Glial Regulation of Energy Metabolism

  • Yu-Dong ZhouEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1090)


The major function of brain glial cells is to maintain a homeostatic milieu for neurons to work properly in response to a variety of environmental alterations. Recent studies have shown that glial cells in the hypothalamus, a brain center controlling homeostatic physiological functions, are essential for regulating energy metabolism in both physiological and pathological conditions. Astrocytes, tanycytes, and NG2-glia shuttle and/or sense key metabolic factors presented to the hypothalamus either directly, by glial metabolic enzymes, receptors, and transporters, or indirectly, by modulating the sensing ability of other types of hypothalamic cells. Astrocytes, tanycytes, and microglia are critically important in the development and maintenance of hypothalamic circuits regulating energy balance. Hypothalamic inflammation commonly associated with diet-induced obesity is manifested via hypothalamic reactive gliosis involving microglia and astrocytes, contributing to the correlated abnormal energy metabolism. Although many glial functions in energy metabolism remain to be fully elucidated, we are at the dawn of targeting glia-neuron interactions in the hypothalamus for therapeutic applications in metabolic disorders.


Energy metabolism Astrocyte Tanycyte NG2-glia Microglia 


  1. 1.
    Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53PubMedGoogle Scholar
  2. 2.
    Alvarez-Bolado G, Paul FA, Blaess S (2012) Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions. Neural Dev 7:4PubMedPubMedCentralGoogle Scholar
  3. 3.
    Alvarez JI, Katayama T, Prat A (2013) Glial influence on the blood brain barrier. Glia 61:1939–1958PubMedPubMedCentralGoogle Scholar
  4. 4.
    Andermann ML, Lowell BB (2017) Toward a wiring diagram understanding of appetite control. Neuron 95:757–778PubMedPubMedCentralGoogle Scholar
  5. 5.
    Andre C, Guzman-Quevedo O, Rey C, Remus-Borel J, Clark S, Castellanos-Jankiewicz A, Ladeveze E, Leste-Lasserre T, Nadjar A, Abrous DN et al (2017) Inhibiting microglia expansion prevents diet-induced hypothalamic and peripheral inflammation. Diabetes 66:908–919PubMedGoogle Scholar
  6. 6.
    Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541PubMedGoogle Scholar
  7. 7.
    Baldwin KT, Eroglu C (2017) Molecular mechanisms of astrocyte-induced synaptogenesis. Curr Opin Neurobiol 45:113–120PubMedPubMedCentralGoogle Scholar
  8. 8.
    Balland E, Dam J, Langlet F, Caron E, Steculorum S, Messina A, Rasika S, Falluel-Morel A, Anouar Y, Dehouck B et al (2014) Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab 19:293–301PubMedPubMedCentralGoogle Scholar
  9. 9.
    Barahona MJ, Llanos P, Recabal A, Escobar-Acuna K, Elizondo-Vega R, Salgado M, Ordenes P, Uribe E, Sepulveda FJ, Araneda RC et al (2018) Glial hypothalamic inhibition of GLUT2 expression alters satiety, impacting eating behavior. Glia 66:592–605PubMedGoogle Scholar
  10. 10.
    Barrett P, Ebling FJ, Schuhler S, Wilson D, Ross AW, Warner A, Jethwa P, Boelen A, Visser TJ, Ozanne DM et al (2007) Hypothalamic thyroid hormone catabolism acts as a gatekeeper for the seasonal control of body weight and reproduction. Endocrinology 148:3608–3617PubMedGoogle Scholar
  11. 11.
    Begega A, Cuesta M, Santin LJ, Rubio S, Astudillo A, Arias JL (1999) Unbiased estimation of the total number of nervous cells and volume of medial mammillary nucleus in humans. Exp Gerontol 34:771–782PubMedGoogle Scholar
  12. 12.
    Beggs S, Salter MW (2016) SnapShot: microglia in disease. Cell 165(5):1294–1294 e1291PubMedGoogle Scholar
  13. 13.
    Bergles DE, Roberts JD, Somogyi P, Jahr CE (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405:187–191PubMedGoogle Scholar
  14. 14.
    Birey F, Kloc M, Chavali M, Hussein I, Wilson M, Christoffel DJ, Chen T, Frohman MA, Robinson JK, Russo SJ et al (2015) Genetic and stress-induced loss of NG2 Glia triggers emergence of depressive-like behaviors through reduced secretion of FGF2. Neuron 88:941–956PubMedPubMedCentralGoogle Scholar
  15. 15.
    Blazquez C, Woods A, de Ceballos ML, Carling D, Guzman M (1999) The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes. J Neurochem 73:1674–1682PubMedGoogle Scholar
  16. 16.
    Bolborea M, Dale N (2013) Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci 36:91–100PubMedPubMedCentralGoogle Scholar
  17. 17.
    Buckman LB, Thompson MM, Lippert RN, Blackwell TS, Yull FE, Ellacott KL (2015) Evidence for a novel functional role of astrocytes in the acute homeostatic response to high-fat diet intake in mice. Mol Metab 4:58–63PubMedGoogle Scholar
  18. 18.
    Campbell JN, Macosko EZ, Fenselau H, Pers TH, Lyubetskaya A, Tenen D, Goldman M, Verstegen AM, Resch JM, McCarroll SA et al (2017) A molecular census of arcuate hypothalamus and median eminence cell types. Nat Neurosci 20:484–496PubMedPubMedCentralGoogle Scholar
  19. 19.
    Chang Y, She ZG, Sakimura K, Roberts A, Kucharova K, Rowitch DH, Stallcup WB (2012) Ablation of NG2 proteoglycan leads to deficits in brown fat function and to adult onset obesity. PLoS One 7:e30637PubMedPubMedCentralGoogle Scholar
  20. 20.
    Chen R, Wu X, Jiang L, Zhang Y (2017) Single-cell RNA-seq reveals hypothalamic cell diversity. Cell Rep 18:3227–3241PubMedPubMedCentralGoogle Scholar
  21. 21.
    Cheng L, Yu Y, Szabo A, Wu Y, Wang H, Camer D, Huang XF (2015) Palmitic acid induces central leptin resistance and impairs hepatic glucose and lipid metabolism in male mice. J Nutr Biochem 26:541–548PubMedGoogle Scholar
  22. 22.
    Choi SJ, Kim F, Schwartz MW, Wisse BE (2010) Cultured hypothalamic neurons are resistant to inflammation and insulin resistance induced by saturated fatty acids. Am J Physiol Endocrinol Metab 298:E1122–E1130PubMedPubMedCentralGoogle Scholar
  23. 23.
    Clasadonte J, Prevot V (2018) The special relationship: glia-neuron interactions in the neuroendocrine hypothalamus. Nat Rev Endocrinol 14:25–44PubMedGoogle Scholar
  24. 24.
    Collden G, Balland E, Parkash J, Caron E, Langlet F, Prevot V, Bouret SG (2015) Neonatal overnutrition causes early alterations in the central response to peripheral ghrelin. Mol Metab 4:15–24PubMedGoogle Scholar
  25. 25.
    Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, Cone RD, Low MJ (2001) Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411:480–484PubMedPubMedCentralGoogle Scholar
  26. 26.
    Czupryn A, Zhou YD, Chen X, McNay D, Anderson MP, Flier JS, Macklis JD (2011) Transplanted hypothalamic neurons restore leptin signaling and ameliorate obesity in db/db mice. Science 334:1133–1137PubMedPubMedCentralGoogle Scholar
  27. 27.
    Delgado R, Carlin A, Airaghi L, Demitri MT, Meda L, Galimberti D, Baron P, Lipton JM, Catania A (1998) Melanocortin peptides inhibit production of proinflammatory cytokines and nitric oxide by activated microglia. J Leukoc Biol 63:740–745PubMedGoogle Scholar
  28. 28.
    Dimou L, Gotz M (2014) Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol Rev 94:709–737PubMedGoogle Scholar
  29. 29.
    Djogo T, Robins SC, Schneider S, Kryzskaya D, Liu X, Mingay A, Gillon CJ, Kim JH, Storch KF, Boehm U et al (2016) Adult NG2-glia are required for median eminence-mediated leptin sensing and body weight control. Cell Metab 23:797–810Google Scholar
  30. 30.
    Douglass JD, Dorfman MD, Fasnacht R, Shaffer LD, Thaler JP (2017) Astrocyte IKKbeta/NF-kappaB signaling is required for diet-induced obesity and hypothalamic inflammation. Mol Metab 6:366–373PubMedPubMedCentralGoogle Scholar
  31. 31.
    Ebling FJP, Lewis JE (2018) Tanycytes and hypothalamic control of energy metabolism. Glia 66:1176–1184PubMedGoogle Scholar
  32. 32.
    Elizondo-Vega R, Cortes-Campos C, Barahona MJ, Oyarce KA, Carril CA, Garcia-Robles MA (2015) The role of tanycytes in hypothalamic glucosensing. J Cell Mol Med 19:1471–1482PubMedPubMedCentralGoogle Scholar
  33. 33.
    Ferreira R, Santos T, Viegas M, Cortes L, Bernardino L, Vieira OV, Malva JO (2011) Neuropeptide Y inhibits interleukin-1beta-induced phagocytosis by microglial cells. J Neuroinflammation 8:169PubMedPubMedCentralGoogle Scholar
  34. 34.
    Frayling C, Britton R, Dale N (2011) ATP-mediated glucosensing by hypothalamic tanycytes. J Physiol 589:2275–2286PubMedPubMedCentralGoogle Scholar
  35. 35.
    Freeman MR (2005) Glial control of synaptogenesis. Cell 120:292–293PubMedGoogle Scholar
  36. 36.
    Fu T, Towers M, Placzek MA (2017) Fgf10(+) progenitors give rise to the chick hypothalamus by rostral and caudal growth and differentiation. Development 144:3278–3288PubMedPubMedCentralGoogle Scholar
  37. 37.
    Fuente-Martin E, Garcia-Caceres C, Granado M, de Ceballos ML, Sanchez-Garrido MA, Sarman B, Liu ZW, Dietrich MO, Tena-Sempere M, Argente-Arizon P et al (2012) Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes. J Clin Invest 122:3900–3913PubMedPubMedCentralGoogle Scholar
  38. 38.
    Gao Y, Layritz C, Legutko B, Eichmann TO, Laperrousaz E, Moulle VS, Cruciani-Guglielmacci C, Magnan C, Luquet S, Woods SC et al (2017) Disruption of lipid uptake in astroglia exacerbates diet-induced obesity. Diabetes 66:2555–2563PubMedPubMedCentralGoogle Scholar
  39. 39.
    Gao Y, Ottaway N, Schriever SC, Legutko B, Garcia-Caceres C, de la Fuente E, Mergen C, Bour S, Thaler JP, Seeley RJ et al (2014) Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia 62:17–25PubMedGoogle Scholar
  40. 40.
    Garcia-Caceres C, Fuente-Martin E, Burgos-Ramos E, Granado M, Frago LM, Barrios V, Horvath T, Argente J, Chowen JA (2011) Differential acute and chronic effects of leptin on hypothalamic astrocyte morphology and synaptic protein levels. Endocrinology 152:1809–1818PubMedPubMedCentralGoogle Scholar
  41. 41.
    Garcia-Caceres C, Quarta C, Varela L, Gao Y, Gruber T, Legutko B, Jastroch M, Johansson P, Ninkovic J, Yi CX et al (2016) Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 166:867–880PubMedGoogle Scholar
  42. 42.
    Gautron L, Elmquist JK, Williams KW (2015) Neural control of energy balance: translating circuits to therapies. Cell 161:133–145PubMedPubMedCentralGoogle Scholar
  43. 43.
    Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE, Bieri G, Zuchero JB et al (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344:1252304PubMedPubMedCentralGoogle Scholar
  44. 44.
    Gupta S, Knight AG, Gupta S, Keller JN, Bruce-Keller AJ (2012) Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. J Neurochem 120:1060–1071PubMedPubMedCentralGoogle Scholar
  45. 45.
    Haan N, Goodman T, Najdi-Samiei A, Stratford CM, Rice R, El Agha E, Bellusci S, Hajihosseini MK (2013) Fgf10-expressing tanycytes add new neurons to the appetite/energy-balance regulating centers of the postnatal and adult hypothalamus. J Neurosci 33:6170–6180PubMedPubMedCentralGoogle Scholar
  46. 46.
    Haddad-Tovolli R, Dragano NRV, Ramalho AFS, Velloso LA (2017) Development and function of the blood-brain barrier in the context of metabolic control. Front Neurosci 11:224PubMedPubMedCentralGoogle Scholar
  47. 47.
    Harry GJ, Kraft AD (2012) Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology 33:191–206PubMedPubMedCentralGoogle Scholar
  48. 48.
    Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031PubMedGoogle Scholar
  49. 49.
    Hofmann K, Lamberz C, Piotrowitz K, Offermann N, But D, Scheller A, Al-Amoudi A, Kuerschner L (2017) Tanycytes and a differential fatty acid metabolism in the hypothalamus. Glia 65:231–249PubMedGoogle Scholar
  50. 50.
    Jais A, Bruning JC (2017) Hypothalamic inflammation in obesity and metabolic disease. J Clin Invest 127:24–32PubMedPubMedCentralGoogle Scholar
  51. 51.
    Jais A, Solas M, Backes H, Chaurasia B, Kleinridders A, Theurich S, Mauer J, Steculorum SM, Hampel B, Goldau J et al (2016) Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell 165:882–895PubMedGoogle Scholar
  52. 52.
    Karadottir R, Hamilton NB, Bakiri Y, Attwell D (2008) Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nat Neurosci 11:450–456PubMedPubMedCentralGoogle Scholar
  53. 53.
    Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553PubMedGoogle Scholar
  54. 54.
    Kim JG, Suyama S, Koch M, Jin S, Argente-Arizon P, Argente J, Liu ZW, Zimmer MR, Jeong JK, Szigeti-Buck K et al (2014) Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat Neurosci 17:908–910Google Scholar
  55. 55.
    Kimelberg HK, Nedergaard M (2010) Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics 7:338–353PubMedPubMedCentralGoogle Scholar
  56. 56.
    Kleinridders A, Schenten D, Konner AC, Belgardt BF, Mauer J, Okamura T, Wunderlich FT, Medzhitov R, Bruning JC (2009) MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab 10:249–259PubMedPubMedCentralGoogle Scholar
  57. 57.
    Kokoeva MV, Yin H, Flier JS (2005) Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310:679–683PubMedGoogle Scholar
  58. 58.
    Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH, Haugaard LS, Wirenfeldt M, Nielsen M, Dagnaes-Hansen F et al (2009) Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 29:1319–1330PubMedGoogle Scholar
  59. 59.
    Langlet F, Levin BE, Luquet S, Mazzone M, Messina A, Dunn-Meynell AA, Balland E, Lacombe A, Mazur D, Carmeliet P et al (2013) Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab 17:607–617PubMedPubMedCentralGoogle Scholar
  60. 60.
    Le Foll C, Dunn-Meynell A, Musatov S, Magnan C, Levin BE (2013) FAT/CD36: a major regulator of neuronal fatty acid sensing and energy homeostasis in rats and mice. Diabetes 62:2709–2716PubMedPubMedCentralGoogle Scholar
  61. 61.
    Le Foll C, Dunn-Meynell AA, Miziorko HM, Levin BE (2014) Regulation of hypothalamic neuronal sensing and food intake by ketone bodies and fatty acids. Diabetes 63:1259–1269PubMedPubMedCentralGoogle Scholar
  62. 62.
    Lee DA, Bedont JL, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H et al (2012) Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci 15:700–702PubMedPubMedCentralGoogle Scholar
  63. 63.
    Lee JY, Ye J, Gao Z, Youn HS, Lee WH, Zhao L, Sizemore N, Hwang DH (2003) Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids. J Biol Chem 278:37041–37051PubMedGoogle Scholar
  64. 64.
    Leloup C, Allard C, Carneiro L, Fioramonti X, Collins S, Penicaud L (2016) Glucose and hypothalamic astrocytes: more than a fueling role? Neuroscience 323:110–120PubMedGoogle Scholar
  65. 65.
    Levin BE, Magnan C, Dunn-Meynell A, Le Foll C (2011) Metabolic sensing and the brain: who, what, where, and how? Endocrinology 152:2552–2557PubMedPubMedCentralGoogle Scholar
  66. 66.
    Li J, Tang Y, Cai D (2012) IKKbeta/NF-kappaB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol 14:999–1012PubMedPubMedCentralGoogle Scholar
  67. 67.
    Liddelow S, Barres B (2015) SnapShot: astrocytes in health and disease. Cell 162:1170–1170 e1171PubMedGoogle Scholar
  68. 68.
    Marina N, Turovsky E, Christie IN, Hosford PS, Hadjihambi A, Korsak A, Ang R, Mastitskaya S, Sheikhbahaei S, Theparambil SM et al (2018) Brain metabolic sensing and metabolic signaling at the level of an astrocyte. Glia 66:1185–1199PubMedGoogle Scholar
  69. 69.
    Marino JS, Xu Y, Hill JW (2011) Central insulin and leptin-mediated autonomic control of glucose homeostasis. Trends Endocrinol Metab 22:275–285PubMedPubMedCentralGoogle Scholar
  70. 70.
    Marsters CM, Rosin JM, Thornton HF, Aslanpour S, Klenin N, Wilkinson G, Schuurmans C, Pittman QJ, Kurrasch DM (2016) Oligodendrocyte development in the embryonic tuberal hypothalamus and the influence of Ascl1. Neural Dev 11:20PubMedPubMedCentralGoogle Scholar
  71. 71.
    McNay DE, Briancon N, Kokoeva MV, Maratos-Flier E, Flier JS (2012) Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice. J Clin Invest 122:142–152PubMedGoogle Scholar
  72. 72.
    Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra DE, Tsukumo DM, Anhe G, Amaral ME, Takahashi HK et al (2009) Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci 29:359–370PubMedGoogle Scholar
  73. 73.
    Morari J, Anhe GF, Nascimento LF, de Moura RF, Razolli D, Solon C, Guadagnini D, Souza G, Mattos AH, Tobar N et al (2014) Fractalkine (CX3CL1) is involved in the early activation of hypothalamic inflammation in experimental obesity. Diabetes 63:3770–3784PubMedGoogle Scholar
  74. 74.
    Myers MG Jr, Olson DP (2012) Central nervous system control of metabolism. Nature 491:357–363PubMedGoogle Scholar
  75. 75.
    Orellana JA, Saez PJ, Cortes-Campos C, Elizondo RJ, Shoji KF, Contreras-Duarte S, Figueroa V, Velarde V, Jiang JX, Nualart F et al (2012) Glucose increases intracellular free Ca(2+) in tanycytes via ATP released through connexin 43 hemichannels. Glia 60:53–68PubMedGoogle Scholar
  76. 76.
    Parsons MP, Hirasawa M (2010) ATP-sensitive potassium channel-mediated lactate effect on orexin neurons: implications for brain energetics during arousal. J Neurosci 30:8061–8070PubMedGoogle Scholar
  77. 77.
    Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629PubMedPubMedCentralGoogle Scholar
  78. 78.
    Pierce AA, Xu AW (2010) De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci 30:723–730PubMedPubMedCentralGoogle Scholar
  79. 79.
    Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312PubMedGoogle Scholar
  80. 80.
    Rahman MH, Bhusal A, Lee WH, Lee IK, Suk K (2018) Hypothalamic inflammation and malfunctioning glia in the pathophysiology of obesity and diabetes: translational significance. Biochem Pharmacol 153:123–133PubMedGoogle Scholar
  81. 81.
    Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Invest 122:1164–1171PubMedPubMedCentralGoogle Scholar
  82. 82.
    Reis WL, Yi CX, Gao Y, Tschop MH, Stern JE (2015) Brain innate immunity regulates hypothalamic arcuate neuronal activity and feeding behavior. Endocrinology 156:1303–1315PubMedPubMedCentralGoogle Scholar
  83. 83.
    Rivera-Aponte DE, Mendez-Gonzalez MP, Rivera-Pagan AF, Kucheryavykh YV, Kucheryavykh LY, Skatchkov SN, Eaton MJ (2015) Hyperglycemia reduces functional expression of astrocytic Kir4.1 channels and glial glutamate uptake. Neuroscience 310:216–223PubMedPubMedCentralGoogle Scholar
  84. 84.
    Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K, Wade A, Kessaris N, Richardson WD (2008) PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11:1392–1401PubMedGoogle Scholar
  85. 85.
    Roberts DE, Killiany RJ, Rosene DL (2012) Neuron numbers in the hypothalamus of the normal aging rhesus monkey: stability across the adult lifespan and between the sexes. J Comp Neurol 520:1181–1197PubMedPubMedCentralGoogle Scholar
  86. 86.
    Robins S, Kokoeva M (2018) Ng2-Glia, a new player in energy balance. Neuroendocrinology. PubMedGoogle Scholar
  87. 87.
    Robins SC, Stewart I, McNay DE, Taylor V, Giachino C, Goetz M, Ninkovic J, Briancon N, Maratos-Flier E, Flier JS et al (2013a) alpha-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors. Nat Commun 4:2049PubMedGoogle Scholar
  88. 88.
    Robins SC, Villemain A, Liu X, Djogo T, Kryzskaya D, Storch KF, Kokoeva MV (2013b) Extensive regenerative plasticity among adult NG2-glia populations is exclusively based on self-renewal. Glia 61:1735–1747PubMedGoogle Scholar
  89. 89.
    Rodriguez EM, Blazquez JL, Pastor FE, Pelaez B, Pena P, Peruzzo B, Amat P (2005) Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int Rev Cytol 247:89–164PubMedGoogle Scholar
  90. 90.
    Sahara S, O’Leary DD (2009) Fgf10 regulates transition period of cortical stem cell differentiation to radial glia controlling generation of neurons and basal progenitors. Neuron 63:48–62PubMedPubMedCentralGoogle Scholar
  91. 91.
    Sakry D, Neitz A, Singh J, Frischknecht R, Marongiu D, Biname F, Perera SS, Endres K, Lutz B, Radyushkin K et al (2014) Oligodendrocyte precursor cells modulate the neuronal network by activity-dependent ectodomain cleavage of glial NG2. PLoS Biol 12:e1001993PubMedPubMedCentralGoogle Scholar
  92. 92.
    Salter MW, Beggs S (2014) Sublime microglia: expanding roles for the guardians of the CNS. Cell 158:15–24PubMedGoogle Scholar
  93. 93.
    Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705PubMedPubMedCentralGoogle Scholar
  94. 94.
    Shen L, Tso P, Wang DQ, Woods SC, Davidson WS, Sakai R, Liu M (2009) Up-regulation of apolipoprotein E by leptin in the hypothalamus of mice and rats. Physiol Behav 98:223–228PubMedPubMedCentralGoogle Scholar
  95. 95.
    Shen L, Tso P, Woods SC, Clegg DJ, Barber KL, Carey K, Liu M (2008) Brain apolipoprotein E: an important regulator of food intake in rats. Diabetes 57:2092–2098PubMedPubMedCentralGoogle Scholar
  96. 96.
    Shen Y, Qin H, Chen J, Mou L, He Y, Yan Y, Zhou H, Lv Y, Chen Z, Wang J et al (2016) Postnatal activation of TLR4 in astrocytes promotes excitatory synaptogenesis in hippocampal neurons. J Cell Biol 215:719–734PubMedPubMedCentralGoogle Scholar
  97. 97.
    Sierra A, Abiega O, Shahraz A, Neumann H (2013) Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 7:6PubMedPubMedCentralGoogle Scholar
  98. 98.
    Simpson IA, Appel NM, Hokari M, Oki J, Holman GD, Maher F, Koehler-Stec EM, Vannucci SJ, Smith QR (1999) Blood-brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited. J Neurochem 72:238–247PubMedGoogle Scholar
  99. 99.
    Song BJ, Elbert A, Rahman T, Orr SK, Chen CT, Febbraio M, Bazinet RP (2010) Genetic ablation of CD36 does not alter mouse brain polyunsaturated fatty acid concentrations. Lipids 45:291–299PubMedGoogle Scholar
  100. 100.
    Steinbusch L, Labouebe G, Thorens B (2015) Brain glucose sensing in homeostatic and hedonic regulation. Trends Endocrinol Metab 26:455–466PubMedGoogle Scholar
  101. 101.
    Steinmetz CC, Turrigiano GG (2010) Tumor necrosis factor-alpha signaling maintains the ability of cortical synapses to express synaptic scaling. J Neurosci 30:14685–14690PubMedPubMedCentralGoogle Scholar
  102. 102.
    Sternson SM (2013) Hypothalamic survival circuits: blueprints for purposive behaviors. Neuron 77:810–824PubMedPubMedCentralGoogle Scholar
  103. 103.
    Sternson SM, Eiselt AK (2017) Three pillars for the neural control of appetite. Annu Rev Physiol 79:401–423PubMedGoogle Scholar
  104. 104.
    Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, Zhao X, Sarruf DA, Izgur V, Maravilla KR et al (2012) Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 122:153–162PubMedGoogle Scholar
  105. 105.
    Theodosis DT, Poulain DA, Oliet SH (2008) Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol Rev 88:983–1008PubMedGoogle Scholar
  106. 106.
    Valdearcos M, Douglass JD, Robblee MM, Dorfman MD, Stifler DR, Bennett ML, Gerritse I, Fasnacht R, Barres BA, Thaler JP et al (2017) Microglial inflammatory signaling orchestrates the hypothalamic immune response to dietary excess and mediates obesity susceptibility. Cell Metab 26:185–197 e183PubMedPubMedCentralGoogle Scholar
  107. 107.
    Valdearcos M, Robblee MM, Benjamin DI, Nomura DK, Xu AW, Koliwad SK (2014) Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep 9:2124–2138PubMedPubMedCentralGoogle Scholar
  108. 108.
    Valdearcos M, Xu AW, Koliwad SK (2015) Hypothalamic inflammation in the control of metabolic function. Annu Rev Physiol 77:131–160PubMedGoogle Scholar
  109. 109.
    Vannucci SJ, Simpson IA (2003) Developmental switch in brain nutrient transporter expression in the rat. Am J Physiol Endocrinol Metab 285:E1127–E1134PubMedGoogle Scholar
  110. 110.
    Verkhratskiĭ AN, Butt A (2013) Glial physiology and pathophysiology. Wiley-Blackwell, Chichester/HobokenGoogle Scholar
  111. 111.
    Wake H, Lee PR, Fields RD (2011) Control of local protein synthesis and initial events in myelination by action potentials. Science 333:1647–1651PubMedPubMedCentralGoogle Scholar
  112. 112.
    Xu Y, Tamamaki N, Noda T, Kimura K, Itokazu Y, Matsumoto N, Dezawa M, Ide C (2005) Neurogenesis in the ependymal layer of the adult rat 3rd ventricle. Exp Neurol 192:251–264PubMedGoogle Scholar
  113. 113.
    Yamauchi T, Tatsumi K, Makinodan M, Kimoto S, Toritsuka M, Okuda H, Kishimoto T, Wanaka A (2010) Olanzapine increases cell mitotic activity and oligodendrocyte-lineage cells in the hypothalamus. Neurochem Int 57:565–571PubMedGoogle Scholar
  114. 114.
    Yan J, Zhang H, Yin Y, Li J, Tang Y, Purkayastha S, Li L, Cai D (2014) Obesity- and aging-induced excess of central transforming growth factor-beta potentiates diabetic development via an RNA stress response. Nat Med 20:1001–1008PubMedPubMedCentralGoogle Scholar
  115. 115.
    Yang L, Qi Y, Yang Y (2015) Astrocytes control food intake by inhibiting AGRP neuron activity via adenosine A1 receptors. Cell Rep 11:798–807PubMedGoogle Scholar
  116. 116.
    Young KM, Psachoulia K, Tripathi RB, Dunn SJ, Cossell L, Attwell D, Tohyama K, Richardson WD (2013) Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77:873–885PubMedPubMedCentralGoogle Scholar
  117. 117.
    Zawadzka M, Rivers LE, Fancy SP, Zhao C, Tripathi R, Jamen F, Young K, Goncharevich A, Pohl H, Rizzi M et al (2010) CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6:578–590PubMedGoogle Scholar
  118. 118.
    Zhang Y, Reichel JM, Han C, Zuniga-Hertz JP, Cai D (2017) Astrocytic process plasticity and IKKbeta/NF-kappaB in central control of blood glucose, blood pressure, and body weight. Cell Metab 25:1091–1102 e1094PubMedPubMedCentralGoogle Scholar
  119. 119.
    Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, Vogel H, Steinberg GK, Edwards MS, Li G et al (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89:37–53PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Neurobiology, NHC and CAMS Key Laboratory of Medical NeurobiologyZhejiang University School of MedicineHangzhouChina

Personalised recommendations