Higher Order Exceptional Points in Discrete Photonics Platforms

  • M. H. Teimourpour
  • Q. Zhong
  • M. Khajavikhan
  • R. El-Ganainy
Part of the Springer Tracts in Modern Physics book series (STMP, volume 280)


The introduction of parity-time (PT) symmetry in optics and photonics has initiated intense activities exploring the exotic properties of these structures, eventually leading to the more general notion of non-Hermitian photonics. Efforts to understand the behavior of these systems have revealed a host of distinct features originating from the unusual character of their eigenspectra and eigenstates. These include for example, spontaneous symmetry breaking, bandgap merging, laser self-termination, unidirectional invisibility, and ultra-sensitivity to external perturbations. A central notion pertinent to all these effects is the concept of exceptional points (EPs). Also known as branch points, EPs are non-Hermitian spectral singularities that arise when two (or more) eigenvalues and their corresponding eigenstates become identical. While exceptional points of order two have been studied thoroughly at both the theoretical and experimental level, higher order EPs are attracting attention only recently. Here we discuss a systematic approach based on a recursive bosonic quantization scheme for generating discrete photonic networks that exhibit exceptional points of any arbitrary order. We also discuss the spectral properties and the extreme dynamics near these singularities as well as their physical implementation in various photonic platforms.



R. El-Ganainy acknowledges support from Henes Center for Quantum Phenomena at Michigan Technological University.


  1. 1.
    Needham, T.: Visual Complex Analysis. Clarendon Press, Oxford (1998)zbMATHGoogle Scholar
  2. 2.
    Feng, L., El-Ganainy, R., Ge, L.: Non-Hermitian photonics based on parity-time symmetry. Nat. Photonics 11(12), 752 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    El-Ganainy, R., Makris, K.G., Khajavikhan, M., Musslimani, Z.H., Rotter, S., Christodoulides, D.N.: Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11 (2018)CrossRefGoogle Scholar
  4. 4.
    Heiss, W.D.: Exceptional points of non-Hermitian operators. J. Phys. A Math. Gen. 37(6), 2455 (2004)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Müller, M., Rotter, I.: Exceptional points in open quantum systems. J. Phys. A Math. Theor. 41(24), 244018 (2008)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Dembowski, C., Gräf, H.D., Harney, H.L., Heine, A., Heiss, W.D., Rehfeld, H., Richter, A.: Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett. 86(5), 787 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80(24), 5243 (1998)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2007)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    El-Ganainy, R., Makris, K.G., Christodoulides, D.N., Musslimani, Z.H.: Theory of coupled optical PT-symmetric structures. Opt. Lett. 32(17), 2632 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Musslimani, Z.H.: Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100(10), 103904 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Musslimani, Z.H., Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Optical solitons in PT periodic potentials. Phys. Rev. Lett. 100(3), 030402 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Musslimani, Z.H.: PT-symmetric optical lattices. Phys. Rev. A 81(6), 063807 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103(9), 093902 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Rüter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6(3), 192 (2010)CrossRefGoogle Scholar
  15. 15.
    Liertzer, M., Ge, L., Cerjan, A., Stone, A.D., Treci, H.E., Rotter, S.: Pump-induced exceptional points in lasers. Phys. Rev. Lett. 108(17), 173901 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Brandstetter, M., Liertzer, M., Deutsch, C., Klang, P., Schöberl, J., Türeci, H.E., Strasser, G., Unterrainer, K., Rotter, S.: Reversing the pump dependence of a laser at an exceptional point. Nat. Commun. 5, 4034 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Peng, B., Özdemir, S.K., Rotter, S., Yilmaz, H., Liertzer, M., Monifi, F., Bender, C.M., Nori, F., Yang, L.: Loss-induced suppression and revival of lasing. Science 346(6207), 328 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    El-Ganainy, R., Khajavikhan, M., Ge, L.: Exceptional points and lasing self-termination in photonic molecules. Phys. Rev. A 90(1), 013802 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Lin, Z., Ramezani, H., Eichelkraut, T., Kottos, T., Cao, H., Christodoulides, D.N.: Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106(21), 213901 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Longhi, S.: Half-spectral unidirectional invisibility in non-Hermitian periodic optical structures. Opt. Lett. 40, 1117–1120 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Feng, L.: Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Ramezani, H., Kottos, T., El-Ganainy, R., Christodoulides, D.N.: Unidirectional nonlinear PT-symmetric optical structures. Phys. Rev. A 82(4), 043803 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Peng, B., Özdemir, S.K., Lei, F., Monifi, F., Gianfreda, M., Long, G.L., Fan, S., Nori, F., Bender, C.M., Yang, L.: Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10(5), 394 (2014)CrossRefGoogle Scholar
  24. 24.
    Aleahmad, P., Khajavikhan, M., Christodoulides, D.N., LiKamWa, P.: Integrated multi-port circulators for unidirectional optical information transport. Sci. Rep. 7, 2129 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    Hodaei, H., Miri, M.A., Heinrich, M., Christodoulides, D.N., Khajavikhan, M.: Parity-time-symmetric microring lasers. Science 346(6212), 975 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Feng, L., Wong, Z.J., Ma, R.M., Wang, Y., Zhang, X.: Single-mode laser by parity-time symmetry breaking. Science 346(6212), 972 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Hodaei, H., Hassan, A.U., Wittek, S., Garcia-Gracia, H., El-Ganainy, R., Christodoulides, D.N., Khajavikhan, M.: Enhanced sensitivity at higher-order exceptional points. Nature 548(7666), 187 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Chen, W., Özdemir, S.K., Zhao, G., Wiersig, J., Yang, L.: Exceptional points enhance sensing in an optical microcavity. Nature 548(7666), 192 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    El-Ganainy, R., Ge, L., Khajavikhan, M., Christodoulides, D.N.: Supersymmetric laser arrays. Phys. Rev. A 92(3), 033818 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Teimourpour, M.H., Ge, L., Christodoulides, D.N., El-Ganainy, R.: Non-Hermitian engineering of single mode two dimensional laser arrays. Sci. Rep. 6, 33253 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    El-Ganainy, R., Dadap, J.I., Osgood, R.M.: Optical parametric amplification via non-Hermitian phase matching. Opt. Lett. 40(21), 5086 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Zhong, Q., Ahmed, A., Dadap, J.I., Osgood, R.M., Jr., El-Ganainy, R.: Parametric amplification in quasi-PT symmetric coupled waveguide structures. New J. Phys. 18(12), 125006 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    Gilles, D., Eva-Maria, G., Demange, G., Graefe, E.M.: Signatures of three coalescing eigenfunctions. J. Phys. A Math. Theor. 45(2), 025303 (2012)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Lin, Z., Pick, A., Lončar, M., Rodriguez, A.W.: Enhanced spontaneous emission at third-order Dirac exceptional points in inverse-designed photonic crystals. Phys. Rev. Lett. 117(10), 107402 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    Heiss, W.D., Wunner, G.: A model of three coupled wave guides and third order exceptional points. J. Phys. A Math. Theor. 49(49), 495303 (2016)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Jing, H., Özdemir, S.K., Lü, H., Nori, F.: High-order exceptional points in optomechanics. Sci. Rep. 7(1), 3386 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    Schnabel, J., Cartarius, H., Main, J., Wunner, G., Heiss, W.D.: PT-symmetric waveguide system with evidence of a third-order exceptional point. Phys. Rev. A 95(5), 053868 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    Teimourpour, M.H., El-Ganainy, R., Eisfeld, A., Szameit, A., Christodoulides, D.N.: Light transport in PT-invariant photonic structures with hidden symmetries. Phys. Rev. A 90(5), 053817 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    Hiller, M., Kottos, T., Ossipov, A.: Bifurcations in resonance widths of an open Bose-Hubbard dimer. Phys. Rev. A 73(6), 063625 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    Graefe, E.M., Günther, U., Korsch, H.J., Niederle, A.E.: A non-Hermitian PT symmetric Bose-Hubbard model: eigenvalue rings from unfolding higher-order exceptional points. J. Phys. A Math. Theor. 41(25), 255206 (2008)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Ma, Y., Edelman, A.: Nongeneric eigenvalue perturbations of Jordan blocks. Linear Algebra Appl. 273(1), 45 (1998)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Emil, A.Y., William, H., Boris, L.A., Sriram, B.S.: Extracting hidden symmetry from the energy spectrum. J. Phys. A Math. Gen. 36(10), 2577 (2003)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Mostafazadeh, A.: Extracting hidden symmetry from the energy spectrum. Pseudo-Hermitian representation of quantum mechanics. Int. J. Geom. Meth. Mod. Phys. 07(07), 1191 (2010)CrossRefGoogle Scholar
  44. 44.
    Zhong, Q., Christodoulides, D.N., Khajavikhan, M., Makris, K.G., El-Ganainy, R.: Power-law scaling of extreme dynamics near higher-order exceptional points. Phys. Rev. A 97(2), 020105 (2018)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Guo, R., Wang, X., Zang, K., Wang, B., Wang, L., Gao, L., Zhou, Z.: Optical amplification in Er/Yb silicate strip loaded waveguide. Appl. Phys. Lett. 99(16), 161115 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    Taccheo, S., Della Valle, G., Osellame, R., Cerullo, G., Chiodo, N., Laporta, P., Svelto, O., Killi, A., Morgner, U., Lederer, M., Kopf, D.: Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses. Opt. Lett. 29(22), 2626 (2004)ADSCrossRefGoogle Scholar
  47. 47.
    Zeuner, J.M., Rechtsman, M.C., Plotnik, Y., Lumer, Y., Nolte, S., Rudner, M.S., Segev, M., Szameit, A., Observation of a topological transition in the bulk of a non-Hermitian System: Phys. Rev. Lett. 115(4), 040402 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    Wiersig, J.: Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett. 112(20), 203901 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    Wiersig, J.: Sensors operating at exceptional points: General theory. Phys. Rev. A 93(3), 033809 (2016)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    Sato, Y., Tanaka, Y., Upham, J., Takahashi, Y., Asano, T., Noda, S.: Strong coupling between distant photonic nanocavities and its dynamic control. Nat. Photonics 6, 56 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    Schindler, J., Li, A., Zheng, M.C., Ellis, F.M., Kottos, T.: Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A 84(4), 040101 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • M. H. Teimourpour
    • 1
  • Q. Zhong
    • 1
  • M. Khajavikhan
    • 2
  • R. El-Ganainy
    • 1
    • 3
  1. 1.Department of PhysicsMichigan Technological UniversityHoughtonUSA
  2. 2.College of Optics & Photonics-CREOLUniversity of Central FloridaOrlandoUSA
  3. 3.Henes Center for Quantum PhenomenaMichigan Technological UniversityHoughtonUSA

Personalised recommendations