Advertisement

Mechanisms Underlying Freezing and Desiccation Tolerance in Bryophytes

  • Daisuke Takezawa
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1081)

Abstract

Bryophytes are small land plants that have many morphological and physiological features different from vascular plants. With distinct water relations of bryophytes, many bryophyte species exhibit high degrees of tolerance to freezing and desiccation. The tolerance is sustained by the constitutive repair mechanism and the inducible mechanism regulated by environmental signals that provoke specific responses within the cells. Bryophyte cells sense changes in environmental conditions such as decreases in osmotic potential and temperature and that some responses are likely to be mediated by the stress hormone, abscisic acid. Due to their simple structures and high degrees of dehydration tolerance, bryophytes are useful for physiological studies on abiotic stress response and also for analysis of signal sensing and transduction of environmental signals. Furthermore, the basal phylogenetic position of bryophytes in land plants provides many insights into the evolutionary events for conquest of land by the ancestors of plants and subsequent diversification of species as well as their survival strategies in the terrestrial environment.

Keywords

Bryophytes Environmental stress Desiccation Freezing Abscisic acid 

Abbreviations

ABA

Abscisic acid

ABRE

ABA-responsive element

DMSO

Dimethyl sulfoxide

ELISA

Enzyme-linked immunosorbent assay

FW

Fresh weight

GC-MS

Gas chromatography-mass spectroscopy

LEA

Late embryogenesis abundant

MPa

Megapascal

PP2C

Protein phosphatase 2C

PSII

Photosystem II

PYR/PYL/RCAR

Pyrabactin resistance/pyrabactin resistance-like/regulatory component of ABA receptor

RH

Relative humidity

SnRK2

Sucrose non-fermenting1-related kinase2

Notes

Acknowledgment

This work was supported by JSPS and MEXT KAKENHI Grant Numbers 26291054, 16H01460 and 18H04774.

References

  1. Akter K, Kato M, Sato Y, Kaneko Y, Takezawa D (2014) Abscisic acid-induced rearrangement of intracellular structures associated with freezing and desiccation stress tolerance in the liverwort Marchantia polymorpha. J Plant Physiol 171:1334–1343PubMedCrossRefGoogle Scholar
  2. Balagurova N, Drozdov S, Grabovik S (1996) Cold and heat resistance of five species of Sphagnum. Ann Bot Finnici 33:33–37Google Scholar
  3. Beckett RP (1999) Partial dehydration and ABA induce tolerance to desiccation-induced ion leakage in the moss Atrichum androgynum. S Afr J Bot 65:212–279CrossRefGoogle Scholar
  4. Beckett RP, Csintalan Z, Tuba Z (2000) ABA treatment increases both the desiccation tolerance of photosynthesis, and non photochemical quenching in the moss Atrichum undulatum. Plant Ecol 151:65–71CrossRefGoogle Scholar
  5. Beike AK, Lang D, Zimmer AD, Wüst F, Trautmann D, Wiedemann G, Beyer P, Decker EL, Reski R (2015) Insights from the cold transcriptome of Physcomitrella patens: global specialization pattern of conserved transcriptional regulators and identification of orphan genes involved in cold acclimation. New Phytol 205:869–881PubMedCrossRefGoogle Scholar
  6. Bewley JD (1973) The effect of liquid nitrogen temperatures on protein and RNA synthesis in the moss Tortula ruralis. Plant Sci Lett 1:303–308CrossRefGoogle Scholar
  7. Bewley JD (1979) Physiological aspects of desiccation-tolerance. Annu Rev Plant Physiol 30:195–238CrossRefGoogle Scholar
  8. Bewley JD, Halmer P, Krochko JE, Winner WE (1978) Metabolism of a drought-tolerant and a drought-sensitive moss: respiration, ATP synthesis and carbohydrate status. In: Crowe JH, Clegg JS (eds) Dry biological systems. Academic, New York, pp 185–203CrossRefGoogle Scholar
  9. Bhyan SB, Minami A, Kaneko Y, Suzuki S, Arakawa K, Sakata Y, Takezawa D (2012) Cold acclimation in the moss Physcomitrella patens involves abscisic acid-dependent signaling. J Plant Physiol 169:137–145PubMedCrossRefGoogle Scholar
  10. Biebl R (1967) Temperaturresistenz tropischer Urwaldmoose. Flora 157:25–30Google Scholar
  11. Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, Adam C, Aki SS, Althoff F, Araki T, Arteaga-Vazquez MA et al (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171:287–304PubMedCrossRefGoogle Scholar
  12. Bramley-Alves J, King DH, Robinson SA, Miller RE (2014) Dominating the Antarctic environment: bryophytes in a time of change. Adv Photosynth Resp 37:309–324CrossRefGoogle Scholar
  13. Breuil-Sée A (1993) Recorded desiccation-survival times in bryophytes. J Bryol 17:679–684CrossRefGoogle Scholar
  14. Buitink J, Hoekstra FA, Leprince O (2002) Biochemistry and biophysics of tolerance systems. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CABI Publishing, Wallingford, pp 293–318CrossRefGoogle Scholar
  15. Burch J (2003) Some mosses survive cryopreservation without prior treatment. Bryologist 106:270–277CrossRefGoogle Scholar
  16. Burch J, Wilkinson T (2002) Cryopreservation of protonemata of Ditrichum cornubicum (paton) comparing the effectiveness of four cryoprotectant pretreatments. CryoLetters 23:197–208PubMedGoogle Scholar
  17. Cannone N, Corinti T, Malfasi F, Gerola P, Vianelli A, Vanetti I, Zaccara S, Convey P, Guglielmin M (2017) Moss survival through in situ cryptobiosis after six centuries of glacier burial. Sci Rep 7:4438PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen JR, Lu JJ, Liu R, Xiong XY, Wang TX, Chen SY, Guo LB, Wang HF (2010) DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China Rose (Rosa chinensis Jacq.). Plant Growth Regul 60:199–211CrossRefGoogle Scholar
  19. Christianson ML (1998) A simple protocol for cryopreservation of mosses. Bryologist 101:32–35CrossRefGoogle Scholar
  20. Clausen (1964) The tolerance of hepatics to desiccation and temperature. Bryologist 67:411–417CrossRefGoogle Scholar
  21. Clegg JS (2001) Cryptobiosis––a peculiar state of biological organization. Comp Biochem Physiol B Biochem Mol Biol 128:613–624PubMedCrossRefGoogle Scholar
  22. Cornish K, Zeevaart JAD (1986) Abscisic acid accumulation by in situ and isolated guard cells of Pisum sativum L. and Vicia faba L. in relation to water stress. Plant Physiol 81:1017–1021PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cove D (2005) The moss Physcomitrella patens. Annu Rev Genet 39:339–358PubMedCrossRefGoogle Scholar
  24. Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599PubMedCrossRefGoogle Scholar
  25. Cruz de Carvalho R, Branquinho C, Marques da Silva J (2011) Physiological consequences of desiccation in the aquatic bryophyte Fontinalis antipyretica. Planta 234:195–205CrossRefGoogle Scholar
  26. Cuming AC, Cho SH, Kamisugi Y, Graham H, Quatrano RS (2007) Microarray analysis of transcriptional responses to abscisic acid and osmotic, salt, and drought stress in the moss. New Phytol 176:275–287PubMedCrossRefGoogle Scholar
  27. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679PubMedCrossRefGoogle Scholar
  28. Daie J, Campbell WF (1981) Response of tomato plants to stressful temperatures. Plant Physiol 67:26–29PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dilks TJK, Proctor MCF (1975) Comparative experiments on temperature responses of bryophytes: assimilation, respiration and freezing damage. J Bryol 8:317–336CrossRefGoogle Scholar
  30. Dilks TJK, Proctor MCF (1976) Effects of intermittent desiccation on bryophytes. J Bryol 9:249–264CrossRefGoogle Scholar
  31. Dircksen A (1964) Vergleichende Untersuchungen zur Frost-, Hitze- und Austrocknung Resistenz einheimischer Laub- und Lebermoose unter besonderer Berücksichtigung jahreszeitlicher Veränderungen. Dissertation, University of Göttingen, FRGGoogle Scholar
  32. Drábková LZ, Dobrev PI, Motyka V (2015) Phytohormone profiling across the bryophytes. PLoS One 10:e0125411CrossRefGoogle Scholar
  33. Farrant JM (2000) Comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plants. Plant Ecol 151:29–39CrossRefGoogle Scholar
  34. Finkelstein R (2013) Abscisic acid synthesis and response. Arabidopsis Book 11:1–36CrossRefGoogle Scholar
  35. Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525PubMedCrossRefGoogle Scholar
  36. Ghosh TK, Kaneko M, Akter K, Murai S, Komatsu K, Ishizaki K, Yamato TK, Kohchi T, Takezawa D (2016a) Abscisic acid-induced gene expression in the liverwort Marchantia polymorpha is mediated by evolutionarily conserved promoter elements. Physiol Plant 156:407–420PubMedCrossRefGoogle Scholar
  37. Ghosh TK, Kaneko M, Takezawa D (2016b) Transient assays of gemmalings of the liverwort Marchantia polymorpha for studies of abscisic acid-induced gene expression. Cryobiol Cryotechnol 62:57–60Google Scholar
  38. Gonzalez-Guzman M, Pizzio GA, Antoni R, Vera-Sirera F, Merilo E, Bassel GW, Fernández MA, Holdsworth MJ, Perez-Amador MA, Kollist H, Rodrigueza PL (2012) Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Plant Cell 24:2483–2496PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gosti F, Beaudoin N, Serizet C, Webb AA, Vartanian N, Giraudat J (1999) ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11:1897–1910PubMedPubMedCentralCrossRefGoogle Scholar
  40. Greenwood JL, Stark LR (2014) The rate of drying determines the extent of desiccation tolerance in Physcomitrella patens. Funct Plant Biol 41:460–467CrossRefGoogle Scholar
  41. Grimsley NH, Withers LA (1983) Cryopreservation of cultures of the moss Physcomitrella patens. CryoLetters 4:251–258Google Scholar
  42. Gusta LV, Trischuk R, Weiser CJ (2005) Plant cold acclimation: the role of abscisic acid. J Plant Growth Regul 24:308–318CrossRefGoogle Scholar
  43. Hartung W (2010) The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen. Funct Plant Biol 37:806–812CrossRefGoogle Scholar
  44. Hartung W, Gimmler H (1994) A stress physiological role for abscisic acid (ABA) in lower plants. Prog Bot 55:157–173CrossRefGoogle Scholar
  45. Hartung W, Weiler EW, Volk OH (1987) Immunochemical evidence that abscisic acid is produced by several species of Anthocerotae and Marchantiales. Bryologist 90:393–400CrossRefGoogle Scholar
  46. Hatanaka R, Sugawara Y (2010) Development of desiccation tolerance and vitrification by preculture treatment in suspension-cultured cells of the liverwort Marchantia polymorpha. Planta 231:965–976PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hatanaka R, Furuki T, Shimizu T, Takezawa D, Kikawada T, Sakurai M, Sugawara Y (2014) Biochemical and structural characterization of an endoplasmic reticulum-localized late embryogenesis abundant (LEA) protein from the liverwort Marchantia polymorpha. Biochem Biophys Res Commun 454:588–593PubMedCrossRefPubMedCentralGoogle Scholar
  48. Heber U, Bilger W, Bligny R, Lange OL (2000) Phototolerance of lichens, mosses and higher plants in an alpine environment: analysis of photoreactions. Planta 211:770–780PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hellwege EM, Dietz KJ, Volk OH, Hartung W (1994) Abscisic acid and the induction of desiccation tolerance in the extremely xerophilic liverwort Exormotheca holstii. Planta 194:525–531CrossRefGoogle Scholar
  50. Hellwege EM, Dietz KJ, Hartung W (1996) Abscisic acid causes changes in gene expression involved in the induction of the landform of the liverwort Riccia fluitans L. Planta 198:423–432PubMedCrossRefGoogle Scholar
  51. Hu R, Xiao L, Vao F, Li X, He Y (2016) Dehydration-responsive features of Atrichum undulatum. J Plant Res 129:945–954PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hudson MA, Brustkern P (1965) Resistance of young and mature leaves of Mnium undulatum (L.) to frost. Planta 66 Bd, 2H:135–155CrossRefGoogle Scholar
  53. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403PubMedCrossRefGoogle Scholar
  54. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces core genes and enhances freezing tolerance. Science 280:104–106PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kadowaki Y, Sato Y, Ghosh TK, Takezawa D (2015) Inhibition by abscisic acid of cold-induced relocation of chloroplasts in the liverwort Marchantia polymorpha. Cryobiol Cryotechnol 61:145–150Google Scholar
  56. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350PubMedCrossRefGoogle Scholar
  58. Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39CrossRefGoogle Scholar
  59. Khraiwesh B, Qudeimat E, Thimma M, Chaiboonchoe A, Jijakli K, Alzahmi A, Arnoux M, Salehi-Ashtiani K (2015) Genome-wide expression analysis offers new insights into the origin and evolution of Physcomitrella patens stress response. Sci Rep 5:17434PubMedPubMedCentralCrossRefGoogle Scholar
  60. Knight CD, Sehgal A, Atwal K, Wallace JC, Cove DJ, Coates D, Quatrano RS, Bahadur S, Stockley PG, Cuming AC (1995) Molecular responses to abscisic acid and stress are conserved between moss and cereals. Plant Cell 7:499–506PubMedPubMedCentralCrossRefGoogle Scholar
  61. Komatsu K, Suzuki N, Kuwamura M, Nishikawa Y, Nakatani M, Ohtawa H, Takezawa D, Seki M, Tanaka M, Taji T, Hayashi T, Sakata Y (2013) Group A PP2Cs evolved in land plants as key regulators of intrinsic desiccation tolerance. Nat Commun 4:2219PubMedPubMedCentralCrossRefGoogle Scholar
  62. Koster K, Balsamo RA, Espinoza C, Oliver MJ (2010) Desiccation sensitivity and tolerance in the moss Physcomitrella patens: assessing limits and damage. Plant Growth Regul 62:293–302CrossRefGoogle Scholar
  63. Krochko J, Bewley J, Pacey J (1978) The effects of rapid and very slow speeds of drying on the ultrastructure and metabolism of the desiccation–sensitive moss Cratoneuron filicinum. J Exp Bot 29:905–917CrossRefGoogle Scholar
  64. La Farge C, Williams KH, England JH (2013) Regeneration of Little Ice Age bryophytes emerging from a polar glacier with implications of totipotency in extreme environments. Proc Natl Acad Sci U S A 110:9839–9844PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lalk I, Dörffling K (1985) Hardening, abscisic acid, proline and freezing resistance in two winter wheat varieties. Physiol Plant 63:287–292CrossRefGoogle Scholar
  66. Larcher W (1995) Physiological plant ecology. Spinger, BerlinCrossRefGoogle Scholar
  67. Levitt J (1980) Responses of plants to environmental stresses. Academic, New YorkGoogle Scholar
  68. Li X, Syrkin Wurtele E, Lamotte CE (1994) Abscisic acid is present in liverworts. Phytochemistry 37:625–627CrossRefGoogle Scholar
  69. Li J, Li X, Chen C (2014) Degradation and reorganization of thylakoid protein complexes of Bryum argenteum in response to dehydration and rehydration. Bryologist 117:110–118CrossRefGoogle Scholar
  70. Li H, Zhang D, Li X, Guan K, Yang H (2016) Novel DREB A-5 subgroup transcription factors from desert moss (Syntrichia caninervis) confers multiple abiotic stress tolerance to yeast. J Plant Physiol 194:45–53PubMedCrossRefGoogle Scholar
  71. Li Q, Zhang X, Lv Q, Zhu D, Qiu T, Xu Y, Bao F, He Y, Hu Y (2017) Physcomitrella patens dehydrins (ppdhna and ppdhnc) confer salinity and drought tolerance to transgenic Arabidopsis plants. Front Plant Sci 8:1316PubMedPubMedCentralCrossRefGoogle Scholar
  72. Liu N, Zhong NQ, Wang GL, Li LJ, Liu XL, He YK, Xia GX (2007) Cloning and functional characterization of PpDBF1 gene encoding a DRE-binding transcription factor from Physcomitrella patens. Planta 226:827–838PubMedCrossRefGoogle Scholar
  73. Longton RE (1988) Adaptation and strategies of polar bryophytes. Bot J Linn Soc 98:253–268CrossRefGoogle Scholar
  74. Longton RE, Holdgate MW (1967) Temperature relationships of Antarctic vegetation. Philos Trans R Soc Lond, Ser B 252:237–250CrossRefGoogle Scholar
  75. Lovelock CE, Jackson AE, Melick DR, Seppelt RD (1995) Reversible photoinhibition in Antarctic moss during freezing and thawing. Plant Physiol 109:955–961PubMedPubMedCentralCrossRefGoogle Scholar
  76. Ma Y, Szostkiewicz KA, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068PubMedPubMedCentralGoogle Scholar
  77. Mallon R, Rodriguez-Oubina J, Luz Gonzalez M (2001) Vitrification of mosses: a useful method for the cryopreservation of Splachnum ampullaceum Hedw. CryoLetters 31:24–28Google Scholar
  78. Marschall M, Proctor MCF, Smirnoff N (1998) Carbohydrate composition and invertase activity of the leafy liverwort Porella platyphylla. New Phytol 138:343–353CrossRefGoogle Scholar
  79. Mayaba N, Beckett RP, Csintalan Z, Tuba Z (2001) ABA increases the desiccation tolerance of photosynthesis in the afromontane understorey moss Atrichum androgynum. Ann Bot 88:1093–1100CrossRefGoogle Scholar
  80. McAdam SAM, Brodribb TJ, Banks JA, Hedrich R, Atallah NM, Cai C, Geringer MA, Lind C, Nichols DS, Stachowski K, Geiger D, Sussmilch FC (2016) Abscisic acid controlled sex before transpiration in vascular plants. Proc Natl Acad Sci U S A 113:12862–12867PubMedPubMedCentralCrossRefGoogle Scholar
  81. Melick DR, Seppelt RD (1994) Seasonal investigations of soluble carbohydrates and pigment levels in Antarctic bryophytes and lichens. Bryologist 97:13–19CrossRefGoogle Scholar
  82. Milborrow BV (1974) The chemistry and physiology of abscisic acid. Annu Rev Plant Physiol 25:259–307CrossRefGoogle Scholar
  83. Minami A, Nagao M, Arakawa K, Fujikawa S, Takezawa D (2003a) Abscisic acid-induced freezing tolerance in the moss Physcomitrella patens is accompanied by increased expression of stress-related genes. J Plant Physiol 160:475–483PubMedCrossRefPubMedCentralGoogle Scholar
  84. Minami A, Nagao M, Arakawa K, Fujikawa S, Takezawa D (2003b) Physiological changes associated with abscisic acid-induced freezing tolerance in Physcomitrella patens. Cryobiol Cryotechnol 49:179–183Google Scholar
  85. Minami A, Nagao M, Ikegami K, Koshiba T, Arakawa K, Fujikawa S, Takezawa D (2005) Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. Planta 220:414–423PubMedCrossRefGoogle Scholar
  86. Minami A, Togawa, Takezawa D (2006) Altered freezing tolerance in the Physcomitrella patens mutant with reduced sensitivity to abscisic acid. Cryobiol Cryotechnol 52:135–139Google Scholar
  87. Mischler BD, Churchil SP (1984) A cladistic approach to the phylogeny of the “Bryophytes”. Brittonia 36:406–424CrossRefGoogle Scholar
  88. Nabe H, Funabiki R, Kashino Y, Koike H, Satoh K (2007) Responses to desiccation stress in bryophytes and an important role of dithiothreitol-insensitive non-photochemical quenching against photoinhibition in dehydrated states. Plant Cell Physiol 48:1548–1557PubMedCrossRefGoogle Scholar
  89. Nagao M, Minami A, Arakawa K, Fujikawa S, Takezawa D (2005) Rapid degradation of starch in chloroplasts and concomitant accumulation of soluble sugars associated with ABA-induced freezing tolerance in the moss Physcomitrella patens. J Plant Physiol 162:169–180PubMedCrossRefGoogle Scholar
  90. Nagao M, Oku K, Minami A, Mizuno K, Sakurai M, Arakawa K, Fujikawa S, Takezawa D (2006) Accumulation of theanderose in association with development of freezing tolerance in the moss Physcomitrella patens. Phytochemistry 67:702–709PubMedCrossRefGoogle Scholar
  91. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185PubMedCrossRefGoogle Scholar
  92. Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y (2010) Abscisic acid and the control of seed dormancy and germination. Seed Sci Res 20:55–67CrossRefGoogle Scholar
  93. Newsham KK (2010) The biology and ecology of the liverwort Cephaloziella varians in Antarctica. Antarct Sci 22:131–143CrossRefGoogle Scholar
  94. Ochi H (1952) The preliminary report on the osmotic value, permeability, drought and cold resistance of mosses. Bot Mag Tokyo 65:763–764CrossRefGoogle Scholar
  95. Oldenhof H, Wolkers WF, Bowman JL, Tablin F, Crowe JH (2006) Freezing and desiccation tolerance in the moss Physcomitrella patens: an in situ Fourier transform infrared spectroscopic study. Biochim Biophys Acta (BBA) – Gen Subj 1760:1226–1234CrossRefGoogle Scholar
  96. Oliver M (1996) Desiccation tolerance in vegetative plant cells. Physiol Plant 97:779–787CrossRefGoogle Scholar
  97. Oliver M, Veltan J, Wood AJ (2000a) Bryophytes as experimental models for the study of environmental stress tolerance: Tortula ruralis and desiccation-tolerance in mosses. Plant Ecol 151:73–84CrossRefGoogle Scholar
  98. Oliver MJ, Tuba Z, Mishler BD (2000b) The evolution of vegetative desiccation tolerance in land plants. Plant Ecol 151:85–100CrossRefGoogle Scholar
  99. Oliver MJ, Dowd SE, Zaragoza J, Mauget SA, Payton PR (2004) The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis. BMC Genomics 5:89PubMedPubMedCentralCrossRefGoogle Scholar
  100. Oliver MJ, Velten J, Mishler BD (2005) Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integr Comp Biol 45:788–799PubMedCrossRefGoogle Scholar
  101. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, … Cutler SR et al (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071Google Scholar
  102. Park S, Lee CM, Doherty CJ, Gilmour SJ, Kim Y, Thomashow MF (2015) Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J 82:193–207PubMedPubMedCentralCrossRefGoogle Scholar
  103. Pearce RS (1999) Molecular analysis of acclimation to cold. Plant Growth Regul 29:47–76CrossRefGoogle Scholar
  104. Peat H, Clarke A, Convey P (2006) Diversity and biogeography of the Antarctic flora. J Biogeogr 34:132–146CrossRefGoogle Scholar
  105. Pence VC (1998) Cryopreservation of bryophytes: the effects of abscisic acid and encapsulation dehydration. Bryologist 101:278–281CrossRefGoogle Scholar
  106. Pence VC, Dunford SS, Redella S (2005) Differential effects of abscisic acid on desiccation tolerance and carbohydrates in three species of liverworts. J Plant Physiol 162:1331–1337PubMedCrossRefGoogle Scholar
  107. Platt KA, Oliver MJ, Thomson WW (1994) Membranes and organelles of dehydrated Selaginella and Tortula retain their normal configuration and structural integrity: freeze fracture evidence. Protoplasma 178:57–65CrossRefGoogle Scholar
  108. Pressel S, Duckett JG (2010) Cytological insights into the desiccation biology of a model system: moss protonemata. New Phytol 185:944–963PubMedCrossRefGoogle Scholar
  109. Pressel S, Ligrone R, Duckett JG (2006) The effects of de- and rehydration on food-conducting cells in the moss Polytrichum formosum Hedw: a cytological study. Ann Bot 98:67–76PubMedPubMedCentralCrossRefGoogle Scholar
  110. Pressel S, Duckett JG, Ligrone R, Proctor MCF (2009) Effects of de- and rehydration in desiccation-tolerant liverworts: a cytological and physiological study. Int J Plant Sci 170:182–199CrossRefGoogle Scholar
  111. Proctor MCF (2003) Experiments on the effect of different intensities of desiccation on bryophyte survival, using chlorophyll fluorescence as an index of recovery. J Bryol 25:201–210CrossRefGoogle Scholar
  112. Proctor MCF, Pence V (2002) Vegetative tissues: bryophytes, vascular resurrection plants and vegetative propagules. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CABI Publishing, Wallingford, pp 207–338CrossRefGoogle Scholar
  113. Proctor MCF, Smirnoff N (2000) Rapid recovery of photosystems on rewetting desiccation-tolerant mosses: chlorophyll fluorescence and inhibitor experiments. J Exp Bot 51:1695–1704PubMedCrossRefGoogle Scholar
  114. Proctor MCF, Tuba Z (2002) Poikilohydry and homoihydry: antithesis or spectrum of possibilities? New Phytol 156:327–349CrossRefGoogle Scholar
  115. Proctor MCF, Ligrone L, Duckett JG (2007) Desiccation in the moss Polytrichum formosum Hedw: physiological and fine structural changes during desiccation and recovery. Ann Bot 99:75–93PubMedCrossRefGoogle Scholar
  116. Quartacci MF, Forli M, Rascio N, Dalla Vecchia F, Bochicchio A, Navari-Izzo F (1997) Desiccation-tolerant Sporobolus stapfianus: lipid composition and cellular ultrastructure during dehydration and rehydration. J Exp Bot 48:1269–1279CrossRefGoogle Scholar
  117. Renzaglia KS, Duff RJ, Nickrent DL, Garbary DJ (2000) Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny. Philos Trans R Soc Lond B 355:769–793CrossRefGoogle Scholar
  118. Richardt S, Timmerhaus G, Lang D, Qudeimat E, Correa LG, Reski R, Rensing SA, Frank W (2010) Microarray analysis of the moss Physcomitrella patens reveals evolutionarily conserved transcriptional regulation of salt stress and abscisic acid signalling. Plant Mol Biol 72:27–45PubMedCrossRefGoogle Scholar
  119. Roads E, Longton RE, Convey P (2014) Millennial timescale regeneration in a moss from Antarctica. Curr Biol 24:R222–R223PubMedCrossRefGoogle Scholar
  120. Rock CD, Sakata Y, Quatrano RS (2010) Stress signaling I: the role of abscisic acid (ABA). In: Pareek A, Sopory SK, Bohnert HJ, Govindjee (eds) Abiotic stress adaptation in plants. Springer, Berlin, pp 33–73Google Scholar
  121. Roser DJ, Melick DR, Ling HU, Seppelt RD (1992) Polyol and sugar content of terrestrial plants from continental Antarctica. Antarct Sci 4:413–420Google Scholar
  122. Rowntree JK, Ramsay MM (2005) Ex situ conservation of bryophytes: progress and potential of a pilot project. Bol Soc Esp Briol 26–27:17–22Google Scholar
  123. Rowntree JK, Ramsay MM (2009) How bryophytes came out of the cold: successful cryopreservation of threatened species. Biodivers Conserv 18:1413–1420CrossRefGoogle Scholar
  124. Rütten D, Santarius KA (1992a) Relationship between frost tolerance and sugar concentration of various bryophytes in summer and winter. Oecologia 91:260–265PubMedCrossRefGoogle Scholar
  125. Rütten D, Santarius KA (1992b) Age-related differences in frost sensitivity of the photosynthetic apparatus of two Plagiomnium species. Planta 187:224–229PubMedCrossRefGoogle Scholar
  126. Rütten D, Santarius KA (1993) Seasonal variation in frost tolerance and sugar content of two Plagiomnium species. Bryologist 96:564–568CrossRefGoogle Scholar
  127. Saavedra L, Svensson J, Carballo V, Izmendi D, Welin B, Vidal S (2006) A dehydrin gene in physcomitrella patens is required for salt and osmotic stress tolerance. Plant J 45:237–249PubMedCrossRefGoogle Scholar
  128. Sakai A, Larcher W (1987) Frost survival of plants. Responses and adaptation to freezing stress. Springer, BerlinCrossRefGoogle Scholar
  129. Sakata Y, Nakamura I, Taji T, Tanaka S, Quatrano RS (2010) Regulation of the ABA-responsive Em promoter by ABI3 in the moss Physcomitrella patens: role of the ABA response element and the RY element. Plant Signal Behav 5:1061–1066PubMedPubMedCentralCrossRefGoogle Scholar
  130. Sakata Y, Komatsu K, Takezawa D (2014) ABA as a universal plant hormone. Prog Bot 75:57–96Google Scholar
  131. Saruhashi M, Ghosh TK, Arai K, Ishizaki Y, Hagiwara K, Komatsu K, Shiwa Y, Izumikawa K, Yoshikawa H, Umezawa T, Sakata Y, Takezawa D (2015) Plant Raf-like kinase integrates abscisic acid and hyperosmotic stress signaling upstream of SNF1-related protein kinase2. Proc Natl Acad Sci U S A 112:E6388–E6396PubMedPubMedCentralCrossRefGoogle Scholar
  132. Schulte J, Reski R (2004) High throughput cryopreservation of 140 000 Physcomitrella patens mutants. Plant Biol 6:119–127PubMedCrossRefGoogle Scholar
  133. Scott GAM (1982) Desert bryophytes. In: Smith AJE (ed) Bryophyte ecology. Springer, pp 105–122Google Scholar
  134. Segreto R, Hassel K, Bardal R, Stenøien HK (2010) Desiccation tolerance and natural cold acclimation allow cryopreservation of bryophytes without pretreatment or use of cryoprotectants. Bryologist 113:760–769CrossRefGoogle Scholar
  135. Seo M, Koshiba T (2002) The complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7:41–48PubMedCrossRefGoogle Scholar
  136. Siminovitch D, Singh J, De La Roche IA (1975) Studies on membranes in plant cells resistant to extreme freezing. I. Augmentation of phospholipids and membrane substance without changes in unsaturation of fatty acids in hardening of black locust bark. Cryobiology 12:144–153PubMedCrossRefGoogle Scholar
  137. Smirnoff N (1992) The carbohydrates of bryophytes in relation to desiccation-tolerance. J Bryol 17:185–191CrossRefGoogle Scholar
  138. Stark LR, Greenwood JL, Brinda JC, Oliver MJ (2013) The desert moss Pterygoneurum lamellatum (Pottiaceae) exhibits an inducible ecological strategy of desiccation tolerance: effects of rate of drying on shoot damage and regeneration. Am J Bot 100:1522–1531PubMedCrossRefGoogle Scholar
  139. Steponkus PL, Uemura M, Webb MSA (1993) Contrast of the cryostability of the plasma membrane of winter rye and spring oat: two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In: Steponkus PL (ed) Advances in low-temperature biology, vol 2. JAI Press, London, pp 211–312Google Scholar
  140. Stockinger EJ, Gilmour EJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activation that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94:1035–1040PubMedPubMedCentralCrossRefGoogle Scholar
  141. Streere WC, Inoue H (1978) The Hepaticae of Arctic Alaska. J Hattori Bot Lab 44:251–345Google Scholar
  142. Sun MM, Li LH, Xie H, Ma RC, He YK (2007) Differentially expressed genes under cold acclimation in Physcomitrella patens. J Biochem Mol Biol 40:986–1001PubMedGoogle Scholar
  143. Takeuchi MH, Matsushima H, Sugawara Y (1980) M. polymorpha protoplast cryopreservation. CryoLetters 1:519–524Google Scholar
  144. Takezawa D, Komatsu K, Sakata Y (2012) ABA in bryophytes: how a universal growth regulator in life became a plant hormone? J Plant Res 124:437–453CrossRefGoogle Scholar
  145. Takezawa D, Watanabe N, Ghosh TK, Saruhashi M, Suzuki A, Ishiyama K, Somemiya S, Kobayashi M, Sakata Y (2015) Epoxycarotenoid-mediated synthesis of abscisic acid in Physcomitrella patens implicating conserved mechanisms for acclimation to hyperosmosis in embryophytes. New Phytol 206:209–219PubMedCrossRefGoogle Scholar
  146. Tanaka D, Ishizaki K, Kohchi T, Yamato KT (2016) Cryopreservation of gemmae from the liverwort Marchantia polymorpha L. Plant Cell Physiol 57:300–306PubMedCrossRefGoogle Scholar
  147. Toldi O, Tuba Z, Scott P (2009) Vegetative desiccation tolerance: is it a goldmine for bioengineering crops? Plant Sci 176:187–199CrossRefGoogle Scholar
  148. Tougane K, Komatsu K, Bhyan SB, Sakata Y, Ishizaki K, Yamato KT, Kohchi T, Takezawa D (2010) Evolutionarily conserved regulatory mechanisms of abscisic acid signaling in land plants: characterization of ABSCISIC ACID INSENSITIVE1-like type 2C protein phosphatase in the liverwort Marchantia polymorpha. Plant Physiol 152:1529–1543PubMedPubMedCentralCrossRefGoogle Scholar
  149. Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2011) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 5:160–163Google Scholar
  150. Vanderpoorten A, Goffinet B (2009) Introduction to bryophytes. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  151. Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M et al (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161PubMedPubMedCentralGoogle Scholar
  152. Wang Q, Yang P, Liu Z, Liu W, Hu Y, Chen H, Kuang T, Pei Z, Shen S, He YK (2009a) Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy. Plant Physiol 149:1739–1750PubMedPubMedCentralCrossRefGoogle Scholar
  153. Wang X, Yang P, Zhang X, Xu Y, Kuang T, Shen S, He Y (2009b) Proteomic analysis of the cold stress response in the moss, Physcomitrella patens. Proteomics 9:4529–4538PubMedCrossRefPubMedCentralGoogle Scholar
  154. Watson W (1914) Xerophytic adaptations of bryophytes in relation to habitat. New Phytol 13:149–190CrossRefGoogle Scholar
  155. Werner O, Ros Espín RM, Bopp M, Atzorn R (1991) Abscisic-acid-induced drought tolerance in Funaria hygrometrica Hedw. Planta 186:99–103PubMedCrossRefPubMedCentralGoogle Scholar
  156. Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17PubMedCrossRefGoogle Scholar
  157. Wood AJ (2007) The nature and distribution of vegetative desiccation-tolerance in hornworts, liverworts and mosses. Bryologist 110:163–177CrossRefGoogle Scholar
  158. Wood AJ, Oliver MJ (2004) Molecular biology and genomics of the desiccation tolerant moss Tortula ruralis. New Front Bryol: 71–89Google Scholar
  159. Wright STC, Hiron RWP (1969) (+)-Abscisic acid, the growth inhibitor induced in detached wheat leaves by a period of wilting. Nature 224:719–720CrossRefGoogle Scholar
  160. Wu SP, Qin ZZ, Xiao TZ, Li QP, Lu BB, Jing LJ, Wang J, Zhu RL (2015) Cryopreservation of gemmae of Marchantia polymorpha L. (Marchantiophyta, Marchantiaceae) without prior pretreatment. CryoLetters 36:91–96PubMedPubMedCentralGoogle Scholar
  161. Yamazaki H, Takano Y, Kuriyama A (2004) Super-low temperature preservation of moss protonemata. Cryobiol Cryotechnol 50:81–84Google Scholar
  162. Yamazaki H, Ayabe K, Ishii R, Kuriyama A (2009) Desiccation and cryopreservation of actively-growing cultured plant cells and protoplasts. Plant Cell Tissue Organ Cult 97:151–158CrossRefGoogle Scholar
  163. Zeevaart JAD, Creelman RA (1988) Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39:439–473CrossRefGoogle Scholar
  164. Zhang S, Li N, Gao F, Yang A, Zhang J (2010) Overexpression of TsCBF1 gene confers improved drought tolerance in transgenic maize. Mol Breed 26:455–465CrossRefGoogle Scholar
  165. Zúñiga-González P, Zúñiga GE, Pizarro M, Casanova-Katny A (2016) Soluble carbohydrate content variation in Sanionia uncinata and Polytrichastrum alpinum, two Antarctic mosses with contrasting desiccation capacities. Biol Res 49:6PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Graduate School of Science and Engineering; Institute for Environmental ScienceSaitama UniversitySakura-kuJapan

Personalised recommendations