Advertisement

Gene Regulatory Networks Mediating Cold Acclimation: The CBF Pathway

  • Javier Barrero-Gil
  • Julio Salinas
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1081)

Abstract

Under low nonfreezing temperature conditions, plants from temperate climates undergo physiological and biochemical adjustments that increase their tolerance to freezing temperatures. This response, termed cold acclimation, is largely regulated by changes in gene expression. Molecular and genetic studies have identified a small family of transcription factors, called C-repeat binding factors (CBFs), as key regulators of the transcriptomic rearrangement that leads to cold acclimation. The function of these proteins is tightly controlled, and an inadequate supply of CBF activity may be detrimental to the plant. Accumulated evidence has revealed an extremely intricate network of positive and negative regulators of cold acclimation that coalesce at the level of CBF promoters constituting a central hub where multiple internal and external signals are integrated. Moreover, CBF expression is also controlled at posttranscriptional and posttranslational levels further refining CBF regulation. Recently, natural variation studies in Arabidopsis have demonstrated that mutations resulting in changes in CBF expression have an adaptive value for wild populations. Intriguingly, CBF genes are also present in plant species that do not cold acclimate, which suggest that they may also have additional functions. For instance, CBFs are required for some cold-related abiotic stress responses. In addition, their involvement in plant development deserves further study. Although more studies are necessary to fully harness CBF biotechnological potential, these transcription factors are meant to be key for a rational design of crops with enhanced tolerance to abiotic stress.

Keywords

Transcription factors Low temperature Abiotic stress Gene regulation Signaling integration Hormone signaling Light signaling 

Abbreviations

ABA

Abscisic acid

AP2/ERF

Apetala2/ethylene response factor

BR

Brassinosteroid

CBF

C-repeat binding factor

COR

Cold regulated

CRISPR

Clustered regularly interspaced short palindromic repeats

CRT

C-repeat

DRE

Dehydration-responsive element

ET

Ethylene

GA

Gibberellin

H3K27me3

Histone H3 lysine 27 trime-thylation

ICE

Inducer of CBF expression

JA

Jasmonic acid

RNApol II

RNA polymerase II

Notes

Acknowledgments

Research in Julio Salinas’s lab is funded by grants BIO2013-47788-R from MINECO and BIO2016-79187-R from AEI/FEDER, UE.

References

  1. Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129PubMedPubMedCentralCrossRefGoogle Scholar
  2. Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645PubMedCrossRefGoogle Scholar
  3. Alabadi D, Oyama T, Yanovski MJ, Harmon FG, Más P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883PubMedCrossRefGoogle Scholar
  4. Alonso-Blanco C, Gómez-Mena C, Llorente F, Koornneef M, Salinas J, Martínez-Zapater JM (2005) Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus. Plant Physiol 139:1304–1312PubMedPubMedCentralCrossRefGoogle Scholar
  5. An F, Zhang X, Zhu Z, Ji Y, He W, Jiang Z, Li M, Guo H (2012) Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Res 22:915–927PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anderson MD, Prasad TK, Martin BA, Stewart CR (1994) Differential gene expression in chilling-acclimated maize seedlings and evidence for the involvement of abscisic acid in chilling tolerance. Plant Physiol 105:331–339PubMedPubMedCentralCrossRefGoogle Scholar
  7. Artlip TS, Wisniewski ME, Norelli JL (2014) Field evaluation of apple overexpressing a peach CBF gene confirms its effect on cold hardiness, dormancy, and growth. Environ Exp Bot 106:79–86CrossRefGoogle Scholar
  8. Bäckström S, Elfving N, Nilsson R, Wingsle G, Björklund S (2007) Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit. Mol Cell 26:717–729PubMedCrossRefGoogle Scholar
  9. Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant Mol Biol 24:701–713PubMedCrossRefGoogle Scholar
  10. Barrero-Gil J, Salinas J (2013) Post-translational regulation of cold acclimation response. Plant Sci 205–206:48–54PubMedCrossRefGoogle Scholar
  11. Barrero-Gil J, Salinas J (2017) CBFs at the crossroads of plant hormone signaling in cold stress response. Mol Plant 10:542–544PubMedCrossRefGoogle Scholar
  12. Barrero-Gil J, Huertas R, Rambla JL, Granell A, Salinas J (2016) Tomato plants increase their tolerance to low temperature in a chilling acclimation process entailing comprehensive transcriptional and metabolic adjustments. Plant Cell Environ 39:2303–2318PubMedCrossRefGoogle Scholar
  13. Benedict C, Skinner JS, Meng R, Chang Y, Bhalerao R, Huner NP, Finn CE, Chen TH, Hurry V (2006) The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ 29:1259–1272PubMedCrossRefGoogle Scholar
  14. Bhatnagar-Mathur P, Rao JS, Vadez V, Dumbala SR, Rathore A, Yamaguchi-Shinozaki Y, Shinozaki K (2014) Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. Mol Breed 33:327–340CrossRefGoogle Scholar
  15. Catalá R, López-Cobollo R, Mar Castellano M, Angosto T, Alonso JM, Ecker JR, Salinas J (2014) The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation. Plant Cell 26:1–18CrossRefGoogle Scholar
  16. Chan Z, Wang Y, Cao M, Gong Y, Mu Z, Wang H, Hu Y, Deng X, He XJ, Zhu JK (2015) RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway. New Phytol 1:1527–1539Google Scholar
  17. Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236PubMedCrossRefGoogle Scholar
  19. Cuevas JC, López-Cobollo R, Alcázar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105PubMedPubMedCentralCrossRefGoogle Scholar
  20. Datta K, Baisakh N, Ganguly M, Krishnan S, Yamaguchi-Shinozaki K, Datta SK (2012) Overexpression of Arabidopsis and rice stress genes inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnol J 10:579–586PubMedCrossRefGoogle Scholar
  21. Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S (2015) OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell 32:278–289PubMedCrossRefGoogle Scholar
  22. Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dong C-H, Hu X, Tang W, Zheng X, Kim YS, Lee BH, Zhu JK (2006) A putative Arabidopsis nucleoporin, AtNUP160, is critical for RNA export and required for plant tolerance to cold stress. Mol Cell Biol 26:9533–9543PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dong MA, Farré EM, Thomashow MF (2011) Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proc Natl Acad Sci U S A 108:7241–7246PubMedPubMedCentralGoogle Scholar
  25. Dubouzet JG, Sakuma Y, Ito Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763PubMedCrossRefGoogle Scholar
  26. Eremina M, Rozhon W, Poppenberger B (2016a) Hormonal control of cold stress responses in plants. Cell Mol Life Sci 73:797–810PubMedCrossRefGoogle Scholar
  27. Eremina M, Unterholzner SJ, Rathnayake AI, Castellanos M, Khan M, Kugler KG, May ST, Mayer KF, Rozhon W, Poppenberger B (2016b) Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proc Natl Acad Sci U S A 113:E5982–E5991PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fowler SG, Cook D, Thomashow MF (2005) Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol 137:961–968PubMedPubMedCentralCrossRefGoogle Scholar
  29. Franklin KA, Whitelam GC (2007) Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nat Genet 39:1410–1413PubMedCrossRefGoogle Scholar
  30. Gallego-Bartolomé J, Minguet EG, Grau-Enguix F, Abbas M, Locascio A, Thomas SG, Alabadí D, Blázquez MA (2012) Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proc Natl Acad Sci U S A 109:13446–13451PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gehan MA, Park S, Gilmour SJ, An C, Lee CM, Thomashow MF (2015) Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes. Plant J 84:682–693PubMedCrossRefGoogle Scholar
  32. Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442PubMedCrossRefPubMedCentralGoogle Scholar
  33. Gilmour SJ, Fowler SG, Thomashow MF (2004) Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol 54:767–781PubMedCrossRefGoogle Scholar
  34. Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu JK (2002) RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc Natl Acad Sci U S A 99:11507–11512PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gong Z, Dong C, Lee H, Zhu J, Xiong L, Gong D, Stevenson B, Zhu JK (2005) A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell 17:256–267PubMedPubMedCentralCrossRefGoogle Scholar
  36. Guy CL, Niemi KJ, Brambl R (1985) Altered gene expression during cold acclimation of spinach. Proc Natl Acad Sci U S A 82:3673–3677PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hannah MA, Heyer AG, Hincha DK (2005) A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet 1:0179–0196CrossRefGoogle Scholar
  38. Hannah MA, Wiese D, Freund S, Fiehn O, Heyer AG, Hincha DK (2006) Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol 142:98–112PubMedPubMedCentralCrossRefGoogle Scholar
  39. Harberd NP, Belfield E, Yasumura Y (2009) The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an “inhibitor of an inhibitor” enables flexible response to fluctuating environments. Plant Cell 21:1328–1339PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hemsley PA, Hurst CH, Kaliyadasa E, Lamb R, Knight MR, De Cothi EA, Steele JF, Knight H (2014) The Arabidopsis mediator complex subunits MED16, MED14, and MED2 regulate mediator and RNA polymerase II recruitment to CBF-responsive cold-regulated genes. Plant Cell 26:465–484PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hou X, Lee LYC, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894PubMedCrossRefGoogle Scholar
  42. Hsieh T, Lee J, Yang P, Chiu LH, Charng YY, Wang YC, Chan MT (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hu Y, Jiang L, Wang F, Yu D (2013) Jasmonate regulates the inducer of CBF expression-C-repeat binding Factor/DRE binding Factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25:2907–2924PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jeon J, Kim J (2011) FVE, an Arabidopsis homologue of the retinoblastoma-associated protein that regulates flowering time and cold response, binds to chromatin as a large multiprotein complex. Mol Cells 32:227–234PubMedPubMedCentralCrossRefGoogle Scholar
  46. Jia Y, Ding Y, Shi Y, Zhang X, Gong Z, Yang S (2016) The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol 212:345–353PubMedCrossRefGoogle Scholar
  47. Jiang B, Shi Y, Zhang X, Xin X, Qi L, Guo H, Li J, Yang S (2017) PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proc Natl Acad Sci U S A 114:E6695–E6702PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kang J, Zhang H, Sun T, Shi Y, Wang J, Zhang B, Wang Z, Zhou Y, Gu H (2013) Natural variation of C-repeat-binding factor (CBFs) genes is a major cause of divergence in freezing tolerance among a group of Arabidopsis thaliana populations along the Yangtze River in China. New Phytol 199:1069–1080PubMedCrossRefPubMedCentralGoogle Scholar
  49. Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50:967–981PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291PubMedPubMedCentralCrossRefGoogle Scholar
  51. Keily J, MacGregor DR, Smith RW, Millar AJ, Halliday KJ, Penfield S (2013) Model selection reveals control of cold signalling by evening-phased components of the plant circadian clock. Plant J 76:247–257PubMedPubMedCentralGoogle Scholar
  52. Kidokoro S, Maruyama K, Nakashima K, Imura Y, Narusaka Y, Shinwari ZK, Osakabe Y, Fujita Y, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2009) The Phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol 151(4):2046–2057PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kidokoro S, Yoneda K, Takasaki H, Takahashi F, Shinozaki K, Yamaguchi-Shinozaki K (2017) Different cold-signaling pathways function in the responses to rapid and gradual decreases in temperature. Plant Cell 29:760–774PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kim H-J, Hyun Y, Park J-Y, Park M-J, Park M-K, Kim MD, Kim H-J, Lee MH, Moon J, Lee I, Kim J (2004) A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nat Genet 36:167–171PubMedCrossRefGoogle Scholar
  55. Kim YS, Lee M, Lee J-H, Lee H-J, Park C-M (2015) The unified ICE–CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis. Plant Mol Biol 89:187–201PubMedCrossRefGoogle Scholar
  56. Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR (2004) Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant Physiol 135:1710–1717PubMedPubMedCentralCrossRefGoogle Scholar
  57. Knox AK, Dhillon T, Cheng H, Tondelli A, Pecchioni N, Stockinger EJ (2010) CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theor Appl Genet 121:21–35PubMedCrossRefGoogle Scholar
  58. Kuk YI, Shin JS, Burgos NR, Hwang TE, Han O, Cho BH, Jung S, Guh JO (2003) Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Sci 43:2109–2117CrossRefGoogle Scholar
  59. Lang V, Mantyla E, Welin B, Sundberg B, Palva ET (1994) Alterations in water status, endogenous abscisic acid content, and expression of rab18 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiol 104:1341–1349PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lee HG, Seo PJ (2015) The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis. Plant J:962–977PubMedCrossRefGoogle Scholar
  61. Lee C-M, Thomashow MF (2012) Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc Natl Acad Sci U S A 109:15054–15059PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lee J-H, Jung J-H, Park C-M (2015) Inducer of CBF expression 1 integrates cold signals into flowering locus C-mediated flowering pathways in Arabidopsis. Plant J 84:29–40PubMedCrossRefGoogle Scholar
  63. Levitt J (1980) Responses of plants to environmental stress: chilling, freezing and high temperature stresses, 2nd edn. Academic, New YorkGoogle Scholar
  64. Li H, Ye K, Shi Y, Cheng J, Zhang X, Yang S (2017) BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis. Mol Plant 10:545–559PubMedCrossRefGoogle Scholar
  65. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406PubMedPubMedCentralCrossRefGoogle Scholar
  66. Liu Z, Jia Y, Ding Y, Shi Y, Li Z, Guo Y, Gong Z, Yang S (2017) Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response. Mol Cell 66:117–128.e5PubMedCrossRefPubMedCentralGoogle Scholar
  67. de Lucas M, Davière J-M, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blázquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–484PubMedCrossRefGoogle Scholar
  68. Medina J, Bargues M, Terol J, Pérez-Alonso M, Salinas J (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119:463–469PubMedPubMedCentralCrossRefGoogle Scholar
  69. Monroe JG, McGovern C, Lasky JR, Grogan K, Beck J, McKay JK (2016) Adaptation to warmer climates by parallel functional evolution of CBF genes in Arabidopsis thaliana. Mol Ecol 25:3632–3644PubMedCrossRefGoogle Scholar
  70. Nakamichi N, Kusano M, Fukushima A, Kita M, Ito S, Yamashino T, Saito K, Sakakibara H, Mizuno T (2009) Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol 50:447–462CrossRefGoogle Scholar
  71. Nakamichi N, Kiba T, Kamioka M, Suzuki T, Yamashino T, Higashiyama T, Sakakibara H, Mizuno T (2012) Transcriptional repressor PRR5 directly regulates clock-output pathways. Proc Natl Acad Sci U S A 109:17123–17128PubMedPubMedCentralCrossRefGoogle Scholar
  72. Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:1–7CrossRefGoogle Scholar
  73. Nie GY, Long SP, Baker NR (1992) The effects of development at sub-optimal growth temperatures on photosynthetic capacity and susceptibility to chilling-dependent photoinhibition in Zea mays. Physiol Plant 85:554–560CrossRefGoogle Scholar
  74. Nordin K, Vahala T, Palva ET (1993) Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol 21:641–653PubMedCrossRefGoogle Scholar
  75. Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci U S A 101:3985–3990PubMedPubMedCentralCrossRefGoogle Scholar
  76. Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci U S A 104:21002–21007PubMedPubMedCentralCrossRefGoogle Scholar
  77. Oakley CG, Ågren J, Atchison RA, Schemske DW (2014) QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs. Mol Ecol 23:4304–4315PubMedPubMedCentralCrossRefGoogle Scholar
  78. Oh S-J, Song SI, Kim YS, Jang H-J, Kim SY, Kim M, Kim Y-K, Nahm BH, Kim J-K (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351PubMedPubMedCentralCrossRefGoogle Scholar
  79. Park S, Lee C-M, Doherty CJ, Gilmour SJ, Kim Y, Thomashow MF (2015) Regulation of the Arabidopsis CBF regulon by a complex low temperature regulatory network. Plant J 82:193–207PubMedCrossRefGoogle Scholar
  80. Pavangadkar K, Thomashow MF, Triezenberg SJ (2010) Histone dynamics and roles of histone acetyltransferases during cold-induced gene regulation in Arabidopsis. Plant Mol Biol 74:183–200PubMedCrossRefGoogle Scholar
  81. Pennycooke JC, Cheng H, Roberts SM, Yang Q, Rhee SY, Stockinger EJ (2008) The low temperature-responsive, Solanum CBF1 genes maintain high identity in their upstream regions in a genomic environment undergoing gene duplications, deletions, and rearrangements. Plant Mol Biol 67:483–497PubMedCrossRefGoogle Scholar
  82. Perea-Resa C, Carrasco-López C, Catalá R, Turečková V, Novak O, Zhang W, Sieburth L, Jiménez-Gómez JM, Salinas J (2016) The LSM1-7 complex differentially regulates Arabidopsis tolerance to abiotic stress conditions by promoting selective mRNA decapping. Plant Cell 28:505–520PubMedPubMedCentralCrossRefGoogle Scholar
  83. Popescu S, Popescu G, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar SP (2009) MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev 23:80–92PubMedPubMedCentralCrossRefGoogle Scholar
  84. Qin F, Sakuma Y, Li J, Liu Q, Li YQ, Shinozaki K, Yamaguchi-Shinozaki K (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042–1052PubMedCrossRefGoogle Scholar
  85. Richter R, Bastakis E, Schwechheimer C (2013) Cross-repressive interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the control of greening, cold tolerance, and flowering time in Arabidopsis. Plant Physiol 162:1992–2004PubMedPubMedCentralCrossRefGoogle Scholar
  86. Ruelland E, Vaultier M-N, Zachowski A, Hurry V (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150CrossRefGoogle Scholar
  87. Seo E, Lee H, Jeon J, Park H, Kim J, Noh Y-S, Lee I (2009) Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. Plant Cell 21:3185–3197PubMedPubMedCentralCrossRefGoogle Scholar
  88. Sequeira-Mendes J, Araguez I, Peiro R, Mendez-Giraldez R, Zhang X, Jacobsen SE, Bastolla U, Gutierrez C (2014) The functional topography of the Arabidopsis genome is organized in a reduced number of linear motifs of chromatin states. Plant Cell 26:2351–2366PubMedPubMedCentralCrossRefGoogle Scholar
  89. Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and Type-A ARR genes in Arabidopsis. Plant Cell 24:2578–2595PubMedPubMedCentralCrossRefGoogle Scholar
  90. Shi Y, Ding Y, Yang S (2015) Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant Cell Physiol 56:7–15PubMedPubMedCentralCrossRefGoogle Scholar
  91. Shi Y, Huang J, Sun T, Wang X, Zhu C, Ai Y, Gu H (2017) The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana. J Integr Plant Biol 59:118–133PubMedCrossRefGoogle Scholar
  92. Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94:1035–1040PubMedPubMedCentralCrossRefGoogle Scholar
  93. Stockinger EJ, Mao Y, Regier MK, Triezenberg SJ, Thomashow MF (2001) Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res 29:1524–1533PubMedPubMedCentralCrossRefGoogle Scholar
  94. Theocharis A, Clément C, Barka EA (2012) Physiological and molecular changes in plants grown at low temperatures. Planta 235:1091–1105PubMedCrossRefGoogle Scholar
  95. Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577PubMedPubMedCentralCrossRefGoogle Scholar
  96. Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiol 109:15–30PubMedPubMedCentralCrossRefGoogle Scholar
  97. Vágújfalvi A, Aprile A, Miller A, Dubcovsky J, Delugu G, Galiba G, Cattivelli L (2005) The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat. Mol Genet Genomics 274:506–514PubMedCrossRefGoogle Scholar
  98. Varshney RK, Bansal KC, Aggarwal PK, Datta SK, Craufurd PQ (2011) Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends Plant Sci 16:363–371PubMedCrossRefGoogle Scholar
  99. Venkatesh S, Workman JL (2015) Histone exchange, chromatin structure and the regulation of transcription. Nat Rev Mol Cell Biol 16:178–189PubMedCrossRefGoogle Scholar
  100. Vlachonasios KE, Thomashow MF, Triezenberg SJ (2003) Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell 15:626–638PubMedPubMedCentralCrossRefGoogle Scholar
  101. Walton DC (1980) Biochemistry and physiology of abscisic acid. Annu Rev Plant Physiol 31:453–489CrossRefGoogle Scholar
  102. Wang F, Guo Z, Li H, Wang M, Onac E, Zhou J, Xia X, Shi K, Yu J, Zhou Y (2015) Phytochrome A and B function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling. Plant Physiol 170:459–471PubMedPubMedCentralCrossRefGoogle Scholar
  103. Welling A, Palva ET (2008) Involvement of CBF transcription factors in winter hardiness in Birch. Plant Physiol 147:1199–1211PubMedPubMedCentralCrossRefGoogle Scholar
  104. Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J 8:749–771PubMedCrossRefGoogle Scholar
  105. Würschum T, Longin CFH, Hahn V, Tucker MR, Leiser WL (2017) Copy number variations of CBF genes at the Fr-A2 locus are essential components of winter hardiness in wheat. Plant J:764–773PubMedCrossRefGoogle Scholar
  106. Xiao BZ, Chen X, Xiang CB, Tang N, Zhang QF, Xiong LZ (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2:73–83PubMedCrossRefGoogle Scholar
  107. Xiong L, Ishitani M, Lee H, Zhu JK (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13:2063–2083PubMedPubMedCentralCrossRefGoogle Scholar
  108. Xue GP (2003) The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J 33:373–383PubMedCrossRefGoogle Scholar
  109. Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high salt stress. Plant Cell 6:251–264PubMedPubMedCentralCrossRefGoogle Scholar
  110. Zarka DG, Vogel JT, Cook D, Thomashow MF (2003) Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol 133:910–918PubMedPubMedCentralCrossRefGoogle Scholar
  111. Zhang X, Fowler SG, Cheng H, Lou Y, Rhee SY, Stockinger EJ, Thomashow MF (2004) Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J 39:905–919PubMedCrossRefGoogle Scholar
  112. Zhao C, Zhang Z, Xie S, Si T, Li Y, Zhu JK (2016) Mutational evidence for the critical role of CBF genes in cold acclimation in Arabidopsis. Plant Physiol 171:2744–2756PubMedPubMedCentralGoogle Scholar
  113. Zhen Y, Ungerer MC (2008) Clinal variation in freezing tolerance among natural accessions of Arabidopsis thaliana. New Phytol 177:419–427PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biologicas-CSICMadridSpain

Personalised recommendations