Advertisement

Application of Plant-Microbe Interactions in Contaminated Agroecosystem Management

  • Fredrick Fidelis Umaru
  • Chikezie I. Owuama
Chapter

Abstract

Agroecosystem is often confronted with a variety of pollutants. The application of plant-microbe interactions in remedying the ecosystem is called phytoremediation. Within the rhizosphere, plant roots interact with microorganisms and the soil, and plants usually secrete substances which affect microbial growth. Some plant-microbe relationships are beneficial to the plant while others are not. However, these interactions largely ensure a healthy plant growth while eliminating plant pathogens from the soil either by separate or combined activities of the plant exudates and beneficial microbes. The nature of microbes associated with each plant is apparently related to the exudates and signal molecules emanating from the plant and the interactive signals of the microbes. Sometimes, the soil is contaminated either deliberately or inadvertently by a variety of chemicals and heavy metals. To control or eliminate these contaminants, chemical and physical means have largely been applied. Unfortunately, some of these control measures introduce their own contaminants thereby causing secondary contamination. This necessitates the need and application of eco-friendly and sustainable solar-driven technology, viz., phytoremediation, to restitute the soils. Microbe-plant interactions sometimes improve the absorptive capacity of the plant for contaminants. Some microbes modify soil contaminants by using organic acids, redox reactions, producing siderophores, metal chelators, biosurfactants, causing bioleaching, biosorption, and bioexclusion. These microbes-contaminants interactions boost the reduction of toxicity and elimination of contaminants via various phytoremediation processes, viz., phytostimulation, phytodegradation, phytoextraction/phytoaccumulation, phytostabilization, phytovolatilization, and rhizofiltration. Nevertheless, phytoremediation faces certain major challenges as regards to its commercial-scale application in the field. To overcome these limitations, it is essential to have a better understanding of the relationships among plant microbes, soil types, chemicals, and heavy metal contaminants within an agroecosystem. Besides, it is important to develop phyto-hyper-accumulators and super microbial solubilizers, for various soil types.

References

  1. Abhilash P, Powell JR, Singh HB, Singh BK (2012) Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30(8):416–420CrossRefGoogle Scholar
  2. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20CrossRefGoogle Scholar
  3. Ahmad F, Ahmad I, Khan M (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181CrossRefGoogle Scholar
  4. Al-Askar A, Rashad Y (2010) Arbuscular mycorrhizal fungi: a biocontrol agent against common bean fusarium root rot disease. Plant Pathol J 9(1):31–38CrossRefGoogle Scholar
  5. Amir H, Lagrange A, Hassaïne N, Cavaloc Y (2013) Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza 23(7):585–595CrossRefGoogle Scholar
  6. Antoun H, Prévost D (2005) Ecology of plant growth promoting rhizobacteria PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38Google Scholar
  7. Arthur EL, Rice PJ, Rice PJ, Anderson TA, Baladi SM, Henderson KL, Coats JR (2005) Phytoremediation—an overview. Crit Rev Plant Sci 24(2):109–122CrossRefGoogle Scholar
  8. Ashry NA, Mohamed HI (2012) Impact of secondary metabolites and related enzymes in flax resistance and/or susceptibility to powdery mildew. Afr J Biotechnol 11(5):1073–1077Google Scholar
  9. Bach E, dos Santos Seger GD, de Carvalho Fernandes G, Lisboa BB, Passaglia LMP (2016) Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Appl Soil Ecol 99:141–149CrossRefGoogle Scholar
  10. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32(6):666–681CrossRefGoogle Scholar
  11. Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20(6):642–650CrossRefGoogle Scholar
  12. Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav 7(1):79–85CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trend Plant Sci 9:26–32Google Scholar
  14. Bais HP, Weir TL, Perry LG, Gilroy S, Vivancohe JM (2006) The role of root exudates in Rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266Google Scholar
  15. Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biol Biochem 19(4):451–457CrossRefGoogle Scholar
  16. Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV et al (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22(5):583–588CrossRefGoogle Scholar
  17. Barea J, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P et al (1998) Impact on arbuscular mycorrhiza formation of pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64(6):2304–2307PubMedPubMedCentralGoogle Scholar
  18. Bauer WD, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7(4):429–433CrossRefGoogle Scholar
  19. Beolchini F, Dell’Anno A, De Propris L, Ubaldini S, Cerrone F, Danovaro R (2009) Auto-and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals. Chemosphere 74(10):1321–1326CrossRefGoogle Scholar
  20. Bhattacharyya P, Jha D (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350CrossRefGoogle Scholar
  21. Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2009) Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. Eur J Histochem 45(1):39–50CrossRefGoogle Scholar
  22. Birhane E, Sterck FJ, Fetene M, Bongers F, Kuyper TW (2012) Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169(4):895–904CrossRefPubMedPubMedCentralGoogle Scholar
  23. Biswas B, Sarkar B, Rusmin R, Naidu R (2015) Bioremediation of PAHs and VOCs: advances in clay mineral-microbial interaction. Environ Int 85:168–181CrossRefGoogle Scholar
  24. Bonilla A, Sarria A, Algar E, Ledesma FM, Solano BR, Fernandes J, Mañero FG (2014) Microbe associated molecular patterns from rhizosphere bacteria trigger germination and Papaver somniferum metabolism under greenhouse conditions. Plant Physiol Biochem 74:133–140CrossRefGoogle Scholar
  25. Braud A, Jézéquel K, Vieille E, Tritter A, Lebeau T (2006) Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water Air Soil Pollut: Focus 6(3):261–279CrossRefGoogle Scholar
  26. Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74(2):280–286CrossRefGoogle Scholar
  27. Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45(3):198–207CrossRefGoogle Scholar
  28. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838CrossRefGoogle Scholar
  29. Campanella BF, Bock C, Schröder P (2002) Phytoremediation to increase the degradation of PCBs and PCDD/Fs. Environ Sci Pollut Res 9(1):73–85CrossRefGoogle Scholar
  30. Castelfranco P, Foy CL, Deutsch DB (1961) Non-enzymatic detoxification of 2-chloro-4, 6-bis (ethylamino)-s-triazine (simazine) by extracts of Zea mays. Weeds 9:580–591Google Scholar
  31. Castro MS, Fontes W (2005) Plant defense and antimicrobial peptides. Protein Pept Lett 12(1):11–16CrossRefGoogle Scholar
  32. Cavagnaro TR, Bender SF, Asghari HR, van der Heijden MG (2015) The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci 20(5):283–290CrossRefGoogle Scholar
  33. Cha, C., Gao, P., Chen, Y.-C., and Shaw, P. D. (1998). Farrand SK 1998. Production of acyl-homoserine lactone quorum-sensing signals by Gram-negative plant-associated bacteria. Mol Plant-Microbe Interact, 11, 1119–1129CrossRefGoogle Scholar
  34. Chagnon P-L, Bradley RL (2015) The relative importance of host vigor and hormonal response to pathogens in controlling the development of arbuscular mycorrhizal fungi. Soil Biol Biochem 83:40–42CrossRefGoogle Scholar
  35. Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8(2):e55731CrossRefPubMedPubMedCentralGoogle Scholar
  36. Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 25(10):1829–1836CrossRefGoogle Scholar
  37. Chen YX, Wang YP, Lin Q, Luo YM (2005) Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environ Int 31(6):861–866CrossRefGoogle Scholar
  38. Chernin L, Toklikishvili N, Ovadis M, Kim S, Ben-Ari J, Khmel I, Vainstein A (2011) Quorum-sensing quenching by rhizobacterial volatiles. Environ Microbiol Rep 3(6):698–704CrossRefGoogle Scholar
  39. Chojnacka K (2010) Biosorption and bioaccumulation–the prospects for practical applications. Environ Int 36(3):299–307CrossRefGoogle Scholar
  40. Coleman J, Blake-Kalff M, Davies E (1997) Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci 2(4):144–151CrossRefGoogle Scholar
  41. Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149(3):1579–1592CrossRefPubMedPubMedCentralGoogle Scholar
  42. Crowley DE, Kraemer SM (2007) Function of siderophores in the plant rhizosphere. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface, 2nd edn. CRC Press, Boca Raton, pp 173–200Google Scholar
  43. Cruz-Hernández A, Tomasini-Campocosio A, Pérez-Flores L, Fernández-Perrino F, Gutiérrez-Rojas M (2013) Inoculation of seed-borne fungus in the rhizosphere of Festuca arundinacea promotes hydrocarbon removal and pyrene accumulation in roots. Plant Soil 362(1–2):261–270CrossRefGoogle Scholar
  44. da Costa PB, Granada CE, Ambrosini A, Moreira F, de Souza R, dos Passos JFM et al (2014) A model to explain plant growth promotion traits: a multivariate analysis of 2,211 bacterial isolates. PloS One 9(12):e116020CrossRefPubMedPubMedCentralGoogle Scholar
  45. Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245(1):35–47CrossRefGoogle Scholar
  46. Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28(3):261–289CrossRefGoogle Scholar
  47. Das A, Prasad R, Srivastava A, Giang PH, Bhatnagar K, Varma A (2007) Fungal siderophores: structure, functions and regulations. In: Varma A, Chincholkar SB (eds) Microbial Siderophores, vol 12. Springer-Verlag, Berlin Heidelberg, pp 1–42CrossRefGoogle Scholar
  48. Del Fabbro C, Prati D (2014) Early responses of wild plant seedlings to arbuscular mycorrhizal fungi and pathogens. Basic Appl Ecol 15(6):534–542CrossRefGoogle Scholar
  49. Delvasto P, Ballester A, Muñoz J, González F, Blázquez M, Igual J et al (2009) Mobilization of phosphorus from iron ore by the bacterium Burkholderia caribensis FeGL03. Miner Eng 22(1):1–9CrossRefGoogle Scholar
  50. Dewey F, Wong YL, Seery R, Hollins T, Gurr S (1999) Bacteria associated with Stagonospora (Septoria) nodorum increase pathogenicity of the fungus. New Phytol 144(3):489–497CrossRefGoogle Scholar
  51. Di Gregorio S, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 31(2):233–241CrossRefGoogle Scholar
  52. Dimkpa C, Merten D, Svatoš A, Büchel G, Kothe E (2009a) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107(5):1687–1696CrossRefGoogle Scholar
  53. Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009b) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41(1):154–162CrossRefGoogle Scholar
  54. Djonović S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant-Microbe Interact 19(8):838–853CrossRefGoogle Scholar
  55. Dong Y-H, Wang L-H, Xu J-L, Zhang H-B, Zhang X-F, Zhang L-H (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411(6839):813–817CrossRefGoogle Scholar
  56. Doornbos RF, van Loon LC, Bakker PA (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32(1):227–243CrossRefGoogle Scholar
  57. Drogue B, Doré H, Borland S, Wisniewski-Dyé F, Prigent-Combaret C (2012) Which specificity in cooperation between phytostimulating rhizobacteria and plants? Res Microbiol 163(8):500–510CrossRefGoogle Scholar
  58. Eapen S, Singh S, D'souza S (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25(5):442–451CrossRefGoogle Scholar
  59. Esedafe WK, Fagade EO, Umaru FF, Akinwotu O (2015) Bacterial degradation of the polycyclic aromatic hydrocarbon (PAH) -fraction of refinery effluent. Int J Environ Bioremediation Biodegradation 3(1):23–27Google Scholar
  60. Evangelou MW, Ebel M, Schaeffer A (2006) Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere 63(6):996–1004CrossRefGoogle Scholar
  61. Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213(1):1–6CrossRefGoogle Scholar
  62. Fester T, Giebler J, Wick LY, Schlosser D, Kästner M (2014) Plant–microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants. Curr Opin Biotechnol 27:168–175CrossRefGoogle Scholar
  63. Fomina M, Alexander I, Hillier S, Gadd G (2004) Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiol J 21(5):351–366CrossRefGoogle Scholar
  64. Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122(2):109–119CrossRefGoogle Scholar
  65. Gadkar V, Rillig MC (2006) The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiol Lett 263(1):93–101CrossRefGoogle Scholar
  66. Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14(3):185–192CrossRefGoogle Scholar
  67. Gao Y, Cheng Z, Ling W, Huang J (2010) Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots. Bioresour Technol 101(18):6895–6901CrossRefGoogle Scholar
  68. Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176(1):20–30CrossRefGoogle Scholar
  69. Glick BR (2004) Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol 56:291–312CrossRefGoogle Scholar
  70. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374CrossRefGoogle Scholar
  71. Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15(2):353–378CrossRefGoogle Scholar
  72. Goh H-H, Sloan J, Malinowski R, Fleming A (2014) Variable expansin expression in Arabidopsis leads to different growth responses. J Plant Physiol 171(3):329–339CrossRefGoogle Scholar
  73. Goicoechea N, Antolin M, Sánchez-Díaz M (1997) Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol Plant 100(4):989–997CrossRefGoogle Scholar
  74. González-Teuber M, Pozo MJ, Muck A, Svatos A, Adame-Alvarez RM, Heil M (2010) Glucanases and chitinases as causal agents in the protection of Acacia extrafloral nectar from infestation by phytopathogens. Plant Physiol 152(3):1705–1715CrossRefGoogle Scholar
  75. Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F et al (1997) Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 53(2):133–162CrossRefGoogle Scholar
  76. Guo W, Zhao R, Zhao W, Fu R, Guo J, Bi N, Zhang J (2013) Effects of arbuscular mycorrhizal fungi on maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) grown in rare earth elements of mine tailings. Appl Soil Ecol 72:85–92CrossRefGoogle Scholar
  77. Habibzadeh Y, Pirzad A, Zardashti MR, Jalilian J, Eini O (2013) Effects of arbuscular mycorrhizal fungi on seed and protein yield under water-deficit stress in mung bean. Agron J 105(1):79–84CrossRefGoogle Scholar
  78. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2(1):43–56CrossRefGoogle Scholar
  79. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9(3):177–192CrossRefGoogle Scholar
  80. Hartmann A, Schmid M, Van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321(1–2):235–257CrossRefGoogle Scholar
  81. Hashem A, Abd_Allah EF, Alqarawi AA, Aldubise A, Egamberdieva D (2015) Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. J Plant Interact 10(1):230–242CrossRefGoogle Scholar
  82. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598CrossRefGoogle Scholar
  83. Henke C, Jung E-M, Kothe E (2015) Hartig’ net formation of Tricholoma vaccinum-spruce ectomycorrhiza in hydroponic cultures. Environ Sci Pollut Res 22(24):19394–19399CrossRefGoogle Scholar
  84. Hodge A, Storer K (2015) Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386(1–2):1–19CrossRefGoogle Scholar
  85. Hofmann NR (2013) Volatile organic compounds: a bacterial contribution to plant sulfur nutrition. Am Soc Plant Biologist 25:2381Google Scholar
  86. Jaiti F, Meddich A, El Hadrami I (2007) Effectiveness of arbuscular mycorrhizal fungi in the protection of date palm (Phoenix dactylifera L.) against bayoud disease. Physiol Mol Plant Pathol 71(4):166–173CrossRefGoogle Scholar
  87. Jalloh A, Roy-Macauley H, Sereme P (2012) Major agro-ecosystems of West and Central Africa: brief description, species richness, management, environmental limitations and concerns. Agric Ecosyst Environ 157:5–16CrossRefGoogle Scholar
  88. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea J-M (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37(1):1–16Google Scholar
  89. Jianfeng H, Xiangui L, Rui Y, Jiang Q, Yufang S (2009) Effects of arbuscular mycorrhizal fungi inoculation on arsenic accumulation by tobacco (Nicotiana tabacum L.). J Environ Sci 21(9):1214–1220CrossRefGoogle Scholar
  90. Johansson EM, Fransson PM, Finlay RD, van Hees PA (2008) Quantitative analysis of exudates from soil-living basidiomycetes in pure culture as a response to lead, cadmium and arsenic stress. Soil Biol Biochem 40(9):2225–2236CrossRefGoogle Scholar
  91. Joner EJ, Leyval C, Colpaert JV (2006) Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere. Environ Pollut 142(1):34–38CrossRefGoogle Scholar
  92. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329CrossRefPubMedPubMedCentralGoogle Scholar
  93. Jones D, Edwards A (1998) Influence of sorption on the biological utilization of two simple carbon substrates. Soil Biol Biochem 30(14):1895–1902CrossRefGoogle Scholar
  94. Jones D, Dennis P, Owen A, Van Hees P (2003) Organic acid behavior in soils–misconceptions and knowledge gaps. Plant Soil 248(1–2):31–41CrossRefGoogle Scholar
  95. Juwarkar AA, Jambhulkar HP (2008) Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Bioresour Technol 99(11):4732–4741CrossRefGoogle Scholar
  96. Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81(6):1001–1012CrossRefGoogle Scholar
  97. Kaymak HC (2010) Potential of PGPR in agricultural innovations. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, Springer, Berlin, pp 45–79Google Scholar
  98. Khalafallah AA, Abo-Ghalia HH (2008) Effect of arbuscular mycorrhizal fungi on the metabolic products and activity of antioxidant system in wheat plants subjected to short-term water stress, followed by recovery at different growth stages. J Appl Sci Res 4(5):559–569Google Scholar
  99. Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7(1):1–19CrossRefGoogle Scholar
  100. Khaosaad T, Garcia-Garrido J, Steinkellner S, Vierheilig H (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39(3):727–734CrossRefGoogle Scholar
  101. Kim S, Lim H, Lee I (2010) Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates. J Biosci Bioeng 109(1):47–50CrossRefGoogle Scholar
  102. Kiss T, Farkas E (1998) Metal-binding ability of desferrioxamine B. J Incl Phenom Mol Recognit Chem 32(2–3):385–403CrossRefGoogle Scholar
  103. Kletzin A (2007) Metabolism of inorganic sulfur compounds in archaea. In: Archaea: evolution, physiology, and molecular biology, pp 261–274Google Scholar
  104. Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7(2):39–44CrossRefGoogle Scholar
  105. Krapp A (2015) Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr Opin Plant Biol 25:115–122CrossRefGoogle Scholar
  106. Krupa P, Kozdrój J (2007) Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings. Water Air Soil Pollut 182(1–4):83–90CrossRefGoogle Scholar
  107. Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304(1–2):35–44CrossRefGoogle Scholar
  108. Kuffner, M., De Maria, S., Puschenreiter, M., Fallmann, K., Wieshammer, G., Gorfer, M., Sessitsch, A. (2010). Culturable bacteria from Zn-and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol, 108(4), 1471–1484CrossRefGoogle Scholar
  109. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant-Microbe Interact 17(1):6–15CrossRefGoogle Scholar
  110. Kumar RN, Nagendran R (2009) Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans. J Hazard Mater 169(1):1119–1126CrossRefGoogle Scholar
  111. Kurepin LV, Park JM, Lazarovits G, Bernards MA (2015) Burkholderia phytofirmans-induced shoot and root growth promotion is associated with endogenous changes in plant growth hormone levels. Plant Growth Regul 75(1):199–207CrossRefGoogle Scholar
  112. Lau JA, Lennon JT (2011) Evolutionary ecology of plant–microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192(1):215–224CrossRefGoogle Scholar
  113. Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153(3):497–522CrossRefGoogle Scholar
  114. Li W, Ye Z, Wong M (2010) Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii. Plant Soil 326(1–2):453–467CrossRefGoogle Scholar
  115. Li H-Y, Wei D-Q, Shen M, Zhou Z-P (2012) Endophytes and their role in phytoremediation. Fungal Divers 54(1):11–18.  https://doi.org/10.1007/s13225-012-0165-x CrossRefGoogle Scholar
  116. Linderman RG (1992) Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Mycorrhizae in sustainable agriculture (mycorrhizaeinsu). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, pp 45–70Google Scholar
  117. Lioussanne L, Jolicoeur M, St-Arnaud M (2009) Role of the modification in root exudation induced by arbuscular mycorrhizal colonization on the intraradical growth of Phytophthora nicotianae in tomato. Mycorrhiza 19(6):443–448CrossRefGoogle Scholar
  118. Liu D, Li S, Islam E, Chen JR, Wu JS, Ye ZQ et al (2015a) Lead accumulation and tolerance of Moso bamboo (Phyllostachys pubescens) seedlings: applications of phytoremediation. J Zhejiang Univ Sci B 16(2):123–130CrossRefPubMedPubMedCentralGoogle Scholar
  119. Liu H, Yuan M, Tan S, Yang X, Lan Z, Jiang Q et al (2015b) Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Appl Soil Ecol 89:44–49CrossRefGoogle Scholar
  120. Loh J, Carlson RW, York WS, Stacey G (2002) Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proc Natl Acad Sci 99(22):14446–14451CrossRefGoogle Scholar
  121. Lopez-Bucio J, Nieto-Jacobo MF, Ramırez-Rodrıguez V, Herrera-Estrella L (2000) Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci 160(1):1–13CrossRefGoogle Scholar
  122. Luo Q, Sun L, Hu X, Zhou R (2014a) The variation of root exudates from the hyperaccumulator Sedum alfredii under cadmium stress: metabonomics analysis. PLoS One 9(12):e115581CrossRefPubMedPubMedCentralGoogle Scholar
  123. Luo Z-B, Wu C, Zhang C, Li H, Lipka U, Polle A (2014b) The role of ectomycorrhizas in heavy metal stress tolerance of host plants. Environ Exp Bot 108:47–62CrossRefGoogle Scholar
  124. Ma Y, Prasad M, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258CrossRefGoogle Scholar
  125. Ma Y, Oliveira RS, Wu L, Luo Y, Rajkumar M, Rocha I, Freitas H (2015) Inoculation with metal-mobilizing plant-growth-promoting rhizobacterium Bacillus sp. SC2b and its role in rhizoremediation. J Toxic Environ Health A 78(13–14):931–944CrossRefGoogle Scholar
  126. Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:19Google Scholar
  127. Machuca A, Pereira G, Aguiar A, Milagres A (2007) Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Lett Appl Microbiol 44(1):7–12CrossRefGoogle Scholar
  128. Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69(2):220–228CrossRefGoogle Scholar
  129. Maillet F, Poinsot V, Andre O, Puech-Pagès V, Haouy A, Gueunier M et al (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469(7328):58–63CrossRefGoogle Scholar
  130. Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5(4):359–368CrossRefPubMedPubMedCentralGoogle Scholar
  131. Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11(3):843–872CrossRefGoogle Scholar
  132. Martínez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10(3):293–319CrossRefGoogle Scholar
  133. Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35(1):133–141CrossRefGoogle Scholar
  134. McCutcheon S, Schnoor J, Wolfe N, Carreira L (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29(7):318A–323ACrossRefGoogle Scholar
  135. McMichael A, Butler C, Dixon J (2015) Climate change, food systems and population health risks in their eco-social context. Public Health 129(10):1361–1368CrossRefGoogle Scholar
  136. Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3(2):153–162CrossRefGoogle Scholar
  137. Meding SM, Zasoski RJ (2008) Hyphal-mediated transfer of nitrate, arsenic, cesium, rubidium, and strontium between arbuscular mycorrhizal forbs and grasses from a California oak woodland. Soil Biol Biochem 40(1):126–134CrossRefGoogle Scholar
  138. Meier S, Azcón R, Cartes P, Borie F, Cornejo P (2011) Alleviation of Cu toxicity in Oenothera picensis by copper-adapted arbuscular mycorrhizal fungi and treated agrowaste residue. Appl Soil Ecol 48(2):117–124CrossRefGoogle Scholar
  139. Meier S, Alvear M, Borie F, Aguilera P, Ginocchio R, Cornejo P (2012a) Influence of copper on root exudate patterns in some metallophytes and agricultural plants. Ecotoxicol Environ Saf 75:8–15CrossRefGoogle Scholar
  140. Meier S, Borie F, Bolan N, Cornejo P (2012b) Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Technol 42(7):741–775CrossRefGoogle Scholar
  141. Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12(4):563–569PubMedGoogle Scholar
  142. Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29(6):645–653Google Scholar
  143. Mishra A, Malik A (2013) Recent advances in microbial metal bioaccumulation. Crit Rev Environ Sci Technol 43(11):1162–1222CrossRefGoogle Scholar
  144. Mulligan CN, Galvez-Cloutier R (2003) Bioremediation of metal contamination. Environ Monit Assess 84(1–2):45–60CrossRefGoogle Scholar
  145. Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448CrossRefGoogle Scholar
  146. Najafi A, Ardakani MR, Rejali F, Sajedi N (2012) Response of winter barley to co-inoculation with Azotobacter and Mycorrhiza fungi influenced by plant growth promoting rhizobacteria. Ann Biol Res 3:4002–4006Google Scholar
  147. Navarro CA, von Bernath D, Jerez CA (2013) Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation. Biol Res 46(4):363–371CrossRefGoogle Scholar
  148. Neilands J (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726CrossRefPubMedPubMedCentralGoogle Scholar
  149. Neubauer U, Furrer G, Kayser A, Schulin R (2000) Siderophores, NTA, and citrate: potential soil amendments to enhance heavy metal mobility in phytoremediation. Int J Phytoremediation 2(4):353–368CrossRefGoogle Scholar
  150. Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211(1):121–130CrossRefGoogle Scholar
  151. Newman M-A, Sundelin T, Nielsen JT, Erbs G (2013) MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci 4:139CrossRefPubMedPubMedCentralGoogle Scholar
  152. Oláh B, Brière C, Bécard G, Dénarié J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44(2):195–207CrossRefPubMedPubMedCentralGoogle Scholar
  153. Orłowska E, Przybyłowicz W, Orlowski D, Mongwaketsi NP, Turnau K, Mesjasz-Przybyłowicz J (2013) Mycorrhizal colonization affects the elemental distribution in roots of Ni-hyperaccumulator Berkheya coddii Roessler. Environ Pollut 175:100–109CrossRefPubMedPubMedCentralGoogle Scholar
  154. Ortiz N, Armada E, Duque E, Roldán A, Azcón R (2015) Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. J Plant Physiol 174:87–96CrossRefPubMedPubMedCentralGoogle Scholar
  155. Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4(8):701–712CrossRefPubMedPubMedCentralGoogle Scholar
  156. Pathak A, Dastidar M, Sreekrishnan T (2009) Bioleaching of heavy metals from sewage sludge: a review. J Environ Manag 90(8):2343–2353CrossRefGoogle Scholar
  157. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68(8):3795–3801CrossRefPubMedPubMedCentralGoogle Scholar
  158. Pérez-Esteban J, Escolástico C, Moliner A, Masaguer A (2013) Chemical speciation and mobilization of copper and zinc in naturally contaminated mine soils with citric and tartaric acids. Chemosphere 90(2):276–283CrossRefGoogle Scholar
  159. Pérez-Montaño F, Guasch-Vidal B, González-Barroso S, López-Baena FJ, Cubo T, Ollero FJ et al (2011) Nodulation-gene-inducing flavonoids increase overall production of autoinducers and expression of N-acyl homoserine lactone synthesis genes in rhizobia. Res Microbiol 162(7):715–723CrossRefGoogle Scholar
  160. Pérez-Montaño F, Jiménez-Guerrero I, Sánchez-Matamoros RC, López-Baena FJ, Ollero FJ, Rodríguez-Carvajal MA et al (2013) Rice and bean AHL-mimic quorum-sensing signals specifically interfere with the capacity to form biofilms by plant-associated bacteria. Res Microbiol 164(7):749–760CrossRefGoogle Scholar
  161. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39CrossRefGoogle Scholar
  162. Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant Growth-Promoting Rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Switzerland, pp 247–260Google Scholar
  163. Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, Varma A (2017) Introduction to mycorrhiza: historical development. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer International Publishing AG, pp 1–7Google Scholar
  164. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149CrossRefGoogle Scholar
  165. Rajkumar M, Sandhya S, Prasad M, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574CrossRefPubMedPubMedCentralGoogle Scholar
  166. Rajkumar M, Prasad MNV, Swaminathan S, Freitas H (2013) Climate change driven plant–metal–microbe interactions. Environ Int 53:74–86CrossRefGoogle Scholar
  167. Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IM, Oves M (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41CrossRefGoogle Scholar
  168. Ren D, Sims JJ, Wood TK (2001) Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2 (5H)-furanone. Environ Microbiol 3(11):731–736CrossRefGoogle Scholar
  169. Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339CrossRefGoogle Scholar
  170. Rillig MC, Maestre FT, Lamit LJ (2003) Microsite differences in fungal hyphal length, glomalin, and soil aggregate stability in semiarid Mediterranean steppes. Soil Biol Biochem 35(9):1257–1260CrossRefGoogle Scholar
  171. Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148(3):1547–1556CrossRefPubMedPubMedCentralGoogle Scholar
  172. Ruíz-Sánchez M, Armada E, Muñoz Y, de Salamone IEG, Aroca R, Ruíz-Lozano JM, Azcón R (2011) Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168(10):1031–1037CrossRefGoogle Scholar
  173. Ryu C-M, Farag MA, Hu C-H, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–1026CrossRefPubMedPubMedCentralGoogle Scholar
  174. Saharan B, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21(1):30Google Scholar
  175. Sandermann H Jr (1994) Higher plant metabolism of xenobiotics: the ‘green liver’concept. Pharmacogenet Genomics 4(5):225–241CrossRefGoogle Scholar
  176. Saravanan V, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66(9):1794–1798Google Scholar
  177. Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005) Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol Res 109(7):789–794CrossRefGoogle Scholar
  178. Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141(1):1–26CrossRefGoogle Scholar
  179. Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24(4):814–842CrossRefGoogle Scholar
  180. Seeger EM, Reiche N, Kuschk P, Borsdorf H, Kaestner M (2011) Performance evaluation using a three compartment mass balance for the removal of volatile organic compounds in pilot scale constructed wetlands. Environ Sci Technol 45(19):8467–8474CrossRefGoogle Scholar
  181. Sennoi R, Singkham N, Jogloy S, Boonlue S, Saksirirat W, Kesmala T, Patanothai A (2013) Biological control of southern stem rot caused by Sclerotium rolfsii using Trichoderma harzianum and arbuscular mycorrhizal fungi on Jerusalem artichoke (Helianthus tuberosus L.). Crop Prot 54:148–153CrossRefGoogle Scholar
  182. Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194CrossRefPubMedPubMedCentralGoogle Scholar
  183. Sharma A, Johri B, Sharma A, Glick B (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP 3 influences iron acquisition in mung bean (Vigna radiata L. Wilczek). Soil Biol Biochem 35(7):887–894CrossRefGoogle Scholar
  184. Sharma S, Prasad R, Varma A, Sharma AK (2017) Glycoprotein associated with Funneliformis coronatum, Gigaspora margarita and Acaulospora scrobiculata suppress the plant pathogens in vitro. Asian J Plant Pathol.  https://doi.org/10.3923/ajppaj.2017
  185. Sheng X, He L, Wang Q, Ye H, Jiang C (2008) Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. J Hazard Mater 155(1):17–22CrossRefGoogle Scholar
  186. Shi J-Y, Lin H-R, Yuan X-F, Chen X-C, Shen C-F, Chen Y-X (2011) Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur. Molecules 16(2):1409–1417CrossRefPubMedPubMedCentralGoogle Scholar
  187. Shirmardi M, Savaghebi GR, Khavazi K, Akbarzadeh A, Farahbakhsh M, Rejali F, Sadat A (2010) Effect of microbial inoculants on uptake of nutrient elements in two cultivars of sunflower (Helianthus annuus L.) in saline soils. Notulae Sci Biol 2(3):57CrossRefGoogle Scholar
  188. Siebers M, Brands M, Wewer V, Duan Y, Hölzl G, Dörmann P (2016) Lipids in plant–microbe interactions. Biochim Biophys Acta (BBA) – Mol Cell Biol Lipids 1861(9 Part B):1379–1395CrossRefGoogle Scholar
  189. Singh JS (2015) Microbes: the chief ecological engineers in reinstating equilibrium in degraded ecosystems. Agric Ecosyst Environ 203:80–82CrossRefGoogle Scholar
  190. Singh JS, Abhilash P, Gupta VK (2016) Agriculturally important microbes in sustainable food production. Trends Biotechnol 34(10):773CrossRefGoogle Scholar
  191. Sinha S, Mukherjee SK (2008) Cadmium–induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56(1):55–60CrossRefGoogle Scholar
  192. Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic, OxfordGoogle Scholar
  193. Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326(1–2):3–20CrossRefGoogle Scholar
  194. Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156(3):1050–1057CrossRefPubMedPubMedCentralGoogle Scholar
  195. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4):a001438CrossRefPubMedPubMedCentralGoogle Scholar
  196. Spanu PD, Panstruga R (2017) Editorial: biotrophic plant-microbe interactions. Front Plant Sci 8:4CrossRefGoogle Scholar
  197. Srivastava J, Naraian R, Kalra SJS, Chandra H (2014) Advances in microbial bioremediation and the factors influencing the process. Int J Environ Sci Technol 11(6):1787–1800CrossRefGoogle Scholar
  198. Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint J-P, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12(7):1290–1306CrossRefPubMedPubMedCentralGoogle Scholar
  199. Sun Y, Ling W, Liu J, Zong J (2012) Effects of arbuscular mycorrhizal fungi on the uptake of phenanthrene and pyrene by Alfalfa. J Agro-Environ Sci 31(10):1920–1926Google Scholar
  200. Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71(12):8500–8505CrossRefPubMedPubMedCentralGoogle Scholar
  201. Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. J Basic Microbiol 49(2):195–204CrossRefGoogle Scholar
  202. U.S. Department of Health and Human Services, A. f. T. S. a. D. R. A (2015) ATSDR’s substance priority list. Retrieved 5/05/2017 http://www.atsdr.cdc.gov/cercla/07list.html
  203. Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356CrossRefPubMedPubMedCentralGoogle Scholar
  204. Van Aken B (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol 26(5):225–227CrossRefGoogle Scholar
  205. Van Aken B, Yoon JM, Schnoor JL (2004) Biodegradation of nitro-substituted explosives 2, 4, 6-trinitrotoluene, hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine, and octahydro-1, 3, 5, 7-tetranitro-1, 3, 5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides× nigra DN34). Appl Environ Microbiol 70(1):508–517CrossRefPubMedPubMedCentralGoogle Scholar
  206. Van Aken B, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44(8):2767CrossRefPubMedPubMedCentralGoogle Scholar
  207. van Loon LC (2016) The intelligent behavior of plants. Trends Plant Sci 21(4):286–294CrossRefGoogle Scholar
  208. Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, Van der Lelie D, Mench M (2009) Phyto-remediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794CrossRefGoogle Scholar
  209. Vansuyt G, Robin A, Briat J-F, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant-Microbe Interact 20(4):441–447CrossRefGoogle Scholar
  210. Varnier AL, Sanchez L, Vatsa P, Boudesocque L, Garcia-Brugger A, Rabenoelina F et al (2009) Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ 32(2):178–193CrossRefGoogle Scholar
  211. Velásquez L, Dussan J (2009) Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J Hazard Mater 167(1):713–716CrossRefGoogle Scholar
  212. Venkatesh NM, Vedaraman N (2012) Remediation of soil contaminated with copper using rhamnolipids produced from Pseudomonas aeruginosa MTCC 2297 using waste frying rice bran oil. Ann Microbiol 62(1):85–91CrossRefGoogle Scholar
  213. Vijayan R, Palaniappan P, Tongmin S, Elavarasi P, Manoharan N (2013) Rhizobitoxine enhances nodulation by inhibiting ethylene synthesis of Bradyrhizobium elkanii from Lespedeza species: validation by homology modeling and molecular docking study. World J Pharm Pharm Sci 2:4079–4094Google Scholar
  214. Vimal SR, Singh JS, Arora NK, Singh S (2017) Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere 27(2):177–192CrossRefGoogle Scholar
  215. Vivas A, Biro B, Ruiz-Lozano J, Barea J, Azcon R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62(9):1523–1533CrossRefGoogle Scholar
  216. von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41(1):455–482CrossRefGoogle Scholar
  217. von Rad U, Klein I, Dobrev PI, Kottova J, Zazimalova E, Fekete A et al (2008) Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229(1):73–85CrossRefGoogle Scholar
  218. Vos C, Tesfahun A, Panis B, De Waele D, Elsen A (2012) Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Appl Soil Ecol 61:1–6CrossRefGoogle Scholar
  219. Vymazal J (2011) Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia 674(1):133–156CrossRefGoogle Scholar
  220. Wong J, Xiang L, Gu X, Zhou L (2004) Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS 2 as an energy source. Chemosphere 55(1):101–107CrossRefGoogle Scholar
  221. Xie H, Pasternak J, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr Microbiol 32(2):67–71CrossRefGoogle Scholar
  222. Xiong K, Fuhrmann J (1996) Comparison of rhizobitoxine-induced inhibition of β-cystathionase from different bradyrhizobia and soybean genotypes. Plant Soil 186(1):53–61CrossRefGoogle Scholar
  223. Younesi O, Moradi A, Namdari A (2013) Influence of arbuscular mycorrhiza on osmotic adjustment compounds and antioxidant enzyme activity in nodules of salt-stressed soybean (Glycine max). Acta Agric Slov 101(2):219CrossRefGoogle Scholar
  224. Yuan S, Xi Z, Jiang Y, Wan J, Wu C, Zheng Z, Lu X (2007) Desorption of copper and cadmium from soils enhanced by organic acids. Chemosphere 68(7):1289–1297CrossRefGoogle Scholar
  225. Yuan S, Li M, Fang Z, Liu Y, Shi W, Pan B et al (2016) Biological control of tobacco bacterial wilt using Trichoderma harzianum amended bioorganic fertilizer and the arbuscular mycorrhizal fungi Glomus mosseae. Biol Control 92:164–171CrossRefGoogle Scholar
  226. Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98(13):2557–2561CrossRefGoogle Scholar
  227. Zhang LH, Dong YH (2004) Quorum sensing and signal interference: diverse implications. Mol Microbiol 53(6):1563–1571CrossRefGoogle Scholar
  228. Zhang J, Subramanian S, Zhang Y, Yu O (2007) Flavone synthases from Medicago truncatula are flavanone-2-hydroxylases and are important for nodulation. Plant Physiol 144(2):741–751CrossRefPubMedPubMedCentralGoogle Scholar
  229. Zhao F, Hamon R, McLaughlin MJ (2001) Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytol 151(3):613–620CrossRefGoogle Scholar
  230. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23(4):283–333CrossRefGoogle Scholar
  231. Zhipeng W, Weidong W, Shenglu Z, Shaohua W (2016) Mycorrhizal inoculation affects Pb and Cd accumulation and translocation in Pakchoi (Brassica chinensis L.). Pedosphere 26(1):13–26CrossRefGoogle Scholar
  232. Zikmundova M, Drandarov K, Bigler L, Hesse M, Werner C (2002) Biotransformation of 2-benzoxazolinone and 2-hydroxy-1, 4-benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona. Appl Environ Microbiol 68(10):4863–4870CrossRefPubMedPubMedCentralGoogle Scholar
  233. Zong K, Huang J, Nara K, Chen Y, Shen Z, Lian C (2015) Inoculation of ectomycorrhizal fungi contributes to the survival of tree seedlings in a copper mine tailing. J For Res 20(6):493–500CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Fredrick Fidelis Umaru
    • 1
  • Chikezie I. Owuama
    • 2
  1. 1.Department of Biological Sciences, Faculty of ScienceTaraba State UniversityJalingoNigeria
  2. 2.Department of Microbiology, School of Life SciencesModibbo Adama University of TechnologyYolaNigeria

Personalised recommendations