Rhizospheric Microbe-Plant Exudate Formulation for Enhanced Restoration of Contaminated Agricultural Soil

  • Maryam L. Riskuwa-Shehu
  • Udeme Josiah Joshua Ijah


Industrial and human activities add a lot of chemicals to the soil environment. In the oil-producing areas like Nigeria, hydrocarbon contamination has been the major problem. The hydrocarbon contaminants upset the soil ecological balance, including important microbial processes. In the rhizosphere, microbial interactions occur in a dynamic manner, resulting in the production of microbial products of ecological importance. The plant associates exude compounds that benefit the microorganisms. The overall interactions of the plant-microbe products contribute greatly to the reclamation of the contaminated soil. Thus, current emphasis should be placed on the formulation of products that can be effective in soil bioremediation. The rhizospheric microbes and plant exudates should be extensively studied. Microbe-plant exudate formulations have comparative advantages over chemicals applied for reclamation of contaminated soil. Soil formulations are ecologically friendly and cost-effective. This chapter deals with microbial activities and plant exudation in the rhizosphere which help contaminated soil to recover. The prospects of microbe-plant exudate formulation are highlighted.


  1. Abdel-Lateif K, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and frankia bacteria. Plant Signal Behav 7:636–641CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12CrossRefPubMedPubMedCentralGoogle Scholar
  3. Al-Wasify RS, Hamid SR (2014) Bacterial biodegradation of crude oil using local isolates. Int J Bacteriol 2014(2014): 863272. 8 p.
  4. Amund OO, Omole CA, Esiobu N, Ugoji EO (1993) Effects of waste engine oil spillage on soil physicochemical and microbiological properties. J Sci Res Dev 1(1):61–64Google Scholar
  5. Atlas RM, Bartha R (1998) Microbial Ecology, 4th edn. Benjamin/Cummings. Fundamentals and applications, San Francisco, Calif, USA, pp 523–530Google Scholar
  6. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681CrossRefGoogle Scholar
  7. Badri DV, Chaparro JM, Zhang RF, Shen QR, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bais HT, Perry LG, Simon G, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Plant Biol 57:233–266CrossRefGoogle Scholar
  9. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L et al (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444CrossRefGoogle Scholar
  10. Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial cooperation in the rhizosphere. J Exp Bot 56(417):1761–1778Google Scholar
  11. Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18CrossRefGoogle Scholar
  12. Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83CrossRefGoogle Scholar
  13. Britton LN (1984) Microbial degradation of aliphatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 89–129 1984Google Scholar
  14. Brundrett MC, Abbott LK (2002) Arbuscula mycorrhiza in plant communities. In: Sivasithamparam K, Dixon KW, Barrett RL (eds) Plant conservation and biodiversity. Kluwer Academic Publishers, Dordrecht, pp 151–193Google Scholar
  15. Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102Google Scholar
  16. Cameotra SS, Singh P (2008) Bioremediation of oil sludge using crude biosurfactants. Int Biodeter Biodegrad 62(3):274–280 2008CrossRefGoogle Scholar
  17. Cameotra SS, Singh P (2009) Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species. Microb Cell Factories 8:16CrossRefGoogle Scholar
  18. Campbell CD, Grayston SJ, Hirst DJ (1997) Use of rhizosphere carbon source in sole carbon source test to discriminate soil microbial communities. J Microbiol Meth 30:33–41CrossRefGoogle Scholar
  19. Canadian council of Ministers of the Environment (CCME) (2001) Canada wide standards for petroleum hydrocarbons (PHC) in soilGoogle Scholar
  20. Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, WisniewskiDyé F, Bertrand C, Prigent-Combaret C (2013) Plant secondary metabolite profiling evidences strain dependent effect in the Azospirillum–Oryza sativa association. Phytochemistry 87:65–77Google Scholar
  21. Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12:34–48CrossRefGoogle Scholar
  22. Chojnacka J (2010) Biosorption and bioaccumulation the prospects from practical applications. Environ Int 36:299–307CrossRefGoogle Scholar
  23. Choudhary DK, Johri BN (2009) Interaction of Bacillus spp. and plants-with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513CrossRefGoogle Scholar
  24. Cronin D, Moenne-Loccoz Y, Fenton A, Dunne C, Dowling DN, O’Gara F (1997) Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetylphloroglucinol with the soft rotpotato partogen Erwinia carotova subsp. atroseptica. FEMS Microbiol Ecol 23:95–106CrossRefGoogle Scholar
  25. Cunningham SD, Anderson TA, Schwab AP, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56:55–114CrossRefGoogle Scholar
  26. Curl EA, Truelove B (1986) The rhizosphere. Springer-Verlag, BerlinGoogle Scholar
  27. Dardanelli MS, Manyani H, Gonzalez-Barroso S, Rodriquez-Carvajal MA, Gil-Serrano AM, Espuny MR et al (2010) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacerbium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328:483–493CrossRefGoogle Scholar
  28. David ND, Sharon LD (2009) Improving phytoremediation through biotechnology. Curr Opin Biotechnol 20:1–3Google Scholar
  29. Debarati P, Gunjan P, Janmejay P, Rakesh VJK (2005) Assessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23:135–142CrossRefGoogle Scholar
  30. De-La-Pena C, Lei Z, Watson BS, Sumner LW, Vivanco JM (2008) Root-microbe communication through protein secretion. J Biol Chem 283:25247–25255CrossRefGoogle Scholar
  31. Díaz-Ramírez IJ, Priego-Rangel S, Torres-Colorado J, Aguirre-Marín DI, Escalante-Espinoza E (2010) Microbial activity during application of different bioremediation treatments in Olmeca crude oil contaminated soil. II Congreso de la Sociedad Latinoamericana de Biotecnología Ambiental y algal, Cancún. México. Publishing Physics Web.
  32. Dixit S, Singh P (2013) Phycoremediation of lead and cadmium by employing Nostoc muscorum as biosorbent and optimization of its biosorption potential. Int J Phytoremediation 15:801–813CrossRefGoogle Scholar
  33. Dong Q, Springeal D, Schoeters J, Nuyts G, Mergeay M, Diels L (1998) Horizontal transfer of bacterial heavy metal resistance genes and its applications to activated sludge systems. Water Sci Tech 37:465Google Scholar
  34. Doornbos RF, Van loon LC, Bakker PAHM (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere: a review. Agron Sustain Dev 32:227–243CrossRefGoogle Scholar
  35. Environmental Protection Agency (2006) Pesticides: science and policy. Washington, DC. Archived from on 2014-07-04
  36. Franzetti A, Di Gennaro P, Bestetti G, Lasagni A, Pitea D, Collina E (2008) Selection of surfactants for enhancing diesel hydrocarbons contaminated media bioremediation. J Hazard Mater 152:1309–1316CrossRefGoogle Scholar
  37. Frick CM, Farrell RE, Germida JJ (1999) Assessment of phytoremediation as an in-situ technique for cleaning oil contaminated site: petroleum technology Alliance of Canada. Available at
  38. Gao Y, Ren L, Ling W, Kang F, Zhu X, Sun B (2010) Effects of low-molecular-weight organic acids on sorption-desorption of phenanthrene in soils. Soil Sci Soc Am J 74:51–59CrossRefGoogle Scholar
  39. Gao Y, Yang Y, Ling W, Kong H, Zhu X (2011) Gradient distribution of root exudates and polycyclic aromatic hydrocarbons in rhizosphere soil. Soil Sci Soc Am J 75:1694–1703CrossRefGoogle Scholar
  40. Gavrilescu M (2005) Fate of pesticides in the environment and its bioremediation. Eng Life Sci 5(6):497–526CrossRefGoogle Scholar
  41. Gerhardt KE, Huang X, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30CrossRefGoogle Scholar
  42. Germida JJ, Frick CM, Farrell RE (2002) Phytoremediation of oil-contaminated soils. Developments Soil Sci 28(2):169–186Google Scholar
  43. Ghiglione JF, Galand PE, Pommier T, Pedrós-Alió C, Maas EW, Bakker K (2012) Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc Natl Acad Sci U S A 109:17633–17638Google Scholar
  44. Giri B, Gyang PH, Kumari R, Prasad R, Varma A (2005) Microorganisms in soil: roles in genesis and functions. In: Buscot F, Varma S (eds) Microbial diversity in soil. Springer, Heidelberg, pp 195–212Google Scholar
  45. Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393CrossRefGoogle Scholar
  46. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374Google Scholar
  47. Glick BR, Czarny J, Duan J (2007) Promotion of plant growth by AC deaminase. Eur J Plant Pathol 119:329–339CrossRefGoogle Scholar
  48. Gosh PG, Sawant NA, Patil SN, Aglave BA (2010) Microbial degradation of organophosphate pesticides. Int J Biotechnol Biochem 6:871–876Google Scholar
  49. Grayston SJ, Wang S, Campbell CD, Edward AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378CrossRefGoogle Scholar
  50. Gullan PJ, Cranston PS (2010) The insects: an outline of entomology, 4th edn. Blackwell Publishing, London 584 ppGoogle Scholar
  51. Gunther T, Dornberger U, Fritsch W (1996) Effects of ryegrass on biodegradation of hydrocarbons in soil. Chemosphere 33(2):203–215CrossRefGoogle Scholar
  52. Gupta A, Joia J, Sood A, Sood R, Sidhu C, Kaur G (2016) Microbes as potential tool for remediation of heavy metals: a review. J Microb Biochem Technol 8:364–372Google Scholar
  53. Gupter VK, Rastogy A (2008) Biosorption of lead (II) from diluted aqueous solutions by non-living algal biomass Odeogonium sp. and Nostoc sp. A comparative study. Colloids Surf Biointerfaces 64:170–178CrossRefGoogle Scholar
  54. Haferburg G, Kothe E (2010) Biogeosciences in heavy metal-contaminated soils. In: Kothe E, Varma A (eds) Bio-geo interactions in metal-contaminated soils, soil Biology, vol 31. Springer-Verlag, Berlin Heidelberg.
  55. Haichar FZ et al (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230CrossRefGoogle Scholar
  56. Hall J, Soole K, Bentham R (2011) Hydrocarbon phytoremediation in the family Fabaceae–a review. Int J Phytoremediation 13(4):317–332CrossRefGoogle Scholar
  57. Hartmann A, Schmid M, Tuinen D, Berg G (2008) Plant-driven selection of microbes. Plant Soil.
  58. Huang H, Li T, Gupta DK, Zhenli HE, Ni XYB, Li M (2011) Heavy metal phytoextraction by Sedum alfredii is affected by continual clipping and phosphorus fertilization amendment. J Environ Sci 24(3):376–386CrossRefGoogle Scholar
  59. Huang GH, Tian HH, Liu HY, Fan XW, Liang Y, Li YZ (2013) Characterization of plant –growth-promoting effects and concurrent promotion of heavy metal accumulation in the tissues of the plants grown in the polluted soil by Burkholderia strain LD-11. Int J Phytoremediation 15:991–1009CrossRefGoogle Scholar
  60. Huang XF, Chaparro JM, Reardon KF, Zhang RF, Shen QR, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275CrossRefGoogle Scholar
  61. Hussain S, Siddique T, Arshad M, Saleem M (2009) Bioremediation and phytoremediation of pesticides: recent advances. Crit Rev Environ Sci Technol 39:843–907CrossRefGoogle Scholar
  62. Ibrahim ML, Ijah UJJ (2014) Biodegradation of crude oil by rhizosphere microorganisms. In: Daniels JA (ed) Advances in environmental research, vol 35. Nova Science Publishers, New York, pp 153–172Google Scholar
  63. Ibrahim ML, Ijah UJJ, Manga SB, Rabah AB (2009) Biodegradation of Escravos light crude oil by bacteria isolated from the rhizosphere of Eucalyptus Camaldulensis, Lablab purpureus and Moringa oliefera Bipog3 conference proceedings April 1st–3rd 2009Google Scholar
  64. Ibrahim ML, Ijah UJJ, Manga SB, Bilbis LS, Umar S (2013) Production and partial characterization of biosurfactant produced by crude oil degrading bacteria. Int Biodeterior Biodegrad 81:28–34Google Scholar
  65. Ijah UJJ, Antai SP (2005) Changes in physicochemical properties and fungal population after application of crude oil to soil. J Environ Sci 9(1):64–72Google Scholar
  66. Jeffries P, Barea JM (2001) Arbuscular mycorrhiza: a key component of sustainable plant-soil ecosystems. In: Hock B (ed) The Mycota: fungi associations, vol IX. Springer, Berlin, pp 95–113CrossRefGoogle Scholar
  67. Joner EJ, Hirmann D, Szolar OH, Todorovic D, Leyval C, Loibner AP (2004) Priming effects on PAH degradation and ecotoxicity during a phytoremediation experiment. Environ Pollut 128:429–435Google Scholar
  68. Jussila MM, Zhao J, Suominen L, Lindstrom K (2007) Tol plasmid transfer during bacterial conjugation in vitro and rhizoremediation of oil compounds in vivo. FEMS Microbiol Ecol 146:510–524Google Scholar
  69. Kamal S, Prasad R, Varma A (2010) Soil microbial diversity in relation to heavy metals. In: Sherameti I, Varma A (eds) Soil heavy metals, vol 19. Springer, Berlin/Heidelberg, 31–64Google Scholar
  70. Kennedy AC (1998) The rhizosphere and spermosphere. In: Sylvia DM, Fuhrmann JJ, Harte PG, Zuberer DR (eds) Principles and applications of soil microbiology. Prentice Hall, New Jersey, pp 389–407Google Scholar
  71. Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut 152:686–692CrossRefGoogle Scholar
  72. Kirk JL, Klironomos JN, Lee H, Trevors JT (2004) The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ Pollut 133:455–465CrossRefGoogle Scholar
  73. Kroer N, Barkay T, Sørensen S, Weber D (1998) Effect of root exudates and bacterial metabolic activity on conjugal gene transfer in the rhizosphere of a marsh plant. FEMS Microbiol Ecol 25(4):375–384CrossRefGoogle Scholar
  74. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17:6–15CrossRefGoogle Scholar
  75. Kumar R, Bharagava RM, Kumar M, Singh SK, Govind K (2013) Enhanced biodegradation of Mobil oil hydrocarbons by bipiosurfactant producing bacterial consortium in wheat and mustard rhizosphere. J Pet Environ Biotechnol 4:5Google Scholar
  76. Kwak Y, Bakker PAHM, Glandorf DCM, Topham J, Paulitz T, Weller DM (2009) Diversity, virulence and 2,4-diacetylphloroglucinol sensitivity of Gaeumannomyces graminis var. tritici isolates from Washington State. Phytopathology 99:472–479CrossRefGoogle Scholar
  77. Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazardous Substance Res 2:1–25Google Scholar
  78. Lavania M, Chauhan PS, Chauhan SV, Singh HB, Nautiyal CS (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth promoting rhizobacteria Serratia marcescens NBR11213. Curr Microbiol 52:363–368CrossRefGoogle Scholar
  79. LeFevre GH, Hozalski RM, Novak PJ (2013) Root exudate enhanced contaminant desorption: an abiotic contribution to the rhizosphere effect. Environ Sci Technol 47:11545–11553CrossRefGoogle Scholar
  80. Leigh GJ (2002) Nitrogen fixation at the millennium. Elsevier Science, LondonGoogle Scholar
  81. Ling W, Sun R, Gao X, Xu R, Li H (2015) Low-molecular-weight organic acids enhance desorption of polycyclic aromatic hydrocarbons from soil. Eur J Soil Sci 66:339–347CrossRefGoogle Scholar
  82. Ling J, Wang H, Wu P, Li T, Tang Y, Naseer N, Zheng H, Masson-Boinin C, Zhong Z, Zhu J (2016) Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island. PNAS 113:13875–13880CrossRefGoogle Scholar
  83. Lu H, Jianteng S, Zhu L (2017) The role of artificial root exudate components in facilitating the degradation of pyrene in soil. Sci Rep 7:7130CrossRefPubMedPubMedCentralGoogle Scholar
  84. Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determination of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490CrossRefGoogle Scholar
  85. Lupwayi NZ, Rice WA, Clayton GW (1998) Soil microbial diversity and community structure under wheat and influenced by tillage and crop rotation. Soil Biol Biochem 30:1733–1741CrossRefGoogle Scholar
  86. Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10CrossRefGoogle Scholar
  87. Mahdavi A, Khermandar K, Ahmady A, Tabaraki R (2014) Lead accumulation potential in Acacia victoria. Int J Phytoremediation 16:582–592CrossRefGoogle Scholar
  88. Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Sig Behav 5:359–368CrossRefGoogle Scholar
  89. Martin JD, Crawford CG, Larson SJ (2003) Pesticides in streams: summary statistics; preliminary results from cycle I of the National Water Quality Assessment Program (NAWQA), 1992–2001, U.S. Geological Survey.
  90. Martin BC, George SJ, Price CA, Ryan MH, Tibbett M (2014) The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions. Sci Total Environ 472:642–653CrossRefGoogle Scholar
  91. Merkl N, Schultze-Kraft R, Infante C (2004) Assessment of tropical grasses and legumes for phytoremediation of petroleum contaminated soils. Water Air Soil Pollut 165:195–209CrossRefGoogle Scholar
  92. Merkl N, Schultze-Kraft R, Arias M (2006) Effect of the tropical grass Brachiaria brizantha (Hochst. Ex A. Rich.) Stapf on microbial population and activity in petroleum contaminated soil. Microbiol Res 161:80–91CrossRefGoogle Scholar
  93. Mølbak L, Molin S, Kroer N (2007) Root growth and exudate production define the frequency of horizontal plasmid transfer in the rhizosphere. FEMS Microbiol Ecol 59(1):167–176CrossRefGoogle Scholar
  94. Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165:363–375CrossRefGoogle Scholar
  95. Muratova A, Golubeva S, Wittenmayer L, Dmitrievaa T, Bondarenkovaa A, Hircheb F, Merbach W, Turkovskayaa O (2009) Effect of the polycyclic aromatic hydrocarbon phenanthrene on root exudation of Sorghum bicolor (L.) Moench. Environ Exp Bot 66:514–521CrossRefGoogle Scholar
  96. Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Phys 132:146–153CrossRefGoogle Scholar
  97. Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attracts Pseudomonas putida to the rhizosphere. PLoS One 7:e35498CrossRefPubMedPubMedCentralGoogle Scholar
  98. Nisenbaum M, Hernan Sendra G, Cerda Gilbert GA, Scagliola M, Froilan Gonzalez J, Elena Murialdo S (2013) Hydrocarbon biodegradation and dynamic laser speckle for detecting chemotactic responses at low bacterial concentration. J Environ Sci China 25:613–625CrossRefGoogle Scholar
  99. Pandey G, Jain RK (2002) Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 68:5789–5795CrossRefPubMedPubMedCentralGoogle Scholar
  100. Phillips LA, Greer CW, Farrell RE, Germida JJ (2012) Plant root exudates impact the hydrocarbon degradation potential of a weathered-hydrocarbon contaminated soil. Appl Soil Ecol 52:56–64CrossRefGoogle Scholar
  101. Pilon-Smits E (2005) Phytoremediation. Ann Rev Plant Biol 56:15–39CrossRefGoogle Scholar
  102. Porto ALM, Melgar GZ, Kasemodel MC, Nitschke M (2011) Biodegradation of pesticides. In: Stoytcheva M (ed) Pesticides in the modern world. IntechOpen, Croatia.
  103. Powell JF, Vargas JM, Nair MG, Detweiler AR, Chandra A (2000) Management of dollar spot on creeping bentgrass with metabolites of Pseudomonas aureofaciens (TX-1). Plant Dis 84:19–24CrossRefGoogle Scholar
  104. Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant Growth-Promoting Rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Switzerland, pp 247–260Google Scholar
  105. Rajaei S, Seyedi SM, Raiesi F, Shiran B, Raheb J (2013) Characterization and potentials of indigenous oil degrading bacteria inhabiting the rhizosphere of wild oat (Avena Fatua L.) in south west of Iran. Iran J Biotechnol 11(1):32–40.
  106. Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339CrossRefGoogle Scholar
  107. Rodríguez R, Vassilev N, Azcón R (1999) Increases in growth and nutrient uptake of alfalfa grown in soil amended with microbially treated sugar beet waste. Appl Soil Ecol 11:9–15CrossRefGoogle Scholar
  108. Rohrbacher F, St-Arnaud M (2016) Root exudation: the ecological driver of hydrocarbon rhizoremediation. Agronomy 6:19CrossRefGoogle Scholar
  109. Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556CrossRefPubMedPubMedCentralGoogle Scholar
  110. Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17:401CrossRefPubMedPubMedCentralGoogle Scholar
  111. Saxena J, Amita S, Indu R, Shalini C, Veena G (2015) Consortium of phosphate-solubilizing bacteria and fungi for promotion of growth and yield of chickpea (Cicer arietinum) J. Crop Improv 29:353–369CrossRefGoogle Scholar
  112. Scragg A (2006) Environmental biotechnology, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  113. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:587–601CrossRefPubMedPubMedCentralGoogle Scholar
  114. Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880Google Scholar
  115. Shrivastava S, Prasad R, Varma A (2014) Anatomy of root from eyes of a microbiologist. In: Morte A, Varma A (eds) Root Engineering, vol 40. Springer-Verlag, Berlin Heidelberg, pp 3–22CrossRefGoogle Scholar
  116. Shukla KP, Sharma S, Singh NK, Singh V, Bisht S, Kumar V (2013) Rhizoremediation: a promising rhizosphere technology. In: Patil BY, Rao P (eds) Applied bioremediation - active and passive approaches. InTech. Open Science Publishers, Croatia, pp 333–352 ISBN 978-953-51-1200-6.
  117. Siciliano SD, Germida JJ (1998) Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ Rev 6:65–79Google Scholar
  118. Somtrakoon K, Chouychai W, Lee H (2014) Phytoremediation of anthracene and fluoranthene contaminated soil by Luffa acutangula. Maejo Int J Sci Technol 8:221–231Google Scholar
  119. Smith MJ, Flowers TA, Duncan HJ, Adler J (2006) Effect of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environ Pollut 141:519–525CrossRefGoogle Scholar
  120. Sprent JI (2002) Nodulation in legumes. Royal Botanic Gardens, KewGoogle Scholar
  121. Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506CrossRefGoogle Scholar
  122. Stokes HS, Seager SL (eds) (1976) Oil pollution and environmental chemistry of air and water pollution. Oxford University, OxfordGoogle Scholar
  123. Strobel KL, McGowan S, Bauer RD, Griebler C, Liu J, Ford RM (2011) Chemotaxis increases vertical migration and apparent transverse dispersion of bacteria in a bench-scale microcosm. Biotechnol Bioeng 108:2070–2077CrossRefGoogle Scholar
  124. Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Nickel-resistance-based minitransposons: new tools for genetic manipulation of environmental bacteria. Appl Environ Microbiol 71:8500–8505CrossRefPubMedPubMedCentralGoogle Scholar
  125. Tak HI, Ahmad F, Babalola O (2013) Advances in the application of plant growth promoting rhizobacteria in phytoremediation of heavy metals. In: Whitacre DM (ed) Volume 223 reviews of environmental contamination and toxicology. Springer, New York, pp 33–52CrossRefGoogle Scholar
  126. Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648CrossRefGoogle Scholar
  127. Thijs S, Sillen W, Rineau F, Weyens N, Vangronsveld J (2016) Towards an enhanced understanding of plant-microbiome interactions to improve phytoremediation: engineering the metaorganism. Front Microbiol 7:341CrossRefPubMedPubMedCentralGoogle Scholar
  128. Thomashow LS, Weller DM (1988) Role of phenanzin antibiotic from Pseudomonas flourescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508CrossRefPubMedPubMedCentralGoogle Scholar
  129. Tiedje Lab–Project (2006) Center for microbial ecology. Michigan State University, MichiganGoogle Scholar
  130. Vacheron J, Desbrosses G, Bouffaud M, Touraine B, Moenne-Loccoz Y, Muller D, Legendre L, Wisneiwki-Dye F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356 /1–18CrossRefPubMedPubMedCentralGoogle Scholar
  131. Van Elsas JD, Turner S, Bailey MJ (2003) Horizontal gene transfer in the phytosphere. New Phytol 157:525–537CrossRefGoogle Scholar
  132. Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition plant nutrition in a world of declining renewable resource. Plant Physiol 127:390–397CrossRefPubMedPubMedCentralGoogle Scholar
  133. Vessey JK, Pawlowski K, Bergman B (2004) Root-based N2-fixing symbioses: legumes, actinorhizal plants, Parasponia sp. and cycads. Plant Soil 266:205–230CrossRefGoogle Scholar
  134. Vicre M, Santaella C, Blanchet S, Gateau A, Driouich A (2005) Root border-like cells of Arabidopsis. Microscopical characterization and role in the interaction with rhizobacteria. Plant Physiol 138:998–1008CrossRefPubMedPubMedCentralGoogle Scholar
  135. Wang Y, Kou S, Jiang Q, Xu B, Liu X, Xiao J et al (2014) Factors affecting transfer of degradative plasmids between bacteria in soils. Appl Soil Ecol 84:254–261CrossRefGoogle Scholar
  136. Wauna RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Network ISRN Ecology Volume 2011, Article Id: 402647, 20 p.
  137. Wei Y, Hou H, ShangGuan YX, Li JN, Li FS (2014) Genetic diversity of endophytic bacteria of the manganesehyperaccumulating plant Phytolacca americana growing at a manganese mine. Eur J Soil Biol 62:15–21Google Scholar
  138. Wen FS, Van Etten HD, Tsaprailis G, Hawes MC (2007) Extracellular proteins in pea root tip and border cell exudates. Plant Physiol 143:773–783CrossRefPubMedPubMedCentralGoogle Scholar
  139. Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408CrossRefGoogle Scholar
  140. Weston LA, Mathesius U (2013) Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol 39:283–297CrossRefGoogle Scholar
  141. Weston LA, Mathesius U (2014) Root exudation: the role of secondary metabolites, their localization in roots and transport into the rhizosphere. In: Morte A, Varma A (eds) Root Engineering: Basic and Applied Concepts. Springer, Berlin, pp 221–247Google Scholar
  142. Whipps JM (1997) Development in the biological control of soil-borne plant pathogens. Adv Bot Res 26:1–134CrossRefGoogle Scholar
  143. Whipps JM (2001) Microbial interaction and biocontrol in the rhizosphere. J Exp Bot 52:487–511CrossRefGoogle Scholar
  144. Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151CrossRefGoogle Scholar
  145. Wu L, Wang J, Huang W, Wu H, Chen J, Yang Y, Zhang Z, Lin W (2015) Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture. Sci Rep 5:15871–15882CrossRefPubMedPubMedCentralGoogle Scholar
  146. Yang C, Crowley DE (1999) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351CrossRefGoogle Scholar
  147. Yang S, Jin H, Wei Z, He R, Ji Y, Li X, Yu S (2009) Bioremediation of oil spills in cold environments: a review. Pedosphere 19(3):371–381Google Scholar
  148. Zarcinas BA, Pongsakul P, McLaughlin MJ, Cozens G (2004) Heavy metals in soils and crops in southeast Asia. 2. Thailand. Environ Geochem Health 26:359–371CrossRefGoogle Scholar
  149. Zhou JZ, He Q, Hemme CL, Mukhopadhyay A, Hillesland K, Zhou AF, He ZL, Van Nostrand JD, Hazen TC, Stahl DA (2012) How sulphate-reducing microorganisms cope with stress: lessons from systems biology. Nat Rev Microbiol 9:452–466Google Scholar
  150. Zhou XG, Wu FZ (2012) P-coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f.Sp cucumerinum owen. PLoS One 7:e48288CrossRefPubMedPubMedCentralGoogle Scholar
  151. Zhou XG, Wu FZ (2013) Artificially applied vanillic acid changed soil microbial communities in the rhizosphere of cucumber (Cucumis sativus 1.). Can J Soil Sci 93:13–21CrossRefGoogle Scholar
  152. Zhuang P, McBride MB, Xia H, Li N, Li Z (2009) Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci Total Environ 407:1551–1561CrossRefGoogle Scholar
  153. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Maryam L. Riskuwa-Shehu
    • 1
  • Udeme Josiah Joshua Ijah
    • 2
  1. 1.Department of Microbiology, Faculty of ScienceUsmanu Danfodiyo University SokotoSokotoNigeria
  2. 2.Department of Microbiology, Faculty of ScienceFederal University of Technology MinnaMinnaNigeria

Personalised recommendations