Gaṇitānanda pp 159-167 | Cite as

गोलपृष्ठ के लिये महावीर-फेरू सूत्र और विदेशों में उनकी झलक

  • K. RamasubramanianEmail author


इस लेख में जिस व्यावहारिक सूत्र की चर्चा की गई है वह है

संदर्भग्रन्थ और लेख

  1. 1.
    गणितसारकौमुदी, ठक्कुर फेरू देखें |Google Scholar
  2. 2.
    गणितसारसंग्रह, महावीराचार्य देखें |Google Scholar
  3. 3.
    R. C. Gupta: “Mahāvīrācārya on the Perimeter and Area of Ellipse”. The Mathematics Education Vol. 8, No. 1 (1974). See. B. pp. 17–19.Google Scholar
  4. 4.
    R. C. Gupta: “Mahāvīrācārya’s Rule for the Surface-Area of a Spherical Segment. A New Interpretation”, तुलसी-प्रज्ञा Vol. I, No. 2 (April-June, 1975), pp. 63–66.Google Scholar
  5. 5.
    R. C. Gupta: “On Some Rules from Jaina Mathematics”, Gaṇita Bhāratī, 11 (1989), 18–26.MathSciNetzbMATHGoogle Scholar
  6. 6.
    R. C. Gupta: Ancient Jaina Mathematics. Tempe (U.S.A.) 2004.Google Scholar
  7. 7.
    R. C. Gupta: “Techniques of Ancient Empirical Mathematics”, Indian Journal of History of Science, 45 (2010), pp. 63–100.MathSciNetzbMATHGoogle Scholar
  8. 8.
    R. C. Gupta: “Mahāvīra-Pherū Formula for the Surface of a Sphere and Some Other Empirical Rules”. I.J.H.S., 46 (2011), 639–657.Google Scholar
  9. 9.
    R. C. Gupta (=2011a): “A New Interpretation of the Ancient Chinese Rule for the Spherical Segment”, HPM Newsletter No. 77 (July 2011), pp. 1–5.Google Scholar
  10. 10.
    Takao Hayashi: “Calculations of the Surface of a Sphere in India”. The Science and Engineering Review of Doshisha Univ., 37(4) (Feb. 1997), 194–238.Google Scholar
  11. 11.
    T. L. Heath: A Manual of Greek Mathematics, Dover, New York, 1963.zbMATHGoogle Scholar
  12. 12.
    अनुपम जैन और सुरेशचन्द्र अग्रवाल: “महावीराचार्य (एक समीक्षात्मक अध्ययन)”, हस्तिनापुर (मेरठ), 1985.Google Scholar
  13. 13.
    L. C. Jain: महावीराचार्य देखें |Google Scholar
  14. 14.
    Jinamañjarī (U.S.A./Canada): Special Issue of Jain Mathematics, Vol. 19, No. 1, 1999.Google Scholar
  15. 15.
    Mahāvīrācārya: Gaṇita-sāra-saṅgraha (=GSS):Google Scholar
  16. (a) Edited with English Translation and Notes by M. Rangacharya, Madras, 1912;Google Scholar
  17. (b) Edited with Hindi Translation etc. by L. C. Jain (Sholapur, 1963);Google Scholar
  18. (c) Edited with (Rangacharya’s) English and her own Kannada Translation by Padmavathamma, Hombuja, 2000.Google Scholar
  19. 16.
    Y. Mikami: The Development of Mathematics in China and Japan, Chelsea, New York, 1961.zbMATHGoogle Scholar
  20. 17.
    Padmavathamma: See Mahāvīrācārya.Google Scholar
  21. 18.
    Pherū: See Ṭhakkura Pherū.Google Scholar
  22. 19.
    Rangacharya: See Mahāvīrācārya.Google Scholar
  23. 20.
    Sakhya: See Ṭhakkura Pherū.Google Scholar
  24. 21.
    R. S. Shah: Review of R. C. Gupta’s Ancient Jaina Mathematics, Gaṇita Bhāratī, 27 (2005), 139–144.Google Scholar
  25. 22.
    A. Simi and L. Toti Rigatelli: “Some Fourteenth and Fifteenth Centuries Texts on Practical Geometry”, pp. 453–470 in Vestigia Mathematica edited by M. Folkerts and J. P. Hogendijk, Amsterdam, 1993.Google Scholar
  26. 23.
    D. E. Smith and Y. Mikumi: A History of Japanese Mathematics, Dover, New York, 2004.Google Scholar
  27. 24.
    Ṭhakkura Pherū: Gaṇita-sāra-kaumudī edited with English Translation, Notes & etc. by SaKHYa, Manohar, New Delhi, 2009.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Cell for Indian Science and Technology in Sanskrit, Department of Humanities and Social SciencesIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations