Advertisement

Applications of Antifreeze Proteins: Practical Use of the Quality Products from Japanese Fishes

  • Sheikh Mahatabuddin
  • Sakae Tsuda
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1081)

Abstract

Numerous embryonic ice crystals are generated in water at the moment of freezing. These crystals grow and merge together to form an ice block that can be generally observed. Antifreeze protein (AFP) is capable of binding to the embryonic ice crystals, inhibiting such an ice block formation. Fish-derived AFP additionally binds to membrane lipid bilayers to prolong the lifetime of cells. These unique abilities of AFP have been studied extensively for the development of advanced techniques, such as ice recrystallization inhibitors, freeze-tolerant gels, cell preservation fluids, and high-porosity ceramics, for which mass-preparation method of the quality product of AFP utilizing fish muscle homogenates made a significant contribution. In this chapter, we present both fundamental and advanced information of fish AFPs that have been especially discovered from mid-latitude sea area, which will provide a hint to develop more advanced techniques applicable in both medical and industrial fields.

Keywords

Antifreeze protein Ice-binding protein Ice growth inhibition Membrane protection Thermal hysteresis Ice recrystallization inhibition Freeze concentration inhibition Cell cryopreservation Cell hypothermic preservation Porous material fabrication 

Abbreviations

AFGP

Antifreeze glycoprotein

AFP

Antifreeze protein

CTLD

C-type lectin-like domain

EC

Euro-Collins

FBS

Fetal bovine serum

FIPA

Fluorescence-based ice plane affinity

IRI

Ice recrystallization inhibition

PBS

Phosphate-buffered saline

Notes

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number JP15K13760. The mass-preparation method of fish AFPs has been developed with the help of Takeshi Koizumi, Toshifumi Inoue, and Hirotaka Ishii from Nichirei Corporation, Japan.

References

  1. Amir G, Horowitz L, Rubinsky B, Yousif BS, Lavee J, Smolinsky AK (2004) Subzero nonfreezing cryopreservation of rat hearts using antifreeze protein I and antifreeze protein III. Cryobiology 48:273–282CrossRefGoogle Scholar
  2. Anklam MR, Firoozabadi A (2005) An interfacial energy mechanism for the complete inhibition of crystal growth by inhibitor adsorption. J Chem Phys 123:144708–1 –112CrossRefGoogle Scholar
  3. Antson AA, Smith DJ, Roper DI, Lewis S, Caves LSD, Verma CS, Buckley SL, Lillford PJ, Hubbard RE (2001) Understanding the mechanism of ice binding by type III antifreeze proteins. J Mol Biol 305:875–889CrossRefGoogle Scholar
  4. Baguisi A, Arav A, Crosby TF, Roche JF, Boland MP (1997) Hypothermic storage of sheep embryos with antifreeze proteins development in vitro and in vivo. Theriogeneology 48:1017–1024CrossRefGoogle Scholar
  5. Bar-Dolev M, Celik Y, Wettlaufer JS, Davies PL, Braslavsky I (2012) New insights into ice growth and melting modifications by antifreeze proteins. J R Soc Interface 9:3249–3259CrossRefGoogle Scholar
  6. Basu K, Garnham CP, Nishimiya Y, Tsuda S, Braslavsky I, Davies PL (2014) Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity. J Vis Exp 83:e51185Google Scholar
  7. Beirão J, Zilli L, Vilella S, Cabrita E, Schiavone R, Herráez MP (2012) Improving sperm cryopreservation with antifreeze proteins: effect on gilthead seabream (Sparus aurata) plasma membrane lipids. Biol Reprod 86:59CrossRefGoogle Scholar
  8. Burcham TS, Osuga DT, Rao BNN, Bush CA, Feeney RE (1986a) Purification and primary sequences of the major arginine-containing antifreeze glycopeptides from the fish Eleginus gracilis. J Biol Chem 261:6384–6389PubMedGoogle Scholar
  9. Burcham TS, Osuga DT, Yeh Y, Feeney RE (1986b) A kinetic description of antifreeze glycoprotein activity. J Biol Chem 261:6390–6397PubMedGoogle Scholar
  10. Carpenter JF, Hansen TN (1992) Antifreeze protein modulates cell survival during cryopreservation: mediation through influence on ice crystal growth. Proc Natl Acad Sci U S A 89:8953–8957CrossRefGoogle Scholar
  11. Chao H, Davies PL, Carpenter JF (1996) Effects of antifreeze proteins on red blood cell survival during cryopreservation. J Exp Biol 199:2071–2076PubMedGoogle Scholar
  12. Cheng C-HC, DeVries AL (1989) Structures of antifreeze peptides from the Antarctic eel pout, Austrolycicthys brachycephalus. Biochim Biophys Acta 997:55–64CrossRefGoogle Scholar
  13. Davies PL (2014) Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth. Trends Biochem Sci 39:548–555CrossRefGoogle Scholar
  14. Delgado AE, Sun D-W (2001) Heat and mass transfer models for predicting freezing processes – a review. J Food Eng 47:157–174CrossRefGoogle Scholar
  15. Deluca CI, Chao H, Sönnichsen FD, Sykes BD, Davies PL (1996) Effect of type III antifreeze protein dilution and mutation on the growth inhibition of ice. Biophys J 71:2346–2355CrossRefGoogle Scholar
  16. DeVries AL, Wohlschlag DE (1969) Freezing resistance in some Antarctic fishes. Science 163:1073–1075CrossRefGoogle Scholar
  17. Duman JG, DeVries AL (1976) Isolation, characterization, and physical properties of protein antifreezes from the winter flounder, Pseudopleuronectes americanus. Comp Biochem Physiol 54B:375–380Google Scholar
  18. Ewart KV, Fletcher GL (1990) Isolation and characterization of antifreeze proteins from smelt (Osmerus mordax) and Atlantic herring (Clupea harengus harengus). Can J Zool 68:1652–1658CrossRefGoogle Scholar
  19. Fletcher G, Hew CL, Davies PL (2001) Antifreeze proteins of teleost fishes. Annu Rev Physiol 63:359–390CrossRefGoogle Scholar
  20. Fukushima M, Tsuda S, Yoshizawa Y (2013) Fabrication of highly porous alumina prepared by gelation freezing route with antifreeze protein. J Am Cram Soc 96:1029–1031CrossRefGoogle Scholar
  21. Garnham CP, Natarajan A, Middleton AJ, Kuiper MJ, Braslavsky I, Davies PL (2010) Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging. Biochemistry 49:9063–9071CrossRefGoogle Scholar
  22. Garnham CP, Nishimiya Y, Tsuda S, Davies PL (2012) Engineering a naturally inactive isoform of type III antifreeze protein into one that can stop the growth of ice. FEBS Lett 586:3876–3881CrossRefGoogle Scholar
  23. Gibson MI (2010) Slowing the growth of ice with synthetic macromolecules: beyond antifreeze (glyco) proteins. Polym Chem 1:1141–1152CrossRefGoogle Scholar
  24. Gronwald W, Loewen MC, Lix B, Daugulis AJ, Sönnichsen FD, Davies PL, Sykes BD (1998) The solution structure of type II antifreeze protein reveals a new member of the lectin family. Biochemistry 37:4712–4721CrossRefGoogle Scholar
  25. Harding MM, Ward LG, Haymet ADJ (1999) Type I ‘antifreeze’ proteins: structure-activity studies and mechanisms of ice growth inhibition. Eur J Biochem 264:653–665CrossRefGoogle Scholar
  26. Harding MM, Anderberg PI, Haymet ADJ (2003) Antifreeze’ glycoproteins from polar fish. Eur J Biochem 270:1381–1392CrossRefGoogle Scholar
  27. Hays LM, Feeney RE, Crowe LM, Crowe JH, Oliver AE (1996) Antifreeze glycoproteins inhibit leakage from liposomes during thermotropic phase transitions. Proc Natl Acad Sci U S A 93:6835–3840CrossRefGoogle Scholar
  28. Hew CL, Yang DSC (1992) Protein interaction with ice. Eur J Biochem 203:33–42CrossRefGoogle Scholar
  29. Hew CL, Wang N-C, Joshi S, Fletcher GL, Scott GK, Hayes PH, Buettner B, Davies PL (1988) Multiple genes provide the basis for antifreeze protein diversity and dosage in the ocean pout, Macrozoarces americanus. J Biol Chem 263:12049–12056PubMedPubMedCentralGoogle Scholar
  30. Hirano Y, Nishimiya Y, Matsumoto S, Matsushita M, Todo S, Miura A, Komatsu Y, Tsuda S (2008) Hypothermic preservation effect on mammalian cells of type III antifreeze proteins from notched-fin eelpout. Cryobiology 57:46–51CrossRefGoogle Scholar
  31. Hobbs PV (1974) Ice physics. Oxford University Press, London, pp 461–523Google Scholar
  32. Ideta A, Aoyagi Y, Tsuchiya K, Nakamura Y, Hayama K, Shirasawa A, Sakaguchi K, Tominaga N, Nishimiya Y, Tsuda S (2015) Prolonging hypothermic storage (4°C) of bovine embryos with fish antifreeze protein. J Reprod Dev 61:1–6CrossRefGoogle Scholar
  33. Jackman J, Noestheden M, Moffat D, Pezacki JP, Findlay S, Ben RN (2007) Assessing antifreeze activity of AFGP8 using domain recognition software. Biochem Biophys Res Commun 354:340–344CrossRefGoogle Scholar
  34. Jo JW, Jee BC, Lee JR, Suh CS (2011) Effect of antifreeze protein supplementation in vitrification medium on mouse oocyte developmental competence. Fertil Steril 96:1239–1245CrossRefGoogle Scholar
  35. Jo JW, Jee BC, Suh CS, Kim SH (2012) The beneficial effects of antifreeze proteins in the vitrification of immature mouse oocytes. PLoS One 7:e37043CrossRefGoogle Scholar
  36. Kahlweit M (1975) Ostwald ripening of precipitates. Adv Colloid Interf Sci 5:1–35CrossRefGoogle Scholar
  37. Kamijima T, Sakashita M, Miura A, Nishimiya Y, Tsuda S (2013) Antifreeze protein prolongs the life-time of insulinoma cells during hypothermic preservation. PLoS One 8:e73643CrossRefGoogle Scholar
  38. Karanova MV, Pronina ND, Tsvetkova LI (2002) The effect of antifreeze glycoproteins on survival of fish spermatozoa under the conditions of long-term storage at 4°C. Izv Akad Nauk Se Biol 1:88–92Google Scholar
  39. Kiga K, Kurita K, Nishimura M, Higashi K, Nakagawa T, Kishi M, Nishimiya Y, Tsuda S, Hosoi Y, Anzai M (2011) Short term storage of Mouse epididymal spermatozoa by antifreeze protein addition at cold temperature. Mem Ins Adv Technol, Kinki Univ 16:51–58Google Scholar
  40. Kim MK, Kong HS, Youm HW, Jee BC (2017) Effects of supplementation with antifreeze proteins on the follicular integrity of vitrified-warmed mouse ovaries: comparison of two types of antifreeze proteins alone and in combination. Clin Exp Reprod Med 44:8–14CrossRefGoogle Scholar
  41. Knight CA, DeVries AL, Oolman LD (1984) Fish antifreeze protein and the freezing and recrystallization of ice. Nature 308:295–296CrossRefGoogle Scholar
  42. Knight CA, Hallett J, DeVries AL (1988) Solute effects on ice recrystallization: an assessment technique. Cryobiology 25:55–60CrossRefGoogle Scholar
  43. Knight CA, Cheng CC, DeVries AL (1993) Adsorption of α-helical peptides on specific ice crystal surface planes. Biophys J 59:409–418Google Scholar
  44. Koh HY, Lee JH, Han SJ, Park H, Lee SG (2015) Effect of the antifreeze protein from the arctic yeast Leucosporidium sp. AY30 on cryopreservation of the marine diatom Phaeodactylum tricornutum. Appl Biochem Biotechnol 175:677–686CrossRefGoogle Scholar
  45. Kondo H, Hanada Y, Sugimoto H, Hoshino T, Garnham CP, Davies PL, Tsuda S (2012) Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation. Proc Natl Acad Sci U S A 109:9360–9365CrossRefGoogle Scholar
  46. Kumeta H, Ogura K, Nishimiya Y, Miura A, Inagaki F, Tsuda S (2013) NMR structure note: a defective isoform and its activity-improved variant of a type III antifreeze protein from Zoarces elongatus Kner. J Biomol NMR 55:225–230CrossRefGoogle Scholar
  47. Lee CY, Rubinsky B, Fletcher GL (1992) Hypothermic preservation of whole mammalian organs with “antifreeze” proteins. Cryo-Lett 13:59–66Google Scholar
  48. Lee SG, Koh HY, Lee JH, Kang SH, Kim HJ (2012) Cryopreservation effects of the recombinant ice-binding protein from the arctic yeast Leucosporidium sp. on red blood cells. Appl Biochem Biotechnol 167:824–834CrossRefGoogle Scholar
  49. Lee JR, Youm HW, Lee HJ, Jee BC, Suh CS, Kim SH (2015) Effect of antifreeze protein on mouse ovarian tissue cryopreservation and transplantation. Yonsei Med J 56:778–784CrossRefGoogle Scholar
  50. Li X-M, Trinh K-Y, Hew CL, Buettner B, Baenziger J, Davies PL (1985) Structure of an antifreeze polypeptide and its precursor from the ocean pout, Macrozoarces americanus. J Biol Chem 260:12904–12909PubMedPubMedCentralGoogle Scholar
  51. Liang S, Yuan B, Kwon J-W, Ahn M, Cui X-S, Bang JK, Kim N-H (2016) Theriogenology 86:485–494CrossRefGoogle Scholar
  52. Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50CrossRefGoogle Scholar
  53. Liu Y, Li Z, Lin Q, Kosinski J, Seetharaman J, Bujnicki JM, Sivaraman J, Hew C-L (2007) Structure and evolutionary origin of Ca2+-dependent herring type II antifreeze protein. PLoS One 6:e548CrossRefGoogle Scholar
  54. Mahatabuddin S, Nishimiya Y, Miura A, Kondo H, Tsuda S (2016) Critical ice shaping concentration (CISC): a new parameter to evaluate the activity of antifreeze proteins. Cryobiol Cryotechnol 62:95–103Google Scholar
  55. Mahatabuddin S, Hanada Y, Nishimiya Y, Miura A, Kondo H, Davies PL, Tsuda S (2017) Concentration-dependent oligomerization of an alpha-helical antifreeze polypeptide makes it hyperactive. Sci Rep 7:42501CrossRefGoogle Scholar
  56. Matsumoto S, Matsusita M, Morita T, Kamachi H, Tsukiyama S, Furukawa Y, Koshida S, Tachibana Y, Nishimura S, Todo S (2006) Effects of synthetic antifreeze glycoprotein analogue on islet cell survival and function during cryopreservation. Cryobiology 52:90–98CrossRefGoogle Scholar
  57. Nishijima K, Tanaka M, Sakai Y, Koshimoto C, Morimoto M, Watanabe T, Fan J, Kitajima S (2014) Effects of type III antifreeze protein on sperm and embryo cryopreservation in rabbit. Cryobiology 69:22–25CrossRefGoogle Scholar
  58. Nishimiya Y, Sato R, Takamichi M, Miura A, Tsuda S (2005) Co-operative effect of the isoforms of type III antifreeze protein expressed in Notched-fin eelpout, Zoarces elongatus Kner. FEBS J 272:482–292CrossRefGoogle Scholar
  59. Nishimiya Y, Mie Y, Hirano Y, Kondo H, Miura A, Tsuda S (2008a) Mass preparation and technological development of an antifreeze protein: toward the practical use of biomolecules. Synthesiology 1:7–14CrossRefGoogle Scholar
  60. Nishimiya Y, Kondo H, Takamichi M, Sugimoto H, Suzuki M, Miura A, Tsuda S (2008b) Crystal structure and mutational analysis of Ca2+-independent type II antifreeze protein from Longsnout poacher, Brachyopsis rostratus. J Mol Biol 382:734–746CrossRefGoogle Scholar
  61. Olijve LLC, Meister K, DeVries AL, Duman JG, Guo S, Bakker HJ, Voets IK (2016a) Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins. Proc Natl Acad Sci U S A 113:3740–3745CrossRefGoogle Scholar
  62. Olijve LLC, Oude VAS, Voets IK (2016b) A simple and quantitative method to evaluate ice recrystallization kinetics using the Circle Hough Transform algorithm. Cryst Growth Des 16:4190–4195CrossRefGoogle Scholar
  63. Prathalingam NS, Holt WV, Revell SG, Mirczuk S, Fleck RA, Watson PF (2006) Impact of antifreeze proteins and antifreeze glycoproteins on bovine sperm during freeze-thaw. Theriogenology 66:1894–1900CrossRefGoogle Scholar
  64. Qadeer S, Khan MA, Ansari MS, Rakha BA, Ejaz R, Husna AU, Ashiq M, Iqbal N, Akhter S (2014) Evaluation of antifreeze protein III for cryopreservation of Nili-Ravi (Bubalus bubalis) buffalo bull sperm. Anim Reprod Sci 148:26–31CrossRefGoogle Scholar
  65. Qadeer S, Khan MA, Ansari MS, Rakha BA, Ejaz R, Iqbal R, Younis M, Ullah M, DeVries AL, Akhter S (2015) Efficiency of antifreeze glycoproteins for cryopreservation of Nili-Ravi (Bubalus bubalis) buffalo bull sperm. Anim Reprod Sci 157:56–62CrossRefGoogle Scholar
  66. Robinson NJ, Picken A, Coopman K (2014) Low temperature cell pausing: an alternative short-term preservation method for use in cell therapies including stem cell applications. Biotechnol Lett 36:201–209CrossRefGoogle Scholar
  67. Robles V, Barobosa V, Herráez MP, Martínez-Páramo S, Cancela ML (2007) The antifreeze protein type I (AFP I) increases seabream (Sparus aurata) embryos tolerance to low temperatures. Theriogenology 68:284–289CrossRefGoogle Scholar
  68. Rubinsky B (2003) Principles of low temperature cell preservation. Heart Fail Rev 8:277–284CrossRefGoogle Scholar
  69. Rubinsky B, Arav A, Marrioli A, DeVries AL (1990) The effect of antifreeze glycopeptides on membrane potential changes at hypothermic temperatures. Biochem Biophys Res Commun 173:1369–1374CrossRefGoogle Scholar
  70. Rubinsky B, Arav A, Fletcher GL (1991) Hypothermic protection – a fundamental property of “antifreeze” proteins. Biochem Biophys Res Commun 180:566–571CrossRefGoogle Scholar
  71. Rubinsky B, Arav A, DeVries AL (1992) The cryoprotective effect of antifreeze glycoproteins from Antarctic fishes. Cryobiology 29:69–79CrossRefGoogle Scholar
  72. Rubinsky B, Arav A, Hong JS, Lee CY (1994) Freezing of mammalian livers with glycerol and antifreeze proteins. Biochem Biophys Res Commun 29:732–741CrossRefGoogle Scholar
  73. Rubinsky L, Raichman N, Lavee J, Frenk H, Ben-Jacob E, Bickler PE (2010) Antifreeze protein suppresses spontaneous neural activity and protects neurons from hypothermia/re-warming injury. Neurosci Res 67:256–259CrossRefGoogle Scholar
  74. Sazaki G, Zepeda S, Nakatsubo S, Yokoyama E, Furukawa Y (2010) Elementary steps at the surface of ice crystals visualized by advanced optical microscopy. Proc Natl Acad Sci U S A 107:19702–19707CrossRefGoogle Scholar
  75. Scott GK, Davies PL, Shears MA, Fletcher GL (1987) Structural variations in the alanine-rich antifreeze proteins of the pleuronectinae. Eur J Biochem 168:629–633CrossRefGoogle Scholar
  76. Scotter AJ, Marshall CB, Graham LA, Gilbert JA, Garnham CP, Davies PL (2006) The basis for hyperactivity of antifreeze proteins. Cryobiology 53:229–239CrossRefGoogle Scholar
  77. Sicheri F, Yang DSC (1995) Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375:427–431CrossRefGoogle Scholar
  78. Slaughter D, Fletcher GL, Ananthanarayanan VS, Hew CL (1981) Antifreeze proteins from the sea raven, Hemitripterus americanus. J Biol Chem 256:2022–2026Google Scholar
  79. Smallwood M, Worrall D, Byass L, Elias L, Ashford D, Doucet CJ, Holt C, Telford J, Lillford P, Bowles DJ (1999) Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota). Biochem J 340:385–391CrossRefGoogle Scholar
  80. Sönnichsen FD, Sykes BD, Chao H, Davies PL (1993) The nonhelical structure of antifreeze protein type III. Science 259:1154–1157CrossRefGoogle Scholar
  81. Sørensen TF, Ramløv H (2002) Maternal-fetal relations in antifreeze production in the eelpout Zoarces viviparus. Cryo Lett 23:183–190Google Scholar
  82. Steffen R, Krom RAF, Ferguson D, Ludwig J (1990) Comparison of University of Wisconsin (UW) and Euro-Collins (EC) preservation solutions in a rat liver transplant model. Transplant Int 3:133–136CrossRefGoogle Scholar
  83. Tablin F, Oliver AE, Walker NJ, Crowe LM, Crowe JH (1996) Membrane phase transition of intact human platelets: correlation with cold-induced activation. J Cell Phys 168:305–313CrossRefGoogle Scholar
  84. Tachibana Y, Fletcher GL, Fujitani N, Tsuda S, Monde K, Nishimura S-I (2004) Antifreeze glycoproteins: elucidation of the structural motifs that are essential for antifreeze activity. Angnew Chem Int Ed 43:856–862CrossRefGoogle Scholar
  85. Takamichi M, Nishimiya Y, Miura A, Tsuda S (2007) Effect of annealing time of an ice crystal on the activity of type III antifreeze protein. FEBS J 274:6469–6476CrossRefGoogle Scholar
  86. Takamichi M, Nishimiya Y, Miura A, Tsuda S (2009) Fully active QAE isoform confers thermal hysteresis activity on a defective SP isoform of type III antifreeze protein. FEBS J 276:1471–1479CrossRefGoogle Scholar
  87. Tomalty HE, Hamilton EF, Hamilton A, Kukai O, Allen T, Walker VK (2017) Kidney preservation at subzero temperatures using a novel storage solution and insect ice-binding proteins. Cryo Lett 38:100–107Google Scholar
  88. Tomczak MM, Hincha DK, Estrada SD, Wolkers WF, Crowe LM, Feeney RE, Tablin F, Crowe JH (2002) A mechanism for stabilization of membranes at low temperatures by an antifreeze protein. Biophys J 82:874–881CrossRefGoogle Scholar
  89. Tomczak MM, Marshall CB, Gilbert JA, Davies PL (2003) A facile method for determining ice recrystallization inhibition by antifreeze proteins. Biochm Biophys Res Commun 311:1041–1046CrossRefGoogle Scholar
  90. Tsuda S, Miura A (2002) Antifreeze proteins originating in fishes. US patent application No. 10,104Google Scholar
  91. Wang L, Duman JG (2005) Antifreeze proteins of the beetle Dendroides Canadensis enhance one another’s activities. Biochemistry 44:10305–10312CrossRefGoogle Scholar
  92. Yamashita Y, Miura R, Takemoto Y, Tsuda S, Kawahara H, Obata H (2003) Type II antifreeze protein from a mid-latitude freshwater fish, Japanese smelt (Hypomesus nipponensis). Biosci Biotechnol Biochem 67:461–466CrossRefGoogle Scholar
  93. Yarely M, Ramos L (2010a) Freezing equipment and operations. In: Guerrero-Legarreta I (ed) Handbook of poultry science and technology, vol 1. Wiley, Hoboken, pp 350–368Google Scholar
  94. Yarely M, Ramos L (2010b) Biology of cell survival in the cold: the basis for biopreservation of tissues and organs. In: Baust JG, Baust JM (eds) Advances in biopreservation. Taylor & Francis, London, pp 15–62Google Scholar
  95. Yeh Y, Feeney RH (1996) Antifreeze proteins: structures and mechanisms of function. Chem Rev 96:601–618CrossRefGoogle Scholar
  96. Yu SO, Brown A, Middleton AJ, Tomczak MM, Walker VK, Davies PL (2010) Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis. Cryobiology 61:327–334CrossRefGoogle Scholar
  97. Zhang W, Laursen RA (1999) Artificial antifreeze polypeptides: alpha-helical peptides with KAAK motifs have antifreeze and ice crystal morphology modifying properties. FEBS Lett 455:372–376CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)SapporoJapan

Personalised recommendations