Advertisement

Cryopreservation of Plant Genetic Resources

  • Daisuke Tanaka
  • Takao Niino
  • Matsuo Uemura
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1081)

Abstract

Cryopreservation encompasses several interconnect disciplines including physiology and cryophysics. This chapter reviews the current techniques for cryopreservation of plant genetic resources (PGRs). Vitrification is an effective ice crystal avoidance mechanism for hydrated cells and tissues. With any cryopreservation method, whole or partial parts of specimens which are sufficiently dehydrated can be vitrified by rapid cooling in liquid nitrogen (LN). Techniques discussed are the vitrification protocol, encapsulation-vitrification protocol, droplet vitrification protocol (DV), vitrification protocol using cryo-plates (V cryo-plate), and air dehydration protocol using cryo-plates (D cryo-plate). In these DV, V, and D cryo-plate protocols, specimens to be cryopreserved are immersed directly into LN on aluminum foil strips or cryo-plates; removal from LN to rewarming solution results in a high level of plant regrowth with ultrarapid cooling and warming. The protocols were applied to a wide array of plant species including wild and multi-ploid species, although fine tuning of the protocols was required for successful application to specific plant species and lines. These three protocols efficiently complement each other and appear highly promising to facilitate large-scale cryobanking of PGRs in genebanks. Cryo-scanning electron microscopy makes it possible to examine the cellular and water behavior in plant tissues when immersed in LN. It has been verified that tissues cryopreserved by the process of vitrification and the cryo-plate protocols are cryopreservation methods for reliable long-term preservation of PGRs.

Keywords

Cryopreservation Vitrification D cryo-plate V cryo-plate Intracellular ice formation Plant genetic resources 

Abbreviations

Cryo-plate

Aluminum cryo-plate

Cryo-SEM

Cryo-scanning electron micro-scopy

D cryo-plate

Air dehydration protocol using cryo-plates

DV

Droplet vitrification protocol

EV

Encapsulation-vitrification pro-tocol

LN

Liquid nitrogen

LS

Loading solution

MS medium

Murashige and Skoog medium

PGRs

Plant genetic resources

PVS2

Plant vitrification solution 2

V cryo-plate

Vitrification protocol using cryo-plates

References

  1. Burke MJ (1986) The glassy state and survival of anhydrous biological systems. In: Leopold AC (ed) Membrane, metabolism and dry organisms. Cornell University Press, Ithaca, pp 358–364Google Scholar
  2. Dhungana SA, Kunitake H, Niino T, Yamamoto S, Fukui K, Tanaka D, Maki S, Matsumoto T (2017) Cryopreservation of blueberry shoot tips derived from in vitro and current shoots after cryopreservation using D cryo-plate technique. Plant Biotechnol 34:1–5CrossRefGoogle Scholar
  3. Engelmann F (2014) Cryopreservation of clonal crops: a review of key parameters. Acta Hortic 1039:31–40CrossRefGoogle Scholar
  4. Engelmann F, Gonzalez-Arnao MT, Wu YJ, Escobar R (2008) Development of encapsulation dehydration. In: Reed B (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 59–76CrossRefGoogle Scholar
  5. Engelmann-Sylvestre I, Engelmann F (2015) Cryopreservation of in vitro-grown shoot tips of Chenopodium odorum using aluminium cryo-plates. In Vitro Cell Dev Biol Plant 51:185–191CrossRefGoogle Scholar
  6. Fahy GM, MacFarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21:407–426CrossRefGoogle Scholar
  7. Fujikawa S, Suzuki T, Ishikawa T, Sakurai S, Hasegawa J (1988) Continuous observation of frozen biological materials with cryo-scanning electron microscope and freeze-replica by a new cryo-system. J Electron Microsc 37:33–37Google Scholar
  8. Hirai D, Sakai A (2001) Recovery growth of plants cryopreservation by encapsulation-vitrification. Bull Hokkaido Pref Agric Exp Sta 80:55–64Google Scholar
  9. Kim HH, Lee YK, Kim T, Cho EG, Lee JK, Ji JJ, Nam SS, Engelmann F (2007) Implementation of cryopreservation for garlic genetic resources by the droplet vitrification procedure. Acta Hortic 760:209–215Google Scholar
  10. Kim HH, Popova E, No NY, Baek HJ, Kim CK, Cho EG, Engelmann F (2011) Application of alternative loading solutions to garlic and chrysanthemum in droplet-vitrification procedures. Acta Hortic 908:173–180CrossRefGoogle Scholar
  11. Luyet BJ (1937) The vitrification of organic colloids and protoplasm. Biodinamica 29:1–15Google Scholar
  12. Maki S, Hirai Y, Niino T, Matsumoto T (2015) Assessment of molecular genetic stability between long-term cryopreserved and tissue cultured wasabi (Wasabia japonica) plants. CryoLetters 36:318–324PubMedGoogle Scholar
  13. Matsumoto T, Sakai A, Takahashi C, Yamada K (1995) Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by encapsulation-vitrification method. CryoLetters 16:189–196Google Scholar
  14. Matsumoto T, Sakai A, Takahashi C, Yamada K (1996) Cryopreservation of in vitro-grown apical meristems of lily (Lilium L.) by encapsulation-vitrification method. Plant Biotechnol 13:29–34Google Scholar
  15. Matsumoto T, Akihiro T, Maki S, Mochida K, Kitagawa M, Tanaka D, Yamamoto S, Niino T (2013) Genetic stability assessment of Wasabi plants regenerated from long-term cryopreserved shoot tips using morphological, biochemical and molecular analysis. CryoLetters 34:128–136PubMedGoogle Scholar
  16. Matsumoto T, Yoshimatsu K, Kawahara N, Yamamoto S, Niino T (2014) Development of in vitro propagation by node culture and cryopreservation by V Cryo-plate method for Perilla frutescens. Adv Hortic Sci 28:79–83Google Scholar
  17. Matsumoto T, Yamamoto S, Fukui K, Rafique K, Engelmann F, Niino T (2015) Cryopreservation of persimmon shoot tips from dormant buds using the D cryo-plate technique. Hortic J 84:106–110CrossRefGoogle Scholar
  18. Niino T (2000) Cryopreservation of deciduous fruits and mulberry trees. In: Razdan MK, Cocking EC (eds) Conservation of plant resources in vitro, vol. 2: application and limitations. Science Publishers, Enfield, pp 193–221Google Scholar
  19. Niino T, Valle-Arizaga M (2015) Cryopreservation for preservation of potato genetic resources. Breed Sci 65:41–52CrossRefGoogle Scholar
  20. Niino T, Yamamoto S (2017) Base procedures of V and D cryo-plate methods. In: Niino T, Matsumoto T, Yamamoto S, Maki S, Tanaka D, Engelmann F (eds) Manual of cryo-preservation methods using cryo-plate. Plant Tissue Culture and Cryopreservation Group, Tsukuba, pp 16–26Google Scholar
  21. Niino T, Yamamoto S, Fukui K, Castillo Martínez CR, Valle Arizaga M, Matsumoto T, Engelmann F (2013) Dehydration improves cryopreservation of mat rush (Juncus decipiens Nakai) basal stem buds on cryo-plate. CryoLetters 34:54–560Google Scholar
  22. Niino T, Wunna, Watanabe K, Nohara N, Rafique T, Yamamoto S, Fukui K, Valle Arizaga M, Castillo Martinez CR, Matsumoto T, Engelmann F (2014) Cryopreservation of mat rush lateral buds by air dehydration using aluminium cryo-plate. Plant Biotechnol 31:281–287CrossRefGoogle Scholar
  23. Panis B (2008) Cryopreservation of monocots. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 241–280CrossRefGoogle Scholar
  24. Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55CrossRefGoogle Scholar
  25. Rafique T, Yamamoto S, Fukui K, Mahmood Z, Niino T (2015) Cryopreservation of sugarcane using the V cryo-plate technique. CryoLetters 36:51–59PubMedGoogle Scholar
  26. Rafique T, Yamamoto S, Fukui K, Tanaka D, Valle Arizaga M, Abbas M, Matsumoto T, Niino T (2016) Cryopreservation of shoot tips from different sugarcane varieties using D cryo-plate technique. Pak J Agric Sci 53:151–158Google Scholar
  27. Reed BM (2008) Plant cryopreservation: a practical guide. Springer, New York, p 513CrossRefGoogle Scholar
  28. Reed BM, Kovalchuk I, Kushnarenko S, Meier-Dinkel A, Schoenweiss K, Pluta S, Straczynska K, Benson EE (2004) Evaluation of critical points in technology transfer of cryopreservation protocols to international plant conservation laboratories. CryoLetters 25:341–352PubMedGoogle Scholar
  29. Sakai A (1956) Survival of plant tissue at super-low temperatures. Low temperature science. Ser B Biol Sci 14:17–24Google Scholar
  30. Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33CrossRefGoogle Scholar
  31. Sakai A, Kobayashi S, Oiyama I (1991) Survival by vitrification of nucellar cells of navel orange (Citrus sinensis var. brasiliensis Tanaka) cooled to −196°C. J Plant Physiol 137:465–470CrossRefGoogle Scholar
  32. Sakai A, Hirai D, Niino T (2008) Development of PVS-based vitrification and encapsulation-vitrification protocols. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 33–58CrossRefGoogle Scholar
  33. Salma M, Fki L, Engelmann-Sylvestre I, Niino T, Engelmann F (2014) Comparison of droplet-vitrification and D-cryoplate for cryopreservation of date palm (Phoenix dactylifera L.) polyembryonic masses. Sci Hortic 179:91–97CrossRefGoogle Scholar
  34. Sekizawa K, Yamamoto S, Rafique T, Fukui K, Niino T (2011) Cryopreservation of in vitro grown shoot tips of carnation (Dianthus caryophyllus L.) by vitrification method using aluminium cryo-plates. Plant Biotechnol 28:401–405CrossRefGoogle Scholar
  35. da Silva Cordeiro L, Simões-Gurgel C, Albarello N, Engelmann F (2015) Cryopreservation of in vitro-grown shoot tips of Cleome rosea (Cleomaceae) by V cryo-plate technique. In Vitro Cell Dev Biol Plant 51:688–695CrossRefGoogle Scholar
  36. Tanaka D, Niino T, Isuzugawa K, Hikage T, Uemura M (2004) Cryopreservation of shoot apices of in vitro grown gentian plants by vitrification and encapsulation-vitrification protocols. CryoLetters 25:167–176PubMedGoogle Scholar
  37. Tanaka D, Nishiuchi A, Niino T, Matsumoto T (2011) A comparison of vitrification and droplet vitrification procedures for the cryopreservation of in vitro grown black chokeberry shoot tips. Acta Hortic 908:325–330CrossRefGoogle Scholar
  38. Tanaka D, Akimoto-Kato A, Kusaba M, Taniguchi K, Niino T, Maki S, Matsumoto T (2016a) Cryopreservation of chrysanthemum shoot tips by D cryo-plate method. J Jpn Soc Agric Technol Mgt 23:1–7Google Scholar
  39. Tanaka D, Ishizaki K, Kohchi T, Yamato KT (2016b) Cryopreservation of gemmae from the liverwort Marchantia polymorpha L. Plant Cell Physiol 57:307–324CrossRefGoogle Scholar
  40. Valle Arizaga M, Villalobos Navarro OF, Castillo Martinez CR, Cruz Gutiérrez EJ, López Delgado HA, Yamamoto S, Watanabe K, Niino T (2017) Improvement to the D cryo-plate protocol applied to practical cryopreservation of in vitro grown potato shoot tips. Hortic J 87:222–228CrossRefGoogle Scholar
  41. Vujović T, Chatelet P, Ružić Đ, Engelmann F (2015) Cryopreservation of Prunus spp. using aluminium cryo-plates. Sci Hortic 195:173–182CrossRefGoogle Scholar
  42. Yamamoto S, Rafique T, Priyantha WS, Fukui K, Matsumoto T, Niino T (2011) Development of a cryopreservation procedure using aluminium cryo-plates. CryoLetters 32:256–265PubMedGoogle Scholar
  43. Yamamoto S, Fukui K, Rafique T, Khan NI, Castillo Martinez CR, Sekizawa K, Matsumoto T, Niino T (2012a) Cryopreservation of in vitro-grown shoot tips of strawberry by the vitrification method using aluminium cryo-plates. Plant Genet Res Charact Utiliz 10:14–19CrossRefGoogle Scholar
  44. Yamamoto S, Rafique T, Fukui K, Sekizawa K, Koyama A, Ichihashi T, Niino T (2012b) Development of an effective cryopreservation protocol using aluminium cryo-plates for in vitro- grown shoot tips of mulberries (Morus spp.) originated from the tropics and subtropics. Sanshi-Konchu Biotechnol 81:57–62Google Scholar
  45. Yamamoto S, Rafique T, Fukui K, Sekizawa K, Niino T (2012c) V-cryo-plate procedure as an effective protocol for cryobanks: case study of mint cryopreservation. CryoLetters 33:12–23PubMedGoogle Scholar
  46. Yamamoto S, Wunna, Rafique T, Valle Arizaga M, Fukui K, Cruz Gutierrez E, Castillo Martinez C, Watanabe K, Niino T (2015) The aluminium cryo-plate increases efficiency of cryopreservation protocols for potato shoot tips. Am J Potato Res 92:250–257CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Genetic Resources CenterNational Agriculture and Food Research OrganizationTsukubaJapan
  2. 2.Gene Research CenterUniversity of TsukubaTsukubaJapan
  3. 3.United Graduate School of Agricultural Sciences and Department of Plant-biosciences, Faculty of AgricultureIwate UniversityMoriokaJapan

Personalised recommendations