Advertisement

The Importance of Plant-Microbe Interaction for the Bioremediation of Dyes and Heavy Metals

  • Varsha Dogra
  • Gurpreet KaurEmail author
  • Rajeev KumarEmail author
  • Chander Prakash
Chapter

Abstract

Heavy metals and dyes are released from different industries which cause adverse effects on the environment. It is a persistent problem because metals are not biodegradable. Conventional treatment of heavy metals and dyes is not cost-effective and also produces large amounts of hazardous waste and mud. Plant-microbe synergism is an essential portion of our earthly bionetwork; recently many researchers have explored this field to understand the plant-microbe-heavy metal/dye interactions. These interactions have many applications in the field of phytoremediation technology. The technique rhizorestitution is a particular type of phytoremediation that can solve the problems of sites contaminated with heavy metals and dyes. Rhizospheric and endophytic microbiome connected with plant system have the potential of biodegrading the organic compounds in the contaminated site. Potential metabolites such as 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indole-3-acetic acid (IAA), organic acids, some volatiles, etc. are synthesized by plant-associated microorganisms (e.g., mycorrhizae, bacteria); these metabolites are involved in many biogeochemical progressions which operate in rhizoplane and rhizospheric zone. Plant-associated microbes have acidifying reduction and chelating power. Plant-microbe interactions enhance the uptake of heavy metals using many biological and geochemical processes, which mainly includes uptake, translocation, immobilization, chelation, precipitation, solubilization, volatilization, and complex formation of heavy metals, and finally lead to phytorestitution. In general, the plant-microbe interaction increases the effectiveness of phytoremediation process by altering the heavy metal gathering or accumulation and dye in plant tissue parts. In this chapter, we are focusing on the different types of plant-microbe interactions for the bioremediation of synthetic dyes and different types of heavy metals. Focus will be on different plant-microbe interaction-based bioremediation methods to eliminate the dyes and heavy metals in polluted sites.

Notes

Acknowledgment

Gurpreet Kaur is thankful to the Department of Science and Technology for Award of Inspire Faculty (IFA-12-CH-41) and PURSE Grant II. Rajeev Kumar is thankful to DST, SERB/F/8171/2015-16, as well as UGC (F. No. 194-2/2016 IC) for providing financial support. Varsha Dogra is thankful to UGC for Junior Research Fellowship.

References

  1. Abhilash PC, Powell JR, Singh HB, Singh BK (2012) Plant-microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30:416–420CrossRefGoogle Scholar
  2. Abou-Shanab RA, Delorme TA, Angle JS, Chaney RL, Ghanem K, Moawad H (2003) Phenotypic characterization of microbes in the rhizosphere of Alyssum murale. Int J Phytoremediation 5:367–379CrossRefGoogle Scholar
  3. Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889CrossRefGoogle Scholar
  4. Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362CrossRefGoogle Scholar
  5. Aslantas R, Cakmakci R, Sahin F (2007) Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci Hortic 11:371–377CrossRefGoogle Scholar
  6. Barak RI, Nur IS, Okon YA, Henis YI (1982) Aerotactic response of Azospirillum brasilense. J Bacteriol 152:643–649PubMedPubMedCentralGoogle Scholar
  7. Barak R, Nur I, Okon Y (1983) Detection of chemotaxis in Azospirillum brasilense. J Appl Bacteriol 54:399–403CrossRefGoogle Scholar
  8. Baskaralingam P, Pulikesi M, Elango D, Ramamurthi V, Sivanesan S (2006) Adsorption of acid dye onto organobentonite. J Hazard Mater 128:138–144CrossRefGoogle Scholar
  9. Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423CrossRefGoogle Scholar
  10. Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319PubMedPubMedCentralGoogle Scholar
  11. Boddey RM, Baldani VL, Baldani JI, Döbereiner J (1986) Effect of inoculation of Azospirillum spp. on nitrogen accumulation by field-grown wheat. Plant Soil 95:109–121CrossRefGoogle Scholar
  12. Bonkowski M, Villenave C, Griffiths B (2009) Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321:213–233CrossRefGoogle Scholar
  13. Brazil GM, Kenefick L, Callanan M, Haro A, de Lorenzo V, Dowling DN (1995) Construction of a rhizosphere pseudomonas with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microbiol 61:1946–1952PubMedPubMedCentralGoogle Scholar
  14. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304CrossRefGoogle Scholar
  15. Buée M, De Boer W, Martin F, Van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212CrossRefGoogle Scholar
  16. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EV, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838CrossRefGoogle Scholar
  17. Burd GI, Dixon DG, Glick BR (2000) Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245CrossRefGoogle Scholar
  18. Butani N, Jobanputra J, Bhatiya P, Patel R (2013) Recent biological technologies for textile effluent treatment. Int Res J Biol Sci 2:77–82Google Scholar
  19. Cakmakçi R, Dönmez F, Aydın A, Şahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487CrossRefGoogle Scholar
  20. Cao RX, Ma LQ, Chen M, Singh SP, Harris WG (2003) Phosphate induced metal immobilization in a contaminated site. Environ Pollut 122:19–28CrossRefGoogle Scholar
  21. Chakraborty U, Chakraborty B, Basnet M (2006) Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J Basic Microbiol 46:186–195CrossRefGoogle Scholar
  22. Chaudhry Q, Zandstra MB, Gupta S, Joner EJ (2005) Utilizing the synergy between plants and rhizosphere organisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12:34–48CrossRefGoogle Scholar
  23. Chisholm JE, Jones GC, Purvis OW (1987) Hydrated copper oxalate, moolooite, in lichens. Mineral Mag 51:715–718CrossRefGoogle Scholar
  24. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814CrossRefPubMedPubMedCentralGoogle Scholar
  25. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1114–1118PubMedPubMedCentralGoogle Scholar
  27. Daneshvar N, Ayazloo M, Khataee AR, Pourhassan M (2007) Biological decolorization of dye solution containing malachite green by microalgae Cosmarium sp. Bioresour Technol 98:1176–1182CrossRefGoogle Scholar
  28. Das A, Prasad R, Bhatnagar K, Lavekar GS, Varma A (2006) Synergism between medicinal plants and microbes. In: Chauhan AK, Varma A (eds) Microbes: health and environment, vol 3. IK International-India, New Delhi, pp 13–64Google Scholar
  29. Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium resistant rhizobacteria. Soil Biol Biochem 40:74–84CrossRefGoogle Scholar
  30. Dimkpa CO, Svatoš A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008a) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25CrossRefGoogle Scholar
  31. Dimkpa CO, Svatoš A, Merten D, Büchel G, Kothe E (2008b) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172CrossRefGoogle Scholar
  32. Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009a) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162CrossRefGoogle Scholar
  33. Dimkpa CO, Merten D, Svatos A, Büchel G, Kothe E (2009b) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696CrossRefGoogle Scholar
  34. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149CrossRefGoogle Scholar
  35. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11:539–548CrossRefGoogle Scholar
  36. Doran PM (2009) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103:60–76CrossRefGoogle Scholar
  37. El-Rahim WM (2006) Assessment of textile dye remediation using biotic and abiotic agents. J Basic Microbiol 46:318–328CrossRefGoogle Scholar
  38. Erkel C, Kube M, Reinhardt R, Liesack W (2006) Genome of Rice Cluster I archaea—the key methane producers in the rice rhizosphere. Science 313:370–372CrossRefGoogle Scholar
  39. Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soil by plants. Appl Geochem 11:163–167CrossRefGoogle Scholar
  40. Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152CrossRefGoogle Scholar
  41. Fox RT (ed) (2000) Armillaria root rot: biology and control of honey fungus. Intercept, AndoverGoogle Scholar
  42. Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390CrossRefGoogle Scholar
  43. Garcıa JA, Domenech J, Santamarıa C, Camacho M, Daza A, Mañero FJ (2004) Growth of forest plants (pine and holm-oak) inoculated with rhizobacteria: relationship with microbial community structure and biological activity of its rhizosphere. Environ Exp Bot 52:239–251CrossRefGoogle Scholar
  44. Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30CrossRefGoogle Scholar
  45. Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzym Microb Technol 35:339–354CrossRefGoogle Scholar
  46. Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530CrossRefGoogle Scholar
  47. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117CrossRefGoogle Scholar
  48. Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393CrossRefGoogle Scholar
  49. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374CrossRefGoogle Scholar
  50. Goltapeh EM, Danesh YR, Prasad R, Varma A (2008) Mycorrhizal Fungi: what we know and what should we know? In: Varma A (ed) Mycorrhiza, 3rd edn. Springer-Verlag, Berlin Heidelberg, pp 3–27CrossRefGoogle Scholar
  51. Guan LL, Kanoh K, Kamino K (2001) Effect of exogenous siderophores on iron uptake activity of marine bacteria under iron limited conditions. Appl Environ Microbiol 67:1710–1717CrossRefPubMedPubMedCentralGoogle Scholar
  52. Guarino C, Sciarrillo R (2017) Effectiveness of in situ application of an Integrated Phytoremediation System (IPS) by adding a selected blend of rhizosphere microbes to heavily multi-contaminated soils. Ecol Eng 99:70–82CrossRefGoogle Scholar
  53. Guo JH, Qi HY, Guo YH, Ge HL, Gong LY, Zhang LX, Sun PH (2004) Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biol Control 29:66–72CrossRefGoogle Scholar
  54. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–1CrossRefGoogle Scholar
  55. Hall PG, Krieg NR (1984) Application of the indirect immuno peroxidase stain technique to the flagella of Azospirillum brasilense. Appl Environ Microbiol 47:433PubMedPubMedCentralGoogle Scholar
  56. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  57. Hartmann A, Zimmer W (1994) Physiology of Azospirillum. Azospirillum/plant associations. CRC Press, Boca Raton, pp 15–39Google Scholar
  58. Heinrich D, Hess D (1985) Chemotactic attraction of Azospirillum lipoferum by wheat roots and characterization of some attractants. Can J Microbiol 31:26–31CrossRefGoogle Scholar
  59. Herridge DF (2013) Rhizobial inoculants. GRDCGoogle Scholar
  60. Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152CrossRefGoogle Scholar
  61. Hock B (ed) (2012) Fungal associations IX, 2nd edn. Esser K (ed). Springer, Berlin/Heidelberg/New York/Dordrecht/London.  https://doi.org/10.1007/978-3-642-30826-0. ISBN: 978-3-642-30825-3
  62. Hu MR, Chao YP, Zhang GQ, Xue ZQ, Qian S (2009) Laccase-mediator system in the decolorization of different types of recalcitrant dyes. J Ind Microbiol Biotechnol 36:45–51CrossRefGoogle Scholar
  63. Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) A multiprocess phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476CrossRefGoogle Scholar
  64. Jetiyanon K, Kloepper JW (2002) Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol Control 24:285–291CrossRefGoogle Scholar
  65. Jiang CY, Sheng XF, Qian M, Wang QY (2008) Isolation and characterization of a heavy metal resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal polluted soil. Chemosphere 72:157–164CrossRefGoogle Scholar
  66. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329CrossRefPubMedPubMedCentralGoogle Scholar
  67. Kabata-Pendias A (1992) Trace metals in soils in Poland-occurrence and behaviour. Soil Sci 140:53–70Google Scholar
  68. Kabra AN, Khandare RV, Kurade MB, Govindar SP (2011) Phytoremediation of a sulphonated azo dye green HE4B by Glandularia pulchella (Sweet) Tronc. (Moss Verbena). Environ Sci Pollut Res 18:1360–1373CrossRefGoogle Scholar
  69. Kabra AN, Khandare RV, Govindwar SP (2013) Development of a bioreactor for remediation of textile effluent and dye mixture: a plant bacterial synergistic strategy. Water Res 47:1035–1048CrossRefGoogle Scholar
  70. Kapulnik Y (ed) (1991) Plant growth promoting rhizobacteria. Plant roots the hidden half. Marcel Dekker, New York, pp 347–362Google Scholar
  71. Karaca S, Gürses A, Açıkyıldız M, Ejder M (2008) Adsorption of cationic dye from aqueous solutions by activated carbon. Microporous Mesoporous Mater 115:376–382CrossRefGoogle Scholar
  72. Khammas KM, Ageron E, Grimont PA, Kaiser P (1989) Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soil. Res Microbiol 140:679–693PubMedGoogle Scholar
  73. Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364CrossRefGoogle Scholar
  74. Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43CrossRefGoogle Scholar
  75. Khandare R, Kabra A, Tamboli D, Govindwar S (2011) The role of Aster amellus. Lin. In the degradation of a sulfonated azo dye Remazol Red: a phytoremediation strategy. Chemosphere 82:1147–1154CrossRefGoogle Scholar
  76. Khandare RV, Rane NR, Waghmode TR, Govindwar SP (2012) Bacterial assisted phytoremediation for enhanced degradation of highly sulfonated diazo reactive dye. Environ Sci Pollut Res 19:1709–1718CrossRefGoogle Scholar
  77. Kiers ET, Denison RF (2008) Sanctions, cooperation, and the stability of plant rhizosphere mutualisms. Annu Rev Ecol Evol Syst 39:215–236CrossRefGoogle Scholar
  78. Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, vol 2. pp 879–882Google Scholar
  79. Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ (2004) The effect of pH on metal accumulation in two Alyssum species. J Environ Qual 32:2090–2102CrossRefGoogle Scholar
  80. Kulkarni AN, Kadam AA, Kachole MS, Govindwar SP (2014) Lichen Permelia perlata: a novel system for biodegradation and detoxification of disperse dye Solvent Red 24. J Hazard Mater 276:461–468CrossRefGoogle Scholar
  81. Kumar KV, Srivastava S, Singh N, Behl HM (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170:51–57CrossRefGoogle Scholar
  82. Kurade MB, Waghmode TR, Govindwar SP (2011) Preferential biodegradation of structurally dissimilar dyes from a mixture by Brevibacillus laterosporus. J Hazard Mater 192:1746–1755CrossRefGoogle Scholar
  83. Lamm RB, Neyra CA (1981) Characterization and cyst production of azospirilla isolated from selected grasses growing in New Jersey and New York. Can J Microbiol 27:1320–1325CrossRefGoogle Scholar
  84. Ledin M, Krantz-Rulcker C, Allard B (1996) Zn, Cd and Hg accumulation by microorganisms, organic and inorganic soil components in multi compartment system. Soil Biol Biochem 28:791–799CrossRefGoogle Scholar
  85. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809CrossRefGoogle Scholar
  86. Lisci M, Monte M, Pacini E (2003) Lichens and higher plants on stone: a review. Int Biodeterior Biodegradation 51:1–7CrossRefGoogle Scholar
  87. Long XX, Chen XM, Wong JW, Wei ZB, Wu QT (2013) Feasibility of enhanced phytoextraction of Zn contaminated soil with Zn mobilizing and plant growth promoting endophytic bacteria. Trans Nonferrous Met Soc China 23:2389–2396CrossRefGoogle Scholar
  88. Lopez-de-Victoria G, Lovell CR (1993) Chemotaxis of Azospirillum species to aromatic compounds. Appl Environ Microbiol 59:2951–2955PubMedPubMedCentralGoogle Scholar
  89. Lopez-de-Victoria G, Fielder DR, Zimmer-Faust RK, Lovell CR (1994) Motility behavior of Azospirillum species in response to aromatic compounds. Can J Microbiol 40:705–711CrossRefGoogle Scholar
  90. Lucas Garcia JA, Probanza A, Ramos B, Barriuso J, Gutierrez Manero FJ (2004) Effects of inoculation with plant growth promoting rhizobacteria (PGPRs) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max cv. Osumi. Plant Soil 267:143–153CrossRefGoogle Scholar
  91. Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth promoting rhizobacteria. Anton Leeuw 86:1–25CrossRefGoogle Scholar
  92. Ma Y, Rajkumar M, Freitas H (2009) Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 75:719–725CrossRefGoogle Scholar
  93. Ma Y, Prasad MN, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258CrossRefGoogle Scholar
  94. Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228CrossRefGoogle Scholar
  95. Magalhaes FM, Baldani JI, Souto SM, Kuykendall JR, Dobereiner J (1983) New acid-tolerant Azospirillum species. An Acad Bras Cienc 55:417–430Google Scholar
  96. McCormick MK, Whigham DF, O’Neill J (2004) Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytol 163:425–438CrossRefGoogle Scholar
  97. McCormick MK, Lee Taylor D, Juhaszova K, Burnett RK, Whigham DF, O’Neill JP (2012) Limitations on orchid recruitment: not a simple picture. Mol Ecol 21:1511–1523CrossRefGoogle Scholar
  98. Mishra AK, Cournoyer B, Dawson J, Jeannin P, Evtushenko L, Normand P, Orso S, Chapelon C (2010) Molecular phylogeny of the genus Frankia and related genera and emendation of the family FrankiaceaeGoogle Scholar
  99. Moens S, Michiels K, Keijers V, Van Leuven FR, Vanderleyden J (1995) Cloning, sequencing, and phenotypic analysis of laf1, encoding the flagellin of the lateral flagella of Azospirillum brasilense Sp7. J Bacteriol 177:5419–5426CrossRefPubMedPubMedCentralGoogle Scholar
  100. Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153CrossRefPubMedPubMedCentralGoogle Scholar
  101. Nash TH (2008) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 5–6. isbn:978-0-521-69216-8CrossRefGoogle Scholar
  102. Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15(2):327Google Scholar
  103. Okon Y (1994) Azospirillum/plant associations. CRC Press, Boca Raton, p 175Google Scholar
  104. Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263CrossRefGoogle Scholar
  105. Olson PE, Reardon KF, Pilon-Smits EA (2003) Ecology of rhizosphere bioremediation. In: Phytoremediation: transformation and control of contaminants, pp 317–353Google Scholar
  106. Pawlik-Skowronska B, Purvis OW, Pirszel J, Skowronski T (2006) Cellular mechanisms of Cu-tolerance in the epilithic lichen Lecanora polytropa growing at a copper mine. Lichenologist 38:267–275CrossRefGoogle Scholar
  107. Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassán FD, Luna MV (2007) Plant growth promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150CrossRefGoogle Scholar
  108. Pommer EH (1959) Über die Isolierung des Endophyten aus den Wurzelknöllchen Alnus glutinosa Gaertn. und über erfolgreiche Re-Infektionsversuche. Ber Deut Bot Ges 72:138–150Google Scholar
  109. Prasad MNV, Freitas H, Fraenzle S, Wuenschmann S, Markert B (2010) Knowledge explosion in phytotechnologies for environmental solutions. Environ Pollut 158:18–23CrossRefGoogle Scholar
  110. Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant Growth-Promoting Rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Switzerland, pp 247–260Google Scholar
  111. Purvis OW (1984) The occurrence of copper oxalate in lichens growing on copper sulphide-bearing rocks in Scandinavia. Lichenologist 16:197–204CrossRefGoogle Scholar
  112. Raj SN, Deepak SA, Basavaraju P, Shetty HS, Reddy MS, Kloepper JW (2003) Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Protect 22:579–588CrossRefGoogle Scholar
  113. Rajkumar M, Nagendran R, Lee KJ, Lee WH, Kim SZ (2006) Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere 62:741–748CrossRefGoogle Scholar
  114. Rasmussen HN (1995) Terrestrial orchids: from seed to mycotrophic plant. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  115. Rasmussen HN, Whigham DF (1998) The underground phase: a special challenge in studies of terrestrial orchid populations. Bot J Linean Soc 126:49–64CrossRefGoogle Scholar
  116. Reinhold BA, Hurek TH, Fendrik IS (1985) Strain-specific chemotaxis of Azospirillum spp. J Bacteriol 162:190–195PubMedPubMedCentralGoogle Scholar
  117. Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S, De Ley J (1987) Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth). Int J Syst Bacteriol 37:43–51CrossRefGoogle Scholar
  118. Ryu CM, Hu CH, Locy RD, Kloepper JW (2005) Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285–292CrossRefGoogle Scholar
  119. Sadasivan LA, Neyra CA (1985) Flocculation in Azospirillum brasilense and Azospirillum lipoferum: exopolysaccharides and cyst formation. J Bacteriol 163:716–723PubMedPubMedCentralGoogle Scholar
  120. Sadasivan LA, Neyra CA (1987) Cyst production and brown pigment formation in aging cultures of Azospirillum brasilense ATCC 29145. J Bacteriol 169:1670–1677CrossRefPubMedPubMedCentralGoogle Scholar
  121. Saleem M, Moe LA (2014) Multitrophic microbial interactions for eco-and agro-biotechnological processes: theory and practice. Trends Biotechnol 32:529–537CrossRefGoogle Scholar
  122. Saleh S, Huang XD, Greenberg BM, Glick BR (2004) Phytoremediation of persistent organic contaminants in the environment. In: Applied bioremediation and phytoremediation. Springer, Berlin, pp 115–134Google Scholar
  123. Salem HM, Eweida EA, Farag A (2000) Heavy metals in drinking water and their environmental impact on human health. In: ICEHM 2000. Cairo University, Giza, pp 542–556Google Scholar
  124. Saratale RG, Saratale GD, Chang JS, Govindwar SP (2009) Decolorization and biodegradation of textile dye Navy blue HER by Trichosporon beigelii NCIM-3326. J Hazard Mater 166:1421–1428CrossRefGoogle Scholar
  125. Saravanakumar D, Vijayakumar C, Kumar N, Samiyappan R (2007) PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot 26:556–565CrossRefGoogle Scholar
  126. Saroj S, Kumar K, Pareek N, Prasad R, Singh RP (2014) Biodegradation of azo dyes acid red 183, direct blue 15 and direct red 75 by the isolate Penicillium oxalicum SAR-3. Chemosphere 107:240–248CrossRefGoogle Scholar
  127. Sarret G, Manceau A, Cuny D, Van Haluwyn C, Déruelle S, Hazemann JL, Soldo Y, Eybert-Bérard L, Menthonnex JJ (1998) Mechanisms of lichen resistance to metallic pollution. Environ Sci Technol 32:3325–3330CrossRefGoogle Scholar
  128. Sawada H, Kuykendall LD, Young JM (2003) Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J Gen Appl Microbiol 49:155–179CrossRefGoogle Scholar
  129. Schröder P, Harvey PJ, Schwitzguébel J (2002) Prospects for the phytoremediation of organic pollutants in Europe. Environ Sci Pollut Res 9:1–3CrossRefGoogle Scholar
  130. Schuessler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: evolution and phylogeny. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  131. Sekhar KC, Chary NS, Kamala CT, Vairamani M, Anjaneyulu Y, Balaram V, Sorlie JE (2006) Environmental risk assessment studies of heavy metal contamination in the industrial area of Kattedan, India—a case study. Hum Ecol Risk Assess 12:408–422CrossRefGoogle Scholar
  132. Sharma J, Ogram AV, Al-Agely A (2015) Mycorrhizae: implications for environmental remediation and resource conservationGoogle Scholar
  133. Shrivastava S, Prasad R, Varma A (2014) Anatomy of root from eyes of a microbiologist. In: Morte A, Varma A (eds) Root Engineering, vol 40. Springer-Verlag, Berlin Heidelberg, pp 3–22CrossRefGoogle Scholar
  134. Siddiqui ZA, Mahmood I (2001) Effects of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea. Bioresour Technol 79:41–45CrossRefGoogle Scholar
  135. Sikora RA, Schafer K, Dababat AA (2007) Modes of action associated with microbially induced in planta suppression of plant–parasitic nematodes. Australas Plant Pathol 36:124–134CrossRefGoogle Scholar
  136. Slampova A, Smela D, Vondrackova A, Jancarova I, Kuban V (2001) Determination of synthetic colorants in foodstuffs. Chem List 95:163–168Google Scholar
  137. Smith DL (2005) Intracellular and extracellular PGPR: commonalities and Gray distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412CrossRefGoogle Scholar
  138. Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic, LondonGoogle Scholar
  139. Soares GM, Teresa M, Amorim P, Lageiro M, Costa-Ferreira M (2006) Pilot-scale enzymatic decolorization of industrial dyeing process wastewater. Text Res J 76:4–11CrossRefGoogle Scholar
  140. Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30CrossRefGoogle Scholar
  141. Sylvia D, Fuhrmann J, Hartel P, Zuberer D (2005) Principles and applications of soil microbiology. Pearson Education, New JerseyGoogle Scholar
  142. Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202CrossRefGoogle Scholar
  143. Tal S, Okon Y (1985) Production of the reserve material poly-β-hydroxybutyrate and its function in Azospirillum brasilense Cd. Can J Microbiol 31:608–613CrossRefGoogle Scholar
  144. Tal S, Smirnoff P, Okon Y (1990) The regulation of poly-β-hydroxybutyrate metabolism in Azospirillum brasilense during balanced growth and starvation. Microbiology 136:1191–1196Google Scholar
  145. Tamboli DP, Kagalkar AN, Jadhav MU, Jadhav JP, Govindwar SP (2010) Production of polyhydroxyhexadecanoic acid by using waste biomass of Sphingobacterium sp. ATM generated after degradation of textile dye Direct Red 5B. Biol Resour Technol 101:2421–2427Google Scholar
  146. Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980CrossRefGoogle Scholar
  147. Taylor DL, Bruns TD, Leake JR, Read DJ (2002) Mycorrhizal specificity and function in myco-heterotrophic plants. In: Mycorrhizal ecology. Springer, Berlin, pp 375–413Google Scholar
  148. Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263CrossRefGoogle Scholar
  149. Timmis KN, Pieper DH (1999) Bacteria designed for bioremediation. Trends Biotechnol 17:201–204CrossRefGoogle Scholar
  150. Togo CA, Mutambanengwe CC, Whiteley CG (2008) Decolourisation and degradation of textile dyes using a sulphate reducing bacteria (SRB)–biodigester microflora co-culture. Afr J Biotechnol 7:114–121Google Scholar
  151. Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171CrossRefPubMedPubMedCentralGoogle Scholar
  152. Tor A, Cengeloglu Y (2006) Removal of congo red from aqueous solution by adsorption onto acid activated red mud. J Hazard Mater 138:409–415CrossRefGoogle Scholar
  153. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  154. Villacieros M, Whelan C, Mackova M, Molgaard J, Sanchez-Contreras M, Lloret J (2005) Polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescence F113 derivatives, using a Sinorhizobium meliloti nod system to drive bph gene expression. Appl Environ Microbiol 71:2687–2694CrossRefPubMedPubMedCentralGoogle Scholar
  155. Welbaum GE, Sturz AV, Dong Z, Nowak J (2004) Managing soil microorganisms to improve productivity of agro-ecosystems. Crit Rev Plant Sci 23:175–193CrossRefGoogle Scholar
  156. Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009a) Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598CrossRefGoogle Scholar
  157. Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009b) Phytoremediation: plant–endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254CrossRefGoogle Scholar
  158. Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150CrossRefGoogle Scholar
  159. Wrobel D, Boguta A, Ion RM (2001) Mixtures of synthetic organic dyes in a photoelectronic cell. J Photochem Photobiol A 138:7–22CrossRefGoogle Scholar
  160. Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135CrossRefGoogle Scholar
  161. Wuchter C, Abbas B, Coolen MJ, Herfort L, van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci 103:12317–12322CrossRefGoogle Scholar
  162. Yee DC, Maynard JA, Wood TK (1998) Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Appl Environ Microbiol 64:112–118PubMedPubMedCentralGoogle Scholar
  163. Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989PubMedPubMedCentralGoogle Scholar
  164. Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997CrossRefGoogle Scholar
  165. Zakry FA, Shamsuddin ZH, Rahim KA, Zakaria ZZ, Rahim AA (2012) Inoculation of Bacillus sphaericus UPMB-10 to young oil palm and measurement of its uptake of fixed nitrogen using the 15N isotope dilution technique. Microbes Environ 27:257–262CrossRefPubMedPubMedCentralGoogle Scholar
  166. Zhang Y, Burris RH, Ludden PW, Roberts GP (1997) Regulation of nitrogen fixation in Azospirillum brasilense. FEMS Microbiol Lett 152(2):195–204CrossRefGoogle Scholar
  167. Zhulin IB, Armitage JP (1993) Motility, chemokinesis, and methylation-independent chemotaxis in Azospirillum brasilense. J Bacteriol 175:952–958CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Environment StudiesPanjab UniversityChandigarhIndia
  2. 2.Department of Chemistry and Centre of Advanced studies in ChemistryPanjab UniversityChandigarhIndia
  3. 3.Department of ChemistryM.L.S.M. CollegeSunder NagarIndia

Personalised recommendations