogle Scholar
  98. Ma LQ, Komar KM, Tu C et al (2001) A fern that hyperaccumulates arsenic – a hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 409:579. CrossRefPubMedGoogle Scholar
  99. Ma JF, Tamai K, Yamaji N et al (2006) A silicon transporter in rice. Nature 440:688–691PubMedCrossRefPubMedCentralGoogle Scholar
  100. Ma JF, Yamaji N, Mitani N et al (2007) An efflux transporter of silicon in rice. Nature 448:209–212PubMedCrossRefPubMedCentralGoogle Scholar
  101. Ma JF, Yamaji N, Mitani N et al (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci U S A 105:9931–9935PubMedPubMedCentralCrossRefGoogle Scholar
  102. Maciaszczyk-Dziubinska E, Migocka M, Wysocki R (2011) Acr3p is a plasma membrane antiporter that catalyzes As(III)/H(+) and Sb(III)/H(+) exchange in Saccharomyces cerevisiae. Biochim Biophys Acta 1808:1855–1859PubMedCrossRefPubMedCentralGoogle Scholar
  103. Macnair MR, Cumbes Q (1987) Evidence that arsenic tolerance in Holcus lanatus L. is caused by an altered phosphate uptake system. New Phytol 107:387–394CrossRefGoogle Scholar
  104. Maeshima M (2001) Tonoplast transporters: organization and function. Annu Rev Plant Physiol Plant Mol Biol 52:469–497PubMedCrossRefPubMedCentralGoogle Scholar
  105. Mansour NM, Sawhney M, Tamang DG et al (2007) The bile-arsenite-riboflavin transporter (BART) superfamily. FEBS J 274:612–629PubMedCrossRefPubMedCentralGoogle Scholar
  106. Marin AR, Masscheleyn PH, Patrick WH (1992) The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil 139:175–183CrossRefGoogle Scholar
  107. Maurel C, Boursiac Y, Luu DT et al (2015) Aquaporins in plants. Physiol Rev 95:1321–1358PubMedCrossRefPubMedCentralGoogle Scholar
  108. Meharg AA, Jardine L (2003) Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol 157:39–44CrossRefGoogle Scholar
  109. Meharg AA, Macnair MR (1990) An altered phosphate uptake system in arsenate tolerant Holcus lanatus. New Phytol 116:29–35CrossRefGoogle Scholar
  110. Meharg AA, Macnair MR (1992) Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524CrossRefGoogle Scholar
  111. Meharg AA, Zhao F-J (eds) (2012) Arsenic and rice. Springer, DordrechtGoogle Scholar
  112. Mendoza-Cózatl DG, Jobe TO, Hauser F et al (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562PubMedPubMedCentralCrossRefGoogle Scholar
  113. Mestrot A, Feldmann J, Krupp EM et al (2011) Field fluxes and speciation of arsines emanating from soils. Environ Sci Technol 45:1798–1804PubMedCrossRefGoogle Scholar
  114. Miller AJ, Shen Q, Xu G (2009) Freeways in the plant: transporters for N, P and S and their regulation. Curr Opin Plant Biol 12:284–290PubMedCrossRefGoogle Scholar
  115. Misson J, Thibaud MC, Bechtold N et al (2004) Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Mol Biol 55:727–741PubMedCrossRefGoogle Scholar
  116. Mitani-Ueno N, Yamaji N, Zhao FJ et al (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62:4391–4398PubMedPubMedCentralCrossRefGoogle Scholar
  117. Mosa KA, Kumar K, Chhikara S et al (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21:1265–1277PubMedCrossRefPubMedCentralGoogle Scholar
  118. Muchhal US, Pardo JM, Raghothama KG (1996) Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci U S A 93:10519–10523PubMedPubMedCentralCrossRefGoogle Scholar
  119. Mudge SR, Rae AL, Diatloff E et al (2002) Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J 31:341–353PubMedCrossRefPubMedCentralGoogle Scholar
  120. Nagarajan VK, Jain A, Poling MD et al (2011) Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs, and influences the interaction between phosphate homeostasis and ethylene signaling. Plant Physiol 156:1149–1163PubMedPubMedCentralCrossRefGoogle Scholar
  121. Niemietz CM, Tyerman SD (2002) New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Lett 531:443–447PubMedCrossRefPubMedCentralGoogle Scholar
  122. Norman NC (1998) Chemistry of arsenic, antimony and bismuth. Springer, BerlinGoogle Scholar
  123. Noronha H, Agasse A, Martins AP et al (2014) The grape aquaporin VvSIP1 transports water across the ER membrane. J Exp Bot 65:981–993PubMedCrossRefPubMedCentralGoogle Scholar
  124. Nussaume L, Kanno S, Javot H et al (2011) Phosphate import in plants: focus on the PHT1 transporters. Front Plant Sci 2:83. CrossRefPubMedPubMedCentralGoogle Scholar
  125. Palmieri L, Picault N, Arrigoni R et al (2008) Molecular identification of three Arabidopsis thaliana mitochondrial dicarboxylate carrier isoforms: organ distribution, bacterial expression, reconstitution into liposomes and functional characterization. Biochem J 410:621–629PubMedCrossRefPubMedCentralGoogle Scholar
  126. Porquet A, Filella M (2007) Structural evidence of the similarity of Sb(OH)3 and As(OH)3 with glycerol: implications for their uptake. Chem Res Toxicol 20:1269–1276PubMedCrossRefPubMedCentralGoogle Scholar
  127. Preston GM, Carroll TP, Guggino WB et al (1992) Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387PubMedCrossRefPubMedCentralGoogle Scholar
  128. Punshon T, Jackson BP, Meharg AA et al (2017) Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Sci Total Environ 581:209–220PubMedCrossRefPubMedCentralGoogle Scholar
  129. Raab A, Williams PN, Meharg A et al (2007a) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4:197–203CrossRefGoogle Scholar
  130. Raab A, Wright SH, Jaspars M et al (2007b) Pentavalent arsenic can bind to biomolecules. Angew Chem Int Ed Engl 46:2594–2597PubMedCrossRefPubMedCentralGoogle Scholar
  131. Rafiq M, Shahid M, Abbas G et al (2017a) Comparative effect of calcium and EDTA on arsenic uptake and physiological attributes of Pisum sativum. Int J Phytoremediation 19:662–669PubMedCrossRefGoogle Scholar
  132. Rafiq M, Shahid M, Shamshad S et al (2017b) A comparative study to evaluate efficiency of EDTA and calcium in alleviating arsenic toxicity to germinating and young Vicia faba L. seedlings. J Soils Sediments. CrossRefGoogle Scholar
  133. Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693PubMedCrossRefGoogle Scholar
  134. Ramahaleo T, Alexandre J, Lassalles JP (1996) Stretch activated channels in plant cells. A new model for osmoelastic coupling. Plant Physiol Biochem 34:327–334Google Scholar
  135. Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216:23–37PubMedCrossRefGoogle Scholar
  136. Remy E, Cabrito TR, Batista RA et al (2012) The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol 195:356–371PubMedCrossRefGoogle Scholar
  137. Rushton PJ, Somssich IE, Ringler P et al (2010) WRKY transcription factors. Trends Plant Sci 15:247–258PubMedCrossRefGoogle Scholar
  138. Saier MH, Eng BH, Fard S et al (1999) Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim Biophys Acta 1422:1–56PubMedCrossRefPubMedCentralGoogle Scholar
  139. Saier MH, Reddy VS, Tsu BV et al (2016) The transporter classification database (TCDB). Nucleic Acids Res 44:D372–D379. CrossRefPubMedPubMedCentralGoogle Scholar
  140. Sakurai G, Satake A, Yamaji N et al (2015) In silico simulation modeling reveals the importance of the Casparian strip for efficient silicon uptake in rice roots. Plant Cell Physiol 56:631–639PubMedCrossRefPubMedCentralGoogle Scholar
  141. Sato T, Kobayashi Y (1998) The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. J Bacteriol 180:1655–1661PubMedPubMedCentralGoogle Scholar
  142. Savage DF, Egea PF, Robles-Colmenares Y et al (2003) Architecture and selectivity in aquaporins: 2.5Å X-ray structure of aquaporin Z. PLoS Biol 1:E72. CrossRefPubMedPubMedCentralGoogle Scholar
  143. Schnurbusch T, Hayes J, Hrmova M et al (2010) Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol 153:1706–1715PubMedPubMedCentralCrossRefGoogle Scholar
  144. Seyfferth AL (2015) Abiotic effects of dissolved oxyanions on iron plaque quantity and mineral composition in a simulated rhizosphere. Plant Soil 397:43–61CrossRefGoogle Scholar
  145. Seyfferth AL, Webb SM, Andrews JC et al (2010) Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings. Environ Sci Technol 44:8108–8113PubMedCrossRefGoogle Scholar
  146. Shahid M, Xiong T, Castrec-Rouelle M et al (2013) Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves. J Environ Sci 25:2451–2459CrossRefGoogle Scholar
  147. Shin H, Shin HS, Dewbre GR et al (2004) Phosphate transport in Arabidopsis: Pht1;1and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642PubMedPubMedCentralCrossRefGoogle Scholar
  148. Smith SE, Dickson S, Smith FA (2001) Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? Aust J Plant Physiol 28:685–696Google Scholar
  149. Song WY, Park J, Mendoza-Cózatl DG et al (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A 107:21187–21192PubMedPubMedCentralCrossRefGoogle Scholar
  150. Song WY, Yamaki T, Yamaji N et al (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci U S A 111:15699–15704PubMedPubMedCentralCrossRefGoogle Scholar
  151. Soto G, Alleva K, Mazzella MA et al (2008) AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Lett 582:4077–4082PubMedCrossRefPubMedCentralGoogle Scholar
  152. Srivastava S, Srivastava AK, Suprasanna P et al (2013) Quantitative real-time expression profiling of aquaporin-isoforms and growth response of Brassica juncea under arsenite stress. Mol Biol Rep 40:2879–2886PubMedCrossRefPubMedCentralGoogle Scholar
  153. Stolz JF, Basu P, Santini JM et al (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130PubMedCrossRefPubMedCentralGoogle Scholar
  154. Su YH, McGrath SP, Zhu YG et al (2008) Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata. New Phytol 180:434–441CrossRefGoogle Scholar
  155. Su YH, McGrath SP, Zhao FJ (2010) Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil 328:27–34CrossRefGoogle Scholar
  156. Sui H, Han BG, Lee JK et al (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878PubMedCrossRefPubMedCentralGoogle Scholar
  157. Sun SB, Gu M, Cao Y et al (2012) A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiol 159:1571–1581PubMedPubMedCentralCrossRefGoogle Scholar
  158. Tajkhorshid E, Nollert P, Jensen MO et al (2002) Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296:525–530PubMedCrossRefPubMedCentralGoogle Scholar
  159. Takano J, Wada M, Ludewig U et al (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509PubMedPubMedCentralCrossRefGoogle Scholar
  160. Tanaka M, Wallace IS, Takano J et al (2008) NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20:2860–2875PubMedPubMedCentralCrossRefGoogle Scholar
  161. Tang Z, Chen Y, Chen F et al (2017) OsPTR7 (OsNPF8.1), a putative peptide transporter in rice, is involved in dimethylarsenate accumulation in rice grain. Plant Cell Physiol 58:904–913PubMedCrossRefGoogle Scholar
  162. Tiwari M, Sharma D, Dwivedi S et al (2014) Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant Cell Environ 37:140–152PubMedCrossRefGoogle Scholar
  163. Törnroth-Horsefield S, Wang Y, Hedfalk K et al (2006) Structural mechanism of plant aquaporin gating. Nature 439:688–694PubMedCrossRefPubMedCentralGoogle Scholar
  164. Tu C, Ma LQ (2003) Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environ Exp Bot 50:243–251CrossRefGoogle Scholar
  165. Uehlein N, Lovisolo C, Siefritz F et al (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737PubMedCrossRefPubMedCentralGoogle Scholar
  166. Ullrich-Eberius CI, Sanz A, Novacky AJ (1989) Evaluation of arsenate-and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba-G1. J Exp Bot 40:119–128CrossRefGoogle Scholar
  167. Verdoucq L, Grondin A, Maurel C (2008) Structure-function analysis of plant aquaporin AtPIP2;1 gating by divalent cations and protons. Biochem J 415:409–416PubMedCrossRefPubMedCentralGoogle Scholar
  168. Versaw WK, Harrison MJ (2002) A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell 14:1751–1766PubMedPubMedCentralCrossRefGoogle Scholar
  169. Wallace IS, Choi WG, Roberts DM (2006) The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochim Biophys Acta 1758:1165–1175PubMedCrossRefPubMedCentralGoogle Scholar
  170. Wan XM, Lei M, Chen TB et al (2015) Role of transpiration in arsenic accumulation of hyperaccumulator Pteris vittata L. Environ Sci Pollut Res 22:16631–16639CrossRefGoogle Scholar
  171. Wang JR, Zhao FJ, Meharg AA et al (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561PubMedPubMedCentralCrossRefGoogle Scholar
  172. Wang Y, Ribot C, Rezzonico E et al (2004) Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis. Plant Physiol 135:400–411PubMedPubMedCentralCrossRefGoogle Scholar
  173. Wang H, Xu Q, Kong YH et al (2014) Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation. Plant Physiol 164:2020–2029PubMedPubMedCentralCrossRefGoogle Scholar
  174. Weaver DC, Shomer NH, Louis CF et al (1994) Nodulin 26, a nodule-specific symbiosome membrane protein from soybean, is an ion channel. J Biol Chem 269:17858–17862PubMedPubMedCentralGoogle Scholar
  175. Wu ZC, Ren HY, McGrath SP et al (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508PubMedPubMedCentralCrossRefGoogle Scholar
  176. Wudick MM, Li X, Valentini V et al (2015) Subcellular redistribution of root aquaporins induced by hydrogen peroxide. Mol Plant 8:1103–1114PubMedCrossRefPubMedCentralGoogle Scholar
  177. Wysocki R, Bobrowicz P, Ułaszewski S (1997) The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J Biol Chem 272:30061–30066PubMedCrossRefPubMedCentralGoogle Scholar
  178. Xiao K-Q, Li L-G, Ma L-P et al (2016) Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents. Environ Pollut 211:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  179. Xu W, Dai W, Yan H, Li S, Shen H et al (2015) Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8:722–733PubMedCrossRefPubMedCentralGoogle Scholar
  180. Yamaji N, Ma JF (2009) A transporter at the node responsible for intervascular transfer of silicon in rice. Plant Cell 21:2878–2883PubMedPubMedCentralCrossRefGoogle Scholar
  181. Yang J, Gao MX, Hu H et al (2016) OsCLT1, a CRT-like transporter 1, is required for glutathione homeostasis and arsenic tolerance in rice. New Phytol 211:658–670PubMedCrossRefPubMedCentralGoogle Scholar
  182. Ye RG, Verkman AS (1989) Simultaneous optical measurement of osmotic and diffusional water permeability in cells and liposomes. Biochemistry 28:824–829PubMedCrossRefPubMedCentralGoogle Scholar
  183. Ye WL, Wood BA, Stroud JL et al (2010) Arsenic speciation in phloem and xylem exudates of castor bean. Plant Physiol 154:1505–1513PubMedPubMedCentralCrossRefGoogle Scholar
  184. Yool AJ, Stamer WD, Regan JW (1996) Forskolin stimulation of water and cation permeability in aquaporin 1 water channels. Science 273:1216–1218PubMedCrossRefPubMedCentralGoogle Scholar
  185. Yu X, Peng YH, Zhang MH et al (2006) Water relations and an expression analysis of plasma membrane intrinsic proteins in sensitive and tolerant rice during chilling and recovery. Cell Res 16:599–608PubMedCrossRefPubMedCentralGoogle Scholar
  186. Zeidel ML, Ambudkar SV, Smith BL et al (1992) Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31:7436–7440PubMedCrossRefPubMedCentralGoogle Scholar
  187. Zeuthen T, Alsterfjord M, Beitz E et al (2013) Osmotic water transport in aquaporins: evidence for a stochastic mechanism. J Physiol 591:5017–5029PubMedPubMedCentralCrossRefGoogle Scholar
  188. Zhang J, Zhao CY, Liu J et al (2016) Influence of sulfur on transcription of genes involved in arsenic accumulation in rice grains. Plant Mol Biol Report 34:556–565CrossRefGoogle Scholar
  189. Zhao FJ, Ma JF, Meharg AA et al (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794CrossRefGoogle Scholar
  190. Zhao FJ, Mc Grath SP, Meharg AA (2010a) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559PubMedCrossRefPubMedCentralGoogle Scholar
  191. Zhao FJ, Ago Y, Mitani N et al (2010b) The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytol 186:392–399PubMedCrossRefPubMedCentralGoogle Scholar
  192. Zhao XQ, Mitani N, Yamaji N et al (2010c) Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol 153:1871–1877PubMedPubMedCentralCrossRefGoogle Scholar
  193. Zhao FJ, Stroud JL, Khan MA et al (2012) Arsenic translocation in rice investigated using radioactive 73As tracer. Plant Soil 350:413–420CrossRefGoogle Scholar
  194. Zhu YG, Geng CN, Tong YP et al (2006) Phosphate (Pi) and arsenate uptake by two wheat (Triticum aestivum) cultivars and their doubled haploid lines. Ann Bot 98:631–636PubMedPubMedCentralCrossRefGoogle Scholar
  195. Zhu YG, Sun GX, Lei M et al (2008) High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environ Sci Technol 42:5008–5013PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Dariusz Latowski
    • 1
  • Anna Kowalczyk
    • 1
  • Kamila Nawieśniak
    • 1
  • Stanisław Listwan
    • 1
  1. 1.Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and BiochemistryJagiellonian University in KrakowKrakowPoland

Personalised recommendations