Advertisement

Does Mycoremediation Reduce the Soil Toxicant?

  • Manish Kumar
  • Rizwan Ali Ansari
  • Shabbir Ashraf
Chapter

Abstract

The soil polluted with heavy metals (HMs) is a matter of concern in current scenario. In agriculture, contaminants have negative effects on both crop quality and their yields. Mycoremediation is a new technology for the reduction of petroleum hydrocarbons and HMs through fungal strains. The efficient fungal strains play a significant role in the decomposition of contaminants and keep environment clean. They are good decomposers which degrade the cellulose and lignin of plants. It also helps in breaking down various toxic substances and helps to sustain soil health. Fungi like mushroom, Trichoderma spp., help to concentrate and absorb HMs which act as hyperaccumulator. Mushrooms are fungi which secrete certain enzymes or biocatalysts and are able to biodegrade a varied variety of agro-industrial wastes into products and transform industrial waste and environmentally persistent pollutants. In addition, the potential fungal species are also known to improve and boost plant yield, development, and growth.

References

  1. Adams P, De-Leij FAAM, Lynch JM (2007) Trichoderma harzianum Rifai 1295–22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microb Ecol 54:306–313CrossRefGoogle Scholar
  2. Ahamed A, Vermette P (2009) Effect of culture medium composition on Trichoderma reesei’s morphology and cellulase production. Bioresour Technol 100:5979–5987CrossRefGoogle Scholar
  3. Akinyele JB, Fakoya S, Adetuyi CF (2012) Anti-growth factors associated with Pleurotus ostreatus in a submerged liquid fermentation. Malays J Microbiol 8:135–140Google Scholar
  4. Alexander M (1994) Biodegradation and bioremediation. Academic, New YorkGoogle Scholar
  5. Arriagada C, Aranda E, Sampedro I, Garcia-Romera I, Ocampo JA (2009) Contribution of the saprobic fungi Trametes versicolor and Trichoderma harzianum and the arbuscular mycorrhizal fungi Glomus deserticola and G. claroideum to arsenic tolerance of Eucalyptus globules. Bioresour Technol 100:6250–6257CrossRefGoogle Scholar
  6. Badawy MI, Ghaly MY, Gad-Allah TA (2006) Advanced oxidation processes for the removal of organo phosphorus pesticides from wastewater. Desalination 194:166–175CrossRefGoogle Scholar
  7. Barry DP, Austa SD (1994) Pollutant degradation by white rot fungi. Rev Environ Contam Toxicol 138:49–72Google Scholar
  8. Cao L, Jiang M, Zeng Z, Du A, Tan H, Liu Y (2008) Trichoderma atroviride F6 improves phytoextraction efficiency of mustard [Brassica juncea (L.) Coss. var. foliosa Bailey] in Cd, Ni contaminated soils. Chemosphere 71:1769–1773CrossRefGoogle Scholar
  9. Contreras-Cornejo HA, Macias-Rodriguez L, Cortes-Penagos C, Lopez-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592CrossRefGoogle Scholar
  10. Errasquin EL, Vazquez C (2003) Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50:137–143CrossRefGoogle Scholar
  11. Eskander SB, Abd El-Aziz SM, El-Sayaad H, Saleh HM (2012) Cementation of bioproducts generated from biodegradation of radioactive cellulosic-based waste simulates by mushroom. ISRN Chem Eng 2012:329676CrossRefGoogle Scholar
  12. Ezzi MI, Lynch JM (2005) Biodegradation of cyanide by Trichoderma spp. and Fusarium spp. Enzym Microb Technol 36:849–854CrossRefGoogle Scholar
  13. Gestel KV, Mergaert J, Swingsb J, Coosemansa J, Ryckeboera J (2003) Bioremediation of diesel oil-contaminated soil by composting with biowaste. Environ Pollut 125:361–368CrossRefGoogle Scholar
  14. Hajieghrari B (2010) Effect of some metal-containing compounds and fertilizers on mycoparasite Trichoderma species mycelia growth response. Afr J Biotechnol 9:4025–4033Google Scholar
  15. Hammel KE, Green B, Gai WZ (1991) Ring fission of anthracene by a eukaryote. Proc Natl Acad Sci USA 88:10605–10608CrossRefGoogle Scholar
  16. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004a) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56CrossRefGoogle Scholar
  17. Harman GE, Lorito M, Lynch JM (2004b) Uses of Trichoderma spp. to remediate soil and water pollution. Adv Appl Microbiol 56:313–330CrossRefGoogle Scholar
  18. Hatvani L, Manczinger L, Kredics L, Szekeres A, Antal Z, Vagvolgyi C (2006) Production of Trichoderma strains with pesticide poly-resistance by mutagenesis and protoplast fusion. Antonie Van Leeuwenhoek 89:387–393CrossRefGoogle Scholar
  19. Heinfling MJ, Martínez AT, Martínez M, Bergbauer Szewzyk U (1998) Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol 64:2788–2793PubMedPubMedCentralGoogle Scholar
  20. Jang KY, Cho SM, Seok SJ, Kong WS, Kim GH, Sung JM (2009) Screening of biodegradable function of indigenous ligno-degrading mushroom using dyes. Mycobiology 37:53–61CrossRefGoogle Scholar
  21. Jibran AK, Milsee Mol JP (2011) Pleurotus sajor-caju Protein: a potential biosorptive agent. Adv Bio Tech 11:25–27Google Scholar
  22. Johannes C, Majcherczyk A, Hüttermann A (1996) Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds. Appl Microbiol Biotechnol 46:313–317CrossRefGoogle Scholar
  23. Johnston MW (2010) Mushrooms offer bioremediation options. Biocycle 51(9):35–37Google Scholar
  24. Kapoor A, Viraraghavan T (1995) Fungal biosorption-an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour Technol 53(3):195–206Google Scholar
  25. Katayama A, Matsumura F (1993) Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environ Toxicol Chem 12:1059–1065CrossRefGoogle Scholar
  26. Kredics L, Antal L, Manczinger L, Nagy E (2001) Breeding of mycoparasitic Trichoderma strains for heavy metal resistance. Lett Appl Microbiol 33:112–116CrossRefGoogle Scholar
  27. Kulshreshtha S, Mathur N, Bhatnagar P (2013a) Mycoremediation of paper, pulp and cardboard industrial wastes and pollutants. In: Goltapeh EM, Danesh YR, Varma A (eds) Fungi as bioremediators: soil biology. Springer, Berlin, pp 77–116CrossRefGoogle Scholar
  28. Kulshreshtha S, Mathur N, Bhatnagar P, Kulshreshtha S (2013b) Cultivation of Pleurotus citrinopileatus on handmade paper and cardboard industrial wastes. Ind Crop Prod 41:340–346CrossRefGoogle Scholar
  29. Kulshreshtha S, Mathur N, Bhatnagar P (2014) Mushroom as a product and their role in mycoremediation. AMB Express 4(1):29CrossRefGoogle Scholar
  30. Kumhomkul T, Panich-pat T (2013) Lead accumulation in the straw mushroom, Volvariella volvacea, from lead contaminated rice straw and stubble. Bull Environ Contam Toxicol 91:231–234CrossRefGoogle Scholar
  31. Lamrood PY, Ralegankar SD (2013) Biosorption of Cu, Zn, Fe, Cd, Pb and Ni by non-treated biomass of some edible mushrooms. Asian J Exp Biol Sci 4:190–195Google Scholar
  32. Lin JE, Wang HY, Hickey RF (1990) Degradation kinetics of pentachloro-phenol by Phanerochaete chrysosporium. Biotechnol Bioeng 35:1125–1134CrossRefGoogle Scholar
  33. Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from ‘Omics to the field. Annu Rev Phytopathol 48:395–417CrossRefGoogle Scholar
  34. Luo D, Yf X, Tan ZL, Li XD (2013) Removal of Cu2+ ions from aqueous solution by the abandoned mushroom compost of Flammulina velutipes. J Environ Biol 34:359–365PubMedGoogle Scholar
  35. Mai C, Schormann W, Majcherczyk A, Hüttermann A (2004) Degradation of acrylic copolymers by white-rot fungi. Appl Microbiol Biotechnol 65(4):479–487CrossRefGoogle Scholar
  36. Mastouri F, Bjorkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213–1221CrossRefGoogle Scholar
  37. Mejstrik V, Lepsova A (1992) Applicability of Fungi to the monitoring of environmental pollution by heavy metals. In: Market B (ed) Plants as biomonitors. VCH, Weinheim, pp 365–377Google Scholar
  38. Mishra A, Nautiyal CS (2009) Functional diversity of the microbial community in the rhizosphere of chickpea grown in diesel fuel spiked soil amended with Trichoderma reesei using sole-carbon source utilization profiles. World J Microbiol Biotechnol 25:1175–1180CrossRefGoogle Scholar
  39. Monteiro VN, Ulhoa CJ (2006) Biochemical characterization of a b-1,3-glucanase from Trichoderma koningii induced by cell wall of Rhizoctonia solani. Curr Microbiol 52:92–96CrossRefGoogle Scholar
  40. Mukherjee I, Gopal M (1996) Degradation of chlorpyrifos by two soil fungi Aspergillus niger and Trichoderma viride. Toxicol Environ Chem 57:145–151CrossRefGoogle Scholar
  41. Nagy B, Măicăneanu A, Indolean C, Mânzatu C, Silaghi-Dumitrescu MC (2014) Comparative study of Cd(II) biosorption on cultivated Agaricus bisporus and wild Lactarius piperatus based biocomposites. Linear and nonlinear equilibrium modelling and kinetics. J Taiwan Inst Chem Eng 45(3):921–929CrossRefGoogle Scholar
  42. Nyanhongo GS, Gübitz G, Sukyai P, Leitner C, Haltrich D, Ludwig R (2007) Oxidoreductases from Trametes spp. in biotechnology: a wealth of catalytic activity. Food Technol Biotechnol 45:250–268Google Scholar
  43. Ollikka P, Alhonmäki K, Leppänen VM, Glumoff T, Raijola T, Suominen I (1993) Decolorization of azo, triphenylmethane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Appl Environ Microbiol 59:4010–4016PubMedPubMedCentralGoogle Scholar
  44. Oros G, Naar Z, Cserhati T (2011) Growth response of Trichoderma species to organic solvents. Mol Inform 30:276–285CrossRefGoogle Scholar
  45. Oyetayo VO, Adebayo AO, Ibileye A (2012) Assessment of the biosorption potential of heavy metals by Pleurotus tuber-regium. Int J Adv Biol Res 2:293–297Google Scholar
  46. Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci 103(27):10186–10191CrossRefGoogle Scholar
  47. Pashin YV, Bakhitova LM (1979) Mutagenic and carcinogenic properties of polycyclic aromatic hydrocarbons. Environ Health Perspect 30:185–189CrossRefGoogle Scholar
  48. Prasad R (2017) Mycoremediation and environmental sustainability, vol 1. Springer International Publishing. ISBN 978-3-319-68957-9 https://link.springer.com/book/10.1007/978-3-319-68957-9
  49. Prasad R (2018) Mycoremediation and environmental sustainability, vol 2. Springer International Publishing. ISBN 978-3-319-77386-5 https://www.springer.com/us/book/9783319773858
  50. Purnomo AS, Mori T, Putra SR, Kondo R (2013) Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus. Int Biodeterior Biodegrad 82:40–44CrossRefGoogle Scholar
  51. Singh H (2006) Mycoremediation: fungal bioremediation. Wiley-Interscience, HobokenCrossRefGoogle Scholar
  52. Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409:2430–2442CrossRefGoogle Scholar
  53. Stamets P (2005) Mycelium running: how mushroom can help save the world. In: Ten speed press. Crown Publishing Group, New YorkGoogle Scholar
  54. Tabet JC, Lichtenstein EP (1976) Degradation of [14C] photodieldrin by Trichoderma viride as affected by other insecticides. Can J Microbiol 22:1345–1356CrossRefGoogle Scholar
  55. Tang J, Liu L, Huang X, Li Y, Chen Y, Chen J (2010) Proteomic analysis of Trichoderma atroviride mycelia stressed by organophosphate pesticide dichlorvos. Can J Microbiol 56:121–127CrossRefGoogle Scholar
  56. Tay CC, Liew HH, Yin CY, Abdul-Talib S, Surif S, Suhaimi AA, Yong SK (2011) Biosorption of cadmium ions using Pleurotus ostreatus: growth kinetics, isotherm study and biosorption mechanism. Korean J Chem Eng 28:825–830CrossRefGoogle Scholar
  57. Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165CrossRefGoogle Scholar
  58. Tsujiyama S, Muraoka T, Takada N (2013) Biodegradation of 2,4-dichlorophenol by shiitake mushroom (Lentinula edodes) using vanillin as an activator. Biotechnol Lett 35:1079–1083CrossRefGoogle Scholar
  59. VanAcken LM, Godefroid CM, Peres H, Naveau ASN, Agathos SN (1999) Mineralization of 14C-U ring labeled 4-hydroxylamino-2,6-dinitrotoluene by manganese dependent peroxidase of the white-rot basidiomycete Phlebia radiate. J Biotechnol 68(2–3):159–169CrossRefGoogle Scholar
  60. Xiezhi Y, Jieming C, Ming HM (2005) Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass. Soil Biol Biochem 37:195–201CrossRefGoogle Scholar
  61. Yazdani M, Yap CK, Abdullah F, Tan SG (2009) Trichoderma atroviride as a bioremediator of Cu pollution: an in vitro study. Toxicol Environ Chem 91(7):1305–1314CrossRefGoogle Scholar
  62. Zhou X, Xu S, Liu L, Chen J (2007) Degradation of cyanide by Trichoderma mutants constructed by restriction enzyme mediated integration (REMI). Bioresour Technol 98:2958–2962CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Manish Kumar
    • 1
  • Rizwan Ali Ansari
    • 2
  • Shabbir Ashraf
    • 1
  1. 1.Department of Plant Protection, Faculty of Agricultural SciencesAligarh Muslim UniversityAligarhIndia
  2. 2.Section of Plant Pathology and Nematology, Department of BotanyAligarh Muslim UniversityAligarhIndia

Personalised recommendations