Advertisement

Mechanisms of Maturation and Germination in Crop Seeds Exposed to Environmental Stresses with a Focus on Nutrients, Water Status, and Reactive Oxygen Species

  • Yushi Ishibashi
  • Takashi Yuasa
  • Mari Iwaya-Inoue
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1081)

Abstract

Environmental stresses can reduce crop yield and quality considerably. Plants protect cell metabolism in response to abiotic stresses at all stages of their life cycle, including seed production. As the production of vigorous seeds is important to both yield and crop growth, we analyzed causes of yield loss and reduced grain quality in staple crops exposed to environmental stresses such as drought and temperature extremes, with a focus on the remobilization of nutrients and water status during seed filling. Because water is one of the factors that limit seed development, seeds must have mechanisms that allow them to withstand water loss during seed maturation. In addition, analysis of the effects of reactive oxygen species (ROS) on transcription regulation and signaling should help to elucidate the regulation of seed dormancy and germination. In this review, we focus on nutrient remobilization, water mobility, plant hormones (gibberellins, abscisic acid, and ethylene), and ROS in sink and source organs and describe how rice, wheat, barley, soybean, and cowpea plants control seed maturation and germination under environmental stresses.

Keywords

Seed-filling stage Remobilization of nutrient Dormancy Germination ROS Oxidative window ABA GA Physical states of water Environmental stress Preharvest sprouting Seed quality Cowpea (Vigna unguiculataSoybean (Glycine maxRice (Oryza sativaWheat (Triticum aestivumBarley (Hordeum vulgare

Abbreviations

ABA

Abscisic acid

AQP

Aquaporin

CAT

Catalase

CmACS1

1-Aminocyclopropane-1-carboxylate synthase

DAF

Days after flowering

GAMyb

GA Myb transcription factor

GAs

Gibberellins

GSS

Green stem syndrome

H2O2

Hydrogen peroxide

LEA

Late embryogenesis abundant

MRI

NMR imaging

NMR

Nuclear magnetic resonance

PHS

Preharvest sprouting

PIP

Plasma membrane intrinsic protein

PK

Protein kinase

PKABA

ABA-responsive protein kinase

ROS

Reactive oxygen species

SUT1

Sucrose transporter

T1

NMR spin-lattice relaxation time

T2

NMR spin-spin relaxation time

TIP

Tonoplast intrinsic protein

Notes

Acknowledgment

This work was supported by JSPS KAKENHI Grants Numbers JP16H04867 and JP16K14839 to M.I. I. and JP24780014 and JP16H06183 to Y.I.

References

  1. Abayomi YA, Afolabi ES, Aderolu MA (2000) Effects of water stress at different stages on growth, grain yield and seed quality of cowpea genotypes. NISEB J 1:87–97Google Scholar
  2. Adebooye OC, Singh V (2008) Physico-chemical properties of the flours and starches of two cowpea varieties (Vigna unguiculata (L.) Walp). Inno Food Sci Emerg Technol 9:92–100CrossRefGoogle Scholar
  3. Andre C, Froehlich JE, Moll MR, Benning C (2007) A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. Plant Cell 19:2006–2022PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bahin E, Bailly C, Sotta B, Kranner I, Corbineau F, Leymarie J (2011) Crosstalk between reactive oxygen species and hormonal signaling pathways regulates grain dormancy in barley. Plant Cell Environ 34:980–993PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bailey PC, McKibbin RS, Lenton JR, Holdsworth MJ, Flintham JE, Gale MD (1999) Genetic map locations for orthologous Vp1 genes in wheat and rice. Theor Appl Genet 98:281–284CrossRefGoogle Scholar
  6. Bailly C, Benamar A, Corbineau F, Come D (1998) Free radical scavenging as affected by accelerated ageing and subsequent priming in sunflower seeds. Physiol Plant 104:646–652CrossRefGoogle Scholar
  7. Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C R Biol 331:806–814PubMedCrossRefPubMedCentralGoogle Scholar
  8. Barba-Espín G, Diaz-Vivancos P, Clemente-Moreno MJ, Albacete A, Faize L, Faize M, Pérez-Alfocea F, Hernandez JA (2010) Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings. Plant Cell Environ 33:981–994PubMedCrossRefPubMedCentralGoogle Scholar
  9. Battaglia M, Covarrubias AA (2013) Late Embryogenesis Abundant (LEA) proteins in legumes. Front Plant Sci 4:190PubMedPubMedCentralCrossRefGoogle Scholar
  10. Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L (2008) Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling. Arabidopsis Book 6:e0113PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bazin J, Batlla D, Dussert S, Maarouf-Bouteau HE, Bailly C (2011) Role of relative humidity, temperature, and water status in dormancy alleviation of sunflower seeds during dry after-ripening. J Exp Bot 62:627–640PubMedCrossRefPubMedCentralGoogle Scholar
  12. Becker C, Fischer J, Nong VH, Munitz K (1994) PCR cloning and expression analysis of cDNAs encoding cysteine proteinases from germinating seeds of Vicia sativa L. Plant Mol Biol 26:1207–1212PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bellaloui N, Hu Y, Mengistu A, Kassem MA, Abel CA (2013) Effects of foliar boron application on seed composition, cell wall boron, and seed 15δN and 13δC isotopes in water-stressed soybean plants. Front Plant Sci 4:270PubMedPubMedCentralGoogle Scholar
  14. Béré E, Lahbib K, Merceron B, Fleurat-Lessard P, Boughanmi NG (2017) α-TIP aquaporin distribution and size tonoplast variation in storage cells of Vicia faba cotyledons at seed maturation and germination stages. J Plant Physiol 216:145–151PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bethke PC, Schuurink R, Jones RL (1997) Hormonal signaling in cereal aleurone. J Exp Bot 48:1337–1356CrossRefGoogle Scholar
  16. Bewley D (1997) Seed germination and dormancy. Plant Cell 9:1055–1066PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bewley JD, Black M (1994) Seeds: physiology of development and germination. Plenum Press, New York.  https://doi.org/10.1007/978-1-4899-1002-8 CrossRefGoogle Scholar
  18. Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (eds) (2013) Seeds: physiology of development, germination and dormancy, 3rd edn. Springer, New YorkGoogle Scholar
  19. Brevedan RE, Egli DB (2003) Short periods of water stress during seed filling, leaf senescence, and yield of soybean. Crop Sci 43:2083–2088CrossRefGoogle Scholar
  20. Buitink J, Leprince O (2004) Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology 48:215–228PubMedPubMedCentralCrossRefGoogle Scholar
  21. Buitink J, Leprince O (2008) Intracellular glasses and seed survival in the dry state. C R Biol 331:788–795PubMedCrossRefPubMedCentralGoogle Scholar
  22. Buitink J, Leger JJ, Guisle I, Vu BL, Wuillème S, Lamirault G, Bars AL, Meur NL, Becker A, Küster H, Leprince O (2006) Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation sensitive to desiccation-tolerant stages in Medicago truncatula seeds. Plant J 47:735–750PubMedCrossRefPubMedCentralGoogle Scholar
  23. Caliskan M, Cuming AC (1998) Spatial specificity of H2O2-generating oxalate oxidase gene expression during wheat embryo germination. Plant J 15:165–171PubMedCrossRefPubMedCentralGoogle Scholar
  24. Chaumont F, Tyerman SD (2017) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164:1600–1618CrossRefGoogle Scholar
  25. Chien CT, Lin TP (1994) Mechanism of hydrogen peroxide in improving the germination of Cinnamomum camphora seed. Seed Sci Technol 22:231–236Google Scholar
  26. Cho MJ, Wong JH, Marx C, Jiang W, Lemaux PG, Buchanan BB (1999) Overexpression of thioredoxin h leads to enhanced activity of starch debranching enzyme (pullulanase) in barley grain. Proc Natl Acad Sci U S A 96:14641–14646PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chono M, Honda I, Shinoda S, Kushiro T, Kamiya Y, Nambara E, Kawakami N, Kaneko S, Watanabe Y (2006) Field studies on the regulation of abscisic acid content and germinability during grain development of barley: molecular and chemical analysis of pre-harvest sprouting. J Exp Bot 57:2421–2434PubMedCrossRefPubMedCentralGoogle Scholar
  28. Ciampitti IA (2016) Growth and development. In: Soybean production handbook. Kansas State University, p 48 https://www.bookstore.ksre.ksu.edu/pubs/c449.pdf. Accessed 24 Nov 2017
  29. Citadin CT, Ibrahim AB, Aragão FJL (2011) Genetic engineering in cowpea (Vigna unguiculata): history, status and prospects. GM Crops 2:144–149PubMedCrossRefPubMedCentralGoogle Scholar
  30. Corbineau F, Xia Q, Bailly C, El-Maarouf-Bouteau H (2014) Ethylene, a key factor in the regulation of seed dormancy. Front Plant Sci 5:539PubMedPubMedCentralCrossRefGoogle Scholar
  31. Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599PubMedCrossRefGoogle Scholar
  32. Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165PubMedPubMedCentralCrossRefGoogle Scholar
  33. D’Haeze W, De Rycke R, Mathis R et al (2003) Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume. Proc Natl Acad Sci USA 100:11789–11794PubMedCrossRefPubMedCentralGoogle Scholar
  34. Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703:93–109PubMedCrossRefPubMedCentralGoogle Scholar
  35. Delahaie J, Hundertmark M, Bove J, Leprince O, Rogniaux H, Buitink J (2013) LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance. J Exp Bot 64:4559–4573PubMedPubMedCentralCrossRefGoogle Scholar
  36. Devic M, Roscoe T (2016) Seed maturation: simplification of control networks in plants. Plant Sci 252:335–346PubMedCrossRefPubMedCentralGoogle Scholar
  37. Dornbos D, Mullen R (1992) Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature. J Am Oil Chem Soc 69:228–231CrossRefGoogle Scholar
  38. Du YL, Wang ZY, Fan JW, Turner NC, He J, Wang T, Li FM (2013) Exogenous abscisic acid reduces water loss and improves antioxidant defence, desiccation tolerance and transpiration efficiency in two spring wheat cultivars subjected to a soil water deficit. Funct Plant Biol 40:494–506CrossRefGoogle Scholar
  39. Eck HV, Mathers AC, Musick JT (1987) Plant water stress at various growth stages and growth and yield of soybeans. Field Crop Res 17:1–16CrossRefGoogle Scholar
  40. Egashira C, Yamauchi T, Miyamoto Y, Yuasa T, Ishibashi Y, Iwaya-Inoue M (2016) Physiological responses of cowpea (Vigna unguiculata (L.) Walp) to drought stress during the pod-filling stage. Cryobiol Cryotechnol 62:69–75Google Scholar
  41. Egashira C, Miura N, Yamauchi T, Miyamoto Y, Hashiguchi Y, Matsushima Y, Yuasa T, Ishibashi Y, Iwaya-Inoue M (2017) Effects of drought stress on water-related parameters and photoassimilate translocation in cowpea (Vigna unguiculata (l.) walp) at pod-filling stage. Proceedings of AFELiSA 2017 172Google Scholar
  42. El-Maarouf-Bouteau H, Bailly C (2008) Oxidative signaling in seed germination and dormancy. Plant Signal Behav 3:175–182PubMedPubMedCentralCrossRefGoogle Scholar
  43. El-Maarouf-Bouteau H, Meimoun P, Job C, Job D, Bailly C (2013) Role of protein and mRNA oxidation in seed dormancy and germination. Front Plant Sci 4:77PubMedPubMedCentralCrossRefGoogle Scholar
  44. El-Maarouf-Bouteau H, Sajjad Y, Bazin J, Langlade N, Cristescu SM, Balzergue S, Baudouin E, Bailly C (2015) Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant Cell Environ 38:364–374PubMedCrossRefGoogle Scholar
  45. Fang J, Chu C (2008) Abscisic acid and the pre-harvest sprouting in cereals. Plant Signal Behav 3:1046–1048PubMedPubMedCentralCrossRefGoogle Scholar
  46. FAO (2017) Food outlook 2017. Biannual report on global food markets. http://www.fao.org/3/a-i7343e.pdf. Accessed 9 Jan 2018
  47. Finch-Savage WE, Bassel GW (2016) Seed vigour and crop establishment: extending performance beyond adaptation. J Exp Bot 67:567–591PubMedCrossRefGoogle Scholar
  48. Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415PubMedCrossRefGoogle Scholar
  49. Fontaine O, Huault C, Pavis N, Billard JP (1994) Dormancy breakage of Hordeum vulgare seeds: effects of hydrogen peroxide and scarification on glutathione level and glutathione reductase activity. Plant Physiol Biochem 2:677–683Google Scholar
  50. Frederick JR, Camp CR, Bauer PJ (2001) Drought stress effects on branches and main stem seed yield and yield components of determinate soybean. Crop Sci 41:759–763CrossRefGoogle Scholar
  51. Funaba M, Ishibashi Y, Molla AH, Iwanami K, Iwaya-Inoue M (2006) Influence of low/high temperature on water status on developing and maturing rice grains. Plant Prod Sci 9:347–354CrossRefGoogle Scholar
  52. Gangola MP, Jaiswal S, Kannan U, Gaur PM, Båga M, Chibbar RN (2016) Galactinol synthase enzyme activity influences raffinose family oligosaccharides (RFO) accumulation in developing chickpea (Cicer arietinum L.) seeds. Phytochemistry 125:88–98PubMedCrossRefPubMedCentralGoogle Scholar
  53. Garnczarska M, Zalewski T, Kempka M (2007) Changes in water status and water distribution in maturing lupin seeds studied by MR imaging and NMR spectroscopy. J Exp Bot 58:3961–3969PubMedCrossRefPubMedCentralGoogle Scholar
  54. Gattolin S, Sorieul M, Frigerio L (2011) Mapping of tonoplast intrinsic proteins in maturing and germinating Arabidopsis seeds reveals dual localization of embryonic TIPs to the tonoplast and plasma membrane. Mol Plant 4:180–189PubMedCrossRefPubMedCentralGoogle Scholar
  55. Gibson SI (2005) Control of plant development and gene expression by sugar signaling. Curr Opin Plant Biol 8:93–102PubMedCrossRefPubMedCentralGoogle Scholar
  56. Gilroy S (1996) Calcium-dependent and -independent signal transduction in the barley aleurone. Plant Cell 8:2193–2209PubMedPubMedCentralCrossRefGoogle Scholar
  57. Goufo P, Moutinho-Pereira JM, Jorge TF, Correia CM, Oliveira MR, Rosa EAS, António C, Trindade H (2017) Cowpea (Vigna unguiculata L. Walp.) metabolomics: osmoprotection as a physiological strategy for drought stress resistance and improved yield. Front Plant Sci 8:586PubMedPubMedCentralCrossRefGoogle Scholar
  58. Gubler F, Millar A, Jacobsen JV (2005) Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8:183–187PubMedCrossRefPubMedCentralGoogle Scholar
  59. Guo H, Zhang H, Li Y, Ren J, Wang X, Niu H, Yin J (2011) Identification of changes in wheat (Triticum aestivum L.) seeds proteome in response to anti–trx s gene. PLoS One 6:e22255PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hall AE (2004) Breeding for adaptation to drought and heat in cowpea. Eur J Agron 21:447–454CrossRefGoogle Scholar
  61. Hilhorst HWM, Finch-Savage WE, Buitink J, Bolingue W, Leubner-Metzger G (2010) Dormancy in plant seeds. In: Lubzens E, Cerda J, Clark M (eds) Topics in current genetics volume 21. Dormancy and resistance in harsh environments. Springer, Berlin, pp 43–67CrossRefGoogle Scholar
  62. Hill CB, Bowen CR, Hartman GL (2013) Effect of fungicide application and cultivar on soybean green stem disorder. Plant Dis 97:1212–1220CrossRefGoogle Scholar
  63. Himi E, Maekawa M, Miura H, Noda K (2011) Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat. Theor App Genet 122:1561–1576CrossRefGoogle Scholar
  64. Hite DR, Auh C, Scandalios JG (1999) Catalase activity and hydrogen peroxide levels are inversely correlated in maize scutella during seed germination. Redox Rep 4:29–34PubMedCrossRefPubMedCentralGoogle Scholar
  65. Hobbs HA, Hill CB, Grau CR, Koval NC, Wang Y, Pedersen WL, Domier LL, Hartman GL (2006) Green stem disorder of soybean. Plant Dis 90:513–518CrossRefGoogle Scholar
  66. Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438PubMedCrossRefPubMedCentralGoogle Scholar
  67. Horigane AK, Engelaar WMHG, Maruyama S, Yoshida M, Okubo A, Nagata T (2001) Visualisation of moisture distribution during development of rice caryopses (Oryza sativa L.) by nuclear magnetic resonance microimaging. Cereal Sci 33:105–114CrossRefGoogle Scholar
  68. Imabayashi S, Ogata T (1998) Preharvest sprouting of extremely early-maturing rice cultivars with high palatability and its relation to falling number value. Jpn J Crop Sci 67:236–240CrossRefGoogle Scholar
  69. Imamura M, Egashira C, Ishibashi Y, Iwaya-Inoue M (2010) Characteristics of water-related parameters of roots, leaves and hypocotyls in cowpea under drought stress compared with common bean. Cryobiol Cryotechnol 56:83–90Google Scholar
  70. Ishibashi Y, Iwaya-Inoue M (2006) Ascorbic acid suppresses germination and dynamic states of water in wheat seeds. Plant Prod Sci 9:172–175CrossRefGoogle Scholar
  71. Ishibashi Y, Yamamoto K, Tawaratsumida T, Yuasa T, Iwaya-Inoue M (2008) Hydrogen peroxide scavenging regulates germination ability during wheat (Triticum aestivum L.) seed maturation. Plant Sig Behav 3:183–188CrossRefGoogle Scholar
  72. Ishibashi Y, Tawaratsumida T, Zheng SH, Yuasa T, Iwaya-Inoue M (2010) NADPH oxidases act as key enzyme on germination and seedling growth in barley (Hordeum vulgare L.). Plant Prod Sci 13:45–52CrossRefGoogle Scholar
  73. Ishibashi Y, Tawaratsumida T, Kondo K, Kasa S, Sakamoto M, Aoki N, Zheng SH, Yuasa T, Iwaya-Inoue M (2012) Reactive oxygen species are involved in gibberellin/abscisic acid signaling in barley aleurone cells. Plant Physiol 158:1705–1714PubMedPubMedCentralCrossRefGoogle Scholar
  74. Ishibashi Y, Koda Y, Zheng SH, Yuasa T, Iwaya-Inoue M (2013) Regulation of soybean seed germination through ethylene production in response to reactive oxygen species. Ann Bot 111:95–102PubMedCrossRefPubMedCentralGoogle Scholar
  75. Ishibashi Y, Okamura K, Phan T, Miyazaki M, Yuasa T, Iwaya-Inoue M (2014) Expression of rice sucrose transporter gene OsSUT1 in sink and source organs shaded during grain filling may affect grain yield and quality. Environ Exp Bot 97:49–54CrossRefGoogle Scholar
  76. Ishibashi Y, Kasa S, Sakamoto M, Aoki N, Kai K, Yuasa T, Hanada A, Yamaguchi S, Iwaya-Inoue M (2015) A role for reactive oxygen species produced by NADPH oxidases in the embryo and aleurone cells in barley seed germination. PLoS One 10:e 0143173CrossRefGoogle Scholar
  77. Ishibashi Y, Aoki N, Kasa S, Sakamoto M, Kai K, Tomokiyo R, Watabe G, Yuasa T, Iwaya-Inoue M (2017) The interrelationship between abscisic acid and reactive oxygen species plays a key role in barley seed dormancy and germination. Front Plant Sci 8:275PubMedPubMedCentralCrossRefGoogle Scholar
  78. Ishida N, Koizumi M, Kano H (2000) The NMR microscope: a unique and promising tool for plant science. Ann Bot 86:259–278CrossRefGoogle Scholar
  79. Ishimaru T, Horigane AK, Ida M, Iwasawa N, San-oh YA, Nakazono M, Nishizawa NK, Masumura T, Kondo M, Yoshida M (2009) Formation of grain chalkiness and changes in water distribution in developing rice caryopses grown under high-temperature stress. J Cereal Sci 50:166–174CrossRefGoogle Scholar
  80. Islam MM, Ishibashi Y, Nakagawa ACS, Tomita Y, Zhao X, Iwaya-Inoue M, Arima S, Zheng SH (2017) Nitrogen manipulation affects leaf senescence during late seed filling in soybean. Acta Physiol Plant 39:42CrossRefGoogle Scholar
  81. Iturriaga G (2008) The LEA proteins and trehalose loving couple: a step forward in anhydrobiotic engineering. Biochem J 410:e1–e2PubMedCrossRefPubMedCentralGoogle Scholar
  82. Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2000) A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol 123:553–562PubMedPubMedCentralCrossRefGoogle Scholar
  83. Iwaya-Inoue M, Kumamoto Y, Watanabe G (2001) Ratio changes in Lorentzian/Gaussian curves determined by 1H-NMR reflect seed dehydration. Cryobiol Cryotechnol 47:51–58Google Scholar
  84. Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol 138:790–802PubMedPubMedCentralCrossRefGoogle Scholar
  85. Jones JT, Mullet JE (1995) A salt-inducible and dehydration-inducible pea gene, Cyp15a, encodes a cell wall protein with sequence similarity to cysteine proteases. Plant Mol Biol 28:1055–1065PubMedCrossRefPubMedCentralGoogle Scholar
  86. Kaneko A, Noguchi E, Ishibashi Y, Yuasa T, Iwaya-Inoue M (2013) Sucrose starvation signal mediates induction of autophagy- and amino acid catabolism-related genes in cowpea seedling. Am J Plant Sci 4:647–653CrossRefGoogle Scholar
  87. Kaneko K, Sasaki M, Kuribayashi N, Suzuki H, Sasuga Y, Shiraya T, Inomata T, Itoh K, Baslam M, Mitsui T (2016) Proteomic and glycomic characterization of rice chalky grains produced under moderate and high-temperature conditions in field system. Rice 9:26PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kashiwakura Y, Kobayashi D, Jikumaru Y, Takebayashi Y, Nambara E, Seo M, Kamiya Y, Kushiro T, Kawakami N (2016) Highly sprouting-tolerant wheat grain exhibits extreme dormancy and cold imbibition-resistant accumulation of abscisic acid. Plant Cell Physiol 57:715–732PubMedCrossRefPubMedCentralGoogle Scholar
  89. Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, Noda T, Ohsumi Y (1999) Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol 147:435–446PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kockenberger W, Pope JM, Xia Y, Jeffrey KR, Komor E, Callaghan PT (1997) A non-invasive measurement of phloem and xylem water flow in castor bean seedlings by nuclear magnetic resonance microimaging. Planta 201:53–63CrossRefGoogle Scholar
  91. Koizumi M, Yamaguchi-Shinozaki K, Tsuji H, Shinozaki K (1993) Structure and expression of two genes that encode distinct drought inducible cysteine proteinases in Arabidopsis thaliana. Gene 129:175–182PubMedCrossRefPubMedCentralGoogle Scholar
  92. Krishnan P, Singh R, Verma APS, Joshi DK, Singh S (2014) Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions. Biochem Biophys Res Commun 444:485–490PubMedCrossRefPubMedCentralGoogle Scholar
  93. Kunert KJ, Vorster BJ, Fenta BA, Kibido T, Dionisio G, Foyer CH (2016) Drought stress responses in soybean roots and nodules. Front Plant Sci 7:1015PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lariguet P, Ranocha P, De Meyer M, Barbier O, Penel C, Dunand C (2013) Identification of a hydrogen peroxide signalling pathway in the control of light-dependent germination in Arabidopsis. Planta 238:381–395PubMedCrossRefPubMedCentralGoogle Scholar
  95. Lee YP, Baek KH, Lee HS, Kwak SS, Bang JW, Kwon SY (2010) Tobacco seeds simultaneously over-expressing Cu/Zn-superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions. J Exp Bot 61:2499–2506PubMedPubMedCentralCrossRefGoogle Scholar
  96. Leprince O, Walters-Vertucci C (1995) A calorimetric study of the glass transition behaviors in axes of bean seeds with relevance to storage stability. Plant Physiol 109:1471–1481PubMedPubMedCentralCrossRefGoogle Scholar
  97. Leprince O, Pellizzaro A, Berriri S, Buitink J (2017) Late seed maturation: drying without dying. J Exp Bot 68:827–841PubMedPubMedCentralGoogle Scholar
  98. Li YC, Ren J, Cho MJ, Zhou SM, Kim YB, Guo HX, Wong JH, Niu HB, Kim HK, Morigasaki S, Lemaux PG, Frick OL, Yin J, Buchanan BB (2009) The level of expression of thioredoxin is linked to fundamental properties and applications of wheat seeds. Mol Plant 2:430–441PubMedCrossRefPubMedCentralGoogle Scholar
  99. Ling H, Zeng X, Guo S (2017) Functional insights into the late embryogenesis abundant (LEA) protein family from Dendrobium officinale (Orchidaceae) using an Escherichia coli system. Sci Rep 2017:1–9Google Scholar
  100. Lisle AJ, Martin M, Fitzgerald MA (2000) Chalky and translucent rice grains differ in starch composition and structure and cooking properties. Cereal Chem J 77:627–632CrossRefGoogle Scholar
  101. Liu Y, Bassham DC (2012) Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol 63:215–237PubMedCrossRefPubMedCentralGoogle Scholar
  102. Liu Y, Ye N, Liu R, Chen M, Zhang J (2010) H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J Exp Bot 61:2979–2990PubMedPubMedCentralCrossRefGoogle Scholar
  103. Liu C, Ding F, Hao F, Yu M, Lei H, Wu X, Zhao Z, Guo H, Yin J, Wang Y, Tang H (2016) Reprogramming of seed metabolism facilitates pre-harvest sprouting resistance of wheat. Sci Rep 6:20593PubMedPubMedCentralCrossRefGoogle Scholar
  104. Ma S, Quist TM, Ulanov A, Joly R, Bohnert HJ (2004) Loss of TIP1;1 aquaporin in Arabidopsis leads to cell and plant death. Plant J 40:845–859PubMedCrossRefPubMedCentralGoogle Scholar
  105. Ma Z, Marsolais F, Bykova NV, Igamberdiev AU (2016) Nitric oxide and reactive oxygen species mediate metabolic changes in barley seed embryo during germination. Front Plant Sci 7:138PubMedPubMedCentralGoogle Scholar
  106. Manfre AJ, LaHatte GA, Climer CR, Marcotte WR Jr (2009) Seed dehydration and the establishment of desiccation tolerance during seed maturation is altered in the Arabidopsis thaliana mutant atem6-1. Plant Cell Physiol 50:243–253PubMedCrossRefPubMedCentralGoogle Scholar
  107. Mao Z, Sun W (2015) Arabidopsis seed-specific vacuolar aquaporins are involved in maintaining seed longevity under the control of ABSCISIC ACID INSENSITIVE 3. J Exp Bot 66:4781–4794PubMedPubMedCentralCrossRefGoogle Scholar
  108. Mares DJ, Mrva K (2014) Wheat grain preharvest sprouting and late maturity alpha-amylase. Planta 240:1167–1178PubMedCrossRefPubMedCentralGoogle Scholar
  109. Maurel C, Boursiac Y, Luu D-T, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95:1321–1358PubMedCrossRefPubMedCentralGoogle Scholar
  110. Melkus G, Rolletschek H, Fuchs J, Radchuk V, Grafahrend-Belau E, Sreenivasulu N, Rutten T, Weier D, Heinzel N, Schreiber F, Altmann T, Jakob PM, Borisjuk L (2011) Dynamic 13C/1H NMR imaging uncovers sugar allocation in the living seed. Plant Biotechnol J 9:1022–1037PubMedCrossRefPubMedCentralGoogle Scholar
  111. MEXT (2017) Standard tables of food composition in Japan -2015- Seventh Revised Version http://www.mext.go.jp/en/policy/science_technology/policy/title01/detail01/sdetail01/sdetail01/1385122.htm. Accessed 9 Jan 2018
  112. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498PubMedCrossRefPubMedCentralGoogle Scholar
  113. Miyazaki M, Araki M, Okamura K, Ishibashi Y, Yuasa T, Iwaya-Inoue M (2013) Assimilate translocation and expression of sucrose transporter, OsSUT1, contribute to high-performance ripening under heat stress in the heat-tolerant rice cultivar Genkitsukushi. J Plant Physiol 170:1579–1584PubMedCrossRefPubMedCentralGoogle Scholar
  114. Morita S, Yonemaru J, Takanashi J (2005) Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Ann Bot 95:695–701PubMedPubMedCentralCrossRefGoogle Scholar
  115. Muchero W, Ehlers JD, Roberts PA (2008) Seedling stage drought-induced phenotypes and drought-responsive genes in diverse cowpea genotypes. Crop Sci 4:541–552CrossRefGoogle Scholar
  116. Murase N, Watanabe T (1989) Nuclear magnetic relaxation studies of the compartmentalized water in crosslinked polymer gels. Magn Reson Med 9:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  117. Nakagawa ACS, Itoyama H, Ariyoshi Y, Ario N, Tomita Y, Kondo Y, Iwaya-Inoue M, Ishibashi Y (2018) Drought stress during soybean seed filling affects storage compounds through regulation of lipid and protein metabolism. Acta Physiol. Plant. 40:111Google Scholar
  118. Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165–178PubMedCrossRefPubMedCentralGoogle Scholar
  119. Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y (2010) Abscisic acid and the control of seed dormancy and germination. Seed Sci Res 20:55–67CrossRefGoogle Scholar
  120. Nang MPSH, Tanigawa T, Ishibashi Y, Yuasa T, Iwaya-Inoue M (2008) Relationship of water content and dry weight to autophagy-related gene expression in maturing seeds of soybean. Cryobiol Cryotechnol 54:135–142Google Scholar
  121. Nang MPSH, Yuasa T, Ishibashi Y, Tanigawa H, Okuda M, Zheng S-H, Iwaya-Inoue M (2011) Leaf senescence of soybean at reproductive stage is associated with induction of autophagy-related genes, GmATG8c, GmATG8i and GmATG4. Plant Prod Sci 14:141–147CrossRefGoogle Scholar
  122. Nonogaki H, Bassel GW, Bewley JD (2010) Germination – still a mystery. Plant Sci 179:574–581CrossRefGoogle Scholar
  123. Noodén LD, Guiamét JJ, John I (1997) Senescence mechanisms. Physiol Plant 101:746–753CrossRefGoogle Scholar
  124. Ogawa K, Iwabuchi M (2001) A mechanism for promoting the germination of Zinnia elegans seeds by hydrogen peroxide. Plant Cell Physiol 42:286–291PubMedCrossRefPubMedCentralGoogle Scholar
  125. Ogbonnaya CI, Sarr B, Brou C, Diouf O, Diop NN, Roy MH (2003) Selection of cowpea genotypes in hydroponics, pots and field for drought tolerance. Crop Sci 43:1114–1120CrossRefGoogle Scholar
  126. Oracz K, El-Maarouf-Bouteau H, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism of seed dormancy alleviation. Plant J 50:452–465PubMedCrossRefPubMedCentralGoogle Scholar
  127. Osonubi O (1985) Responses of cowpeas (Vigna unguiculata (L.) Walp.) to progressive soil drought. Oecologia 66:554–557PubMedCrossRefPubMedCentralGoogle Scholar
  128. Pate JS, Peoples MB, Atkins CA (1983) Post-anthesis economy of carbon in a cultivar of cowpea. J Exp Bot 34:544–562CrossRefGoogle Scholar
  129. Phan TTT, Ishibashi Y, Miyazaki M, Tran HT, Okamura K, Tanaka S, Nakamura J, Yuasa T, Iwaya-Inoue M (2013) High temperature-induced repression of the rice sucrose transporter (OsSUT1) and starch synthesis-related genes in sink and source organs at milky ripening stage causes chalky grains. J Agron Crop Sci 199:178–188CrossRefGoogle Scholar
  130. Pielot R, Kohl S, Manz B, Rutten T, Weier D, Tarkowská D, Rolčík J, Strnad M, Volke F, Weber H, Weschke W (2015) Hormone-mediated growth dynamics of the barley pericarp as revealed by magnetic resonance imaging and transcript profiling. J Exp Bot 66:6927–6943PubMedPubMedCentralCrossRefGoogle Scholar
  131. Pietrzak LN, Frégeau-Reid J, Chatson B, Blackwell B (2002) Observations on water distribution in soybean seed during hydration processes using nuclear magnetic resonance imaging. Can J Plant Sci 82:513–519CrossRefGoogle Scholar
  132. Pottier FM, Masclaux-Daubresse C, Yoshimoto K, Thomine S (2014) Autophagy as a possible mechanism for micronutrient remobilization from leaves to seeds. Front Plant Sci 5:11PubMedPubMedCentralCrossRefGoogle Scholar
  133. Pu Y, Hallac B, Ragauskas AJ (2013) Plant biomass characterization: application of solution- and solid-state NMR spectroscopy. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, 1st edn. Wiley, ChichesterCrossRefGoogle Scholar
  134. Puntarulo S, Galleano M, Sanchez RA, Boveris A (1991) Superoxide anion and hydrogen peroxide metabolism in soybean embryonic axes during germination. Biochim Biophys Acta 1074:277–283PubMedCrossRefPubMedCentralGoogle Scholar
  135. Quirino BF, Noh YS, Himelblau E, Amasino RM (2000) Molecular aspects of leaf senescence. Trends Plant Sci 5:278–282PubMedCrossRefPubMedCentralGoogle Scholar
  136. Ren S, Weeda S, Li H, Whitehead B, Guo Y, Atalay A, Parry J (2012) Salt tolerance in soybean WF-7 is partially regulated by ABA and ROS signaling and involves withholding toxic Cl− ions from aerial tissues. Plant Cell Rep 31:1527–1533PubMedCrossRefPubMedCentralGoogle Scholar
  137. Ren C, Liu J, Gong Q (2014) Functions of autophagy in plant carbon and nitrogen metabolism. Front Plant Sci 5:301PubMedPubMedCentralCrossRefGoogle Scholar
  138. Resurreccion AP, Hara T, Juliano BO, Yoshida S (1977) Effect of temperature during ripening on grain quality of rice. Soil Sci Plant Nutr 23:109–112CrossRefGoogle Scholar
  139. Righetti K, Vu JL, Pelletier S, Vu BL, Glaab E, Lalanne D, Pasha A, Patel RV, Provart NJ, Verdier J, Leprince O, Buitink J (2015) Inference of longevity-related genes from a robust coexpression network of seed maturation identifies regulators linking seed storability to biotic defense-related pathways. Plant Cell 27:2692–2708PubMedPubMedCentralGoogle Scholar
  140. Rodríguez MV, Barrero JM, Corbineau F, Gubler F, Benech-Arnold RL (2015) Dormancy in cereals (not too much, not so little): about the mechanisms behind this trait. Seed Sci Res 25:99–119CrossRefGoogle Scholar
  141. Rolletschek H, Melkus G, Grafahrend-Belau E, Fuch J, Heinzel N, Schreiber F, Jakob PM, Borisjuk L (2011) Combined noninvasive imaging and modeling approaches reveal metabolic compartmentation in the barley endosperm. Plant Cell 23:3041–3054PubMedPubMedCentralCrossRefGoogle Scholar
  142. Rolletschek H, Grafahrend-Belau E, Munz E, Radchuk V, Kartäusch R, Tschiersch H, Melkus G, Schreiber F, Jakob PM, Borisjuk L (2015) Metabolic architecture of the cereal grain and its relevance to maximize carbon use efficiency. Plant Physiol 169:1698–1713PubMedPubMedCentralGoogle Scholar
  143. Sakurai M, Furuki T, Akao K, Tanaka D, Nakahara Y, Kikawada T, Watanabe M, Okuda T (2008) Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki. Proc Natl Acad Sci U S A 105:5093–5098PubMedPubMedCentralCrossRefGoogle Scholar
  144. Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L (2008) Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J 54:608–620PubMedCrossRefPubMedCentralGoogle Scholar
  145. Sato J, Shiraiwa T, Sakashita M, Tsujimoto Y, Yoshida R (2007) The occurrence of delayed stem senescence in relation to trans-zeatin riboside level in the xylem exudate in soybeans grown under excess-wet and drought soil conditions. Plant Prod Sci 10:460–467CrossRefGoogle Scholar
  146. Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol 125:1591–1602PubMedPubMedCentralCrossRefGoogle Scholar
  147. Schuurmans JAMJ, van Dongen JT, Rutjens BPW, Boonman A, Pieterse CMJ, Borstlap AC (2003) Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies. Plant Mol Biol 53:655–667CrossRefGoogle Scholar
  148. Shorinola O, Bird N, Simmonds J, Berry S, Henriksson T, Jack P, Werner P, Gerjets T, Scholefield D, Balcárková B, Valárik M, Holdsworth MJ, Flintham J, Uauy C (2016) The wheat Phs-A1 pre-harvest sprouting resistance locus delays the rate of seed dormancy loss and maps 0.3 cM distal to the PM19 genes in UK germplasm. J Exp Bot 67:4169–4178PubMedPubMedCentralCrossRefGoogle Scholar
  149. Shu K, Liu XD, Xie Q, He ZH (2016) Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant 9:34–45PubMedPubMedCentralCrossRefGoogle Scholar
  150. Simsek S, Ohm JB, Lu H, Rugg M, William (2014) Effect of pre-harvest sprouting on physicochemical changes of proteins in wheat. J Sci Food 94:205–212CrossRefGoogle Scholar
  151. Sinclair TR, Messina CD, Beatty A, Samples M (2009) Assessment across the United States of the benefits of altered soybean drought traits. Agron J 102:475–482CrossRefGoogle Scholar
  152. Song YJ, Joo JH, Ryu HY, Lee JS, Bae YS, Nam KH (2007) Reactive oxygen species mediate IAA-induced ethylene production in mungbean (Vigna radiata L.) hypocotyls. J Plant Biol 50:18–23CrossRefGoogle Scholar
  153. Sreenivasulu N, Butardo VM Jr, Misra G, Cuevas RP, Anacleto R, Kavi Kishor PB (2015) Designing climate-resilient rice with ideal grain quality suited for high-temperature stress. J Exp Bot 66:1737–1748PubMedPubMedCentralCrossRefGoogle Scholar
  154. Sung JM, Jeng T (1994) Lipid peroxidation and peroxide-scavenging enzymes associated with accelerated aging of peanut seed. Physiol Plant 91:51–55CrossRefGoogle Scholar
  155. Suriyasak C, Harano K, Tanamachi K, Matsuo K, Tamada A, Iwaya-Inoue M, Ishibashi Y (2017) Reactive oxygen species induced by heat stress during grain filling of rice (Oryza sativa L.) are involved in occurrence of grain chalkiness. J Plant Physiol 216:52–57PubMedCrossRefGoogle Scholar
  156. Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:1–9CrossRefGoogle Scholar
  157. Takahashi H, Rai M, Kitagawa T, Morita S, Masumura T, Tanaka K (2004) Differential localization of tonoplast intrinsic proteins on the membrane of protein body type II and aleurone grain in rice seeds. Biosci Biotechnol Biochem 68:1728–1736PubMedCrossRefPubMedCentralGoogle Scholar
  158. Tanaka K, Onishi R, Miyazaki M, Ishibashi Y, Yuasa T, Iwaya-Inoue M (2009) Changes in NMR relaxation times of rice grains, kernel quality and physicochemical properties in relation to nucellar epidermis in heat-tolerant and -sensitive rice cultivars at the early ripening stage. Plant Prod Sci 12:185–192CrossRefGoogle Scholar
  159. Tanaka M, Ishibashi Y, Yuasa T, Iwaya-Inoue M (2012) Analysis of pre-harvest sprouting during seed maturation using 1H-NMR. Cryobiol Cryotechnol 58:87–91Google Scholar
  160. Tanaka S, Ario N, Nakagawa ACS, Tomita Y, Murayama N, Taniguchi T, Hamaoka N, Iwaya-Inoue M, Ishibashi (2017) Effects of light quality on pod elongation in soybean (Glycine max (L.) Merr.) and cowpea (Vigna unguiculata (L.) Walp.). Plant Sig Behav 12:e1327495CrossRefGoogle Scholar
  161. Tanamachi K, Miyazaki M, Matsuo K, Suriyasak C, Tamada A, Matsuyama K, Iwaya-Inoue M, Ishibashi Y (2016) Differential responses to high temperature during maturation in heat-stress-tolerant cultivars of Japonica rice. Plant Prod Sci 19:300–308CrossRefGoogle Scholar
  162. Thelen JJ, Ohlrogge JB (2002) Both antisense and sense expression of biotin carboxyl carrier protein isoform 2 inactivates the plastid acetyl-coenzyme A carboxylase in Arabidopsis thaliana. Plant J 32:419–431PubMedCrossRefPubMedCentralGoogle Scholar
  163. Tiedemann J, Schlereth A, Müntz K (2001) Differential tissue-specific expression of cysteine proteinases forms the basis for the fine-tuned mobilization of storage globulin during and after germination in legume seeds. Planta 212:728–738PubMedCrossRefPubMedCentralGoogle Scholar
  164. To A, Valon C, Savino G, Guilleminot J, Devic M, Giraudat J, Parcy F (2006) A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell 18:1642–1651PubMedPubMedCentralCrossRefGoogle Scholar
  165. Tunnacliffe A, Hincha DK, Leprince O, Macherel D (2010) LEA proteins: versatility of form and function. In: Lubzens E, Cerda J, Clark M (eds) Topics in current genetics. Volume 21 dormancy and resistance in harsh environments. Springer, Berlin, pp 91–108CrossRefGoogle Scholar
  166. van Duivenbooden N, Abdoussalam S, Mohamed AB (2002) Impact of climate change on agricultural production in the Sahel – part 2. Case study for groundnut and cowpea in Niger. Clim Chang 54:349–368CrossRefGoogle Scholar
  167. Wada H, Masumoto-Kubo C, Gholipour Y, Nonami H, Tanaka F, Erra-Balsells R, Tsutsumi K, Hiraoka K, Satoshi Morita S (2014) Rice chalky ring formation caused by temporal reduction in starch biosynthesis during osmotic adjustment under Foehn-induced dry wind. PLoS One 9:e110374PubMedPubMedCentralCrossRefGoogle Scholar
  168. Walters C, Wheeler LM, Grotenhuis JM (2005) Longevity of seeds stored in gene bank: species characteristics. Seed Sci Res 15:1–20CrossRefGoogle Scholar
  169. Watanabe T, Seo S, Sakai S (2001) Wound-induced expression of a gene for 1-aminocyclopropane-1-carboxylate synthase and ethylene production are regulated by both reactive oxygen species and jasmonic acid in Cucurbita maxima. Plant Physiol Biochem 39:121–127CrossRefGoogle Scholar
  170. Watanabe G, Ishibashi Y, Iwaya-Inoue M (2015) Ontogenetic changes of the water status and accumulated soluble compounds in developing and ripening mume (Prunus mume) fruit measured by 1H-NMR analysis. Adv Hortic Sci 29:3–12Google Scholar
  171. Weitbrecht K, Müller K, Leubner-Metzger G (2011) First of the mark: early seed germination. J Exp Bot 62:3289–3309PubMedCrossRefGoogle Scholar
  172. Weng L, Ziaei S, Elliott GD (2016) Effects of water on structure and dynamics of trehalose glasses at low water contents and its relationship to preservation outcomes. Sci Rep 6:28795PubMedPubMedCentralCrossRefGoogle Scholar
  173. Wojtyla L, Lechowska K, Kubala S, Garnczarska M (2016) Different modes of hydrogen peroxide action during seed germination. Front Plant Sci 7:66PubMedPubMedCentralCrossRefGoogle Scholar
  174. Wolfe J, Bryant G, Koster K (2002) What is ‘unfreezable water’, how unfreezable is it and how much is there? CryoLetters 23:157–166PubMedPubMedCentralGoogle Scholar
  175. Wong JH, Kim YB, Ren PH, Cai N, Cho MJ, Hedden P, Lemaux PG, Buchanan BB (2002) Transgenic barley grain overexpressing thioredoxin shows evidence that the starchy endosperm communicates with the embryo and the aleurone. Proc Natl Acad Sci U S A 99:16325–16330PubMedPubMedCentralCrossRefGoogle Scholar
  176. Xia LQ, Yang Y, Ma YZ, Chen XM, He ZH, Roder MS, Jones HD, Shewry PR (2009) What can the Viviparous-1 gene tell us about wheat pre-harvest sprouting? Euphytica 168:385–394CrossRefGoogle Scholar
  177. Xia T, Xiao D, Liu D, Chai W, Gong Q, Wang NN (2012) Heterologous expression of ATG8c from soybean confers tolerance to nitrogen deficiency and increases yield in Arabidopsis. PLoS One 7:e37217PubMedPubMedCentralCrossRefGoogle Scholar
  178. Yamakawa H, Hirose T, Kuroda M, Yamaguchi T (2007) Comprehensive expression profiling of rice grain filling related genes under high temperature using DNA microarray. Plant Physiol 144:258–277PubMedPubMedCentralCrossRefGoogle Scholar
  179. Ye NH, Zhu GH, Liu YG, Zhang AY, Li YX, Liu R, Shi L, Jia LG, Zhang JH (2012) Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. J Exp Bot 63:1809–1822PubMedCrossRefPubMedCentralGoogle Scholar
  180. Zhang W, Gruszewski HA, Chevone BI, Nessler CL (2008) An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol 146:431–440PubMedPubMedCentralCrossRefGoogle Scholar
  181. Zhang Y, Chen B, Xu Z, Shi Z, Chen S, Huang X, Chen J, Wang X (2014) Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination. J Exp Bot 65:3189–3200PubMedPubMedCentralCrossRefGoogle Scholar
  182. Zheng SH, Maeda A, Fukuyama M (2003) Lag period of pod growth in soybean. Plant Prod Sci 6:243–246CrossRefGoogle Scholar
  183. Zhou Y, Chu P, Chen H, Li Y, Liu J, Ding Y, Tsang EW, Jiang L, Wu K, Huang S (2012) Overexpression of Nelumbo nucifera metallothioneins 2a and 3 enhances seed germination vigor in Arabidopsis. Planta 235:523–537PubMedCrossRefPubMedCentralGoogle Scholar
  184. Zhou Y, Tang H, Cheng MP, Dankwa KO, Chen ZX, Li ZY, Gao S, Liu YX, Jiang QT, Lan XJ et al (2017) Genome-wide association study for pre-harvest sprouting resistance in a large germplasm collection of Chinese wheat landraces. Front Plant Sci 8:401PubMedPubMedCentralGoogle Scholar
  185. Zinsmeister J, Lalanne D, Terrasson E, Chatelain E, Vandecasteele C, Vu BL, Dubois-Laurent C, Geoffriau E, Signor CL, Dalmais M, Gutbrod K, Dörmann P, Gallardo K, Bendahmane A, Buitink J, Leprince O (2016) ABI5 is a regulator of seed maturation and longevity in legumes. Plant Cell 28:2735–2754PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yushi Ishibashi
    • 1
    • 2
  • Takashi Yuasa
    • 3
  • Mari Iwaya-Inoue
    • 1
    • 2
  1. 1.Faculty of AgricultureKyushu UniversityFukuokaJapan
  2. 2.Crop Science, Faculty of AgricultureKyushu UniversityFukuokaJapan
  3. 3.Faculty of AgricultureMiyazaki UniversityMiyazakiJapan

Personalised recommendations