Advertisement

Nanobiotechnology Approaches for Crop Protection

  • Gerardo Rodríguez-Cutiño
  • Juan J. Gaytán-Andrade
  • Ariel García-Cruz
  • Rodolfo Ramos-González
  • Mónica L. Chávez-González
  • Elda P. Segura-Ceniceros
  • José L. Martínez-Hernández
  • Mayela Govea-Salas
  • Anna Ilyina
Chapter

Abstract

Modern agriculture uses nanobiotechnology development as one of the most valuable tools. Using biomolecules in nanotechnology provides new agrochemical nanostructured formulations with different action mechanisms to increase crop productivity and improve their protection decreasing chemical pesticide use. Sustainability and safety of agriculturally cultivated crops are achieved by application of nanoformulations used for control of plant disease related with microorganisms, insects and environmental factors. Nanostructures are also applied for controlled release of nutrients and growth regulators. Safety of nanomaterials use and their environmental impacts are the important factors to acceptance of these new technologies by consumer and agricultural companies.

References

  1. Abd-Elsalam KA, Prasad R (2018) Nanobiotechnology applications in plant protection. Springer International Publishing. ISBN 978-3-319-91161-8 https://www.springer.com/us/book/9783319911601
  2. Ali MHH, Al-Qahtani KM (2012) Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. Egypt J Aquat Res 38(1):31–37.  https://doi.org/10.1016/j.ejar.2012.08.002 CrossRefGoogle Scholar
  3. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612.  https://doi.org/10.1021/acs.langmuir.5b03081 CrossRefPubMedGoogle Scholar
  4. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984.  https://doi.org/10.3389/fmicb.2016.01984 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Azizi S, Mohamad R, Bahadoran A, Bayat S, Rahim RA, Ariff A, Saad WZ (2016) Effect of annealing temperature on antimicrobial and structural properties of bio-synthesized zinc oxide nanoparticles using flower extract of Anchusa italica. J Photochem Photobiol B 161:441–449.  https://doi.org/10.1016/j.jphotobiol.2016.06.007 CrossRefPubMedGoogle Scholar
  6. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Switzerland, pp 307–319CrossRefGoogle Scholar
  7. Bielska D, Karewicz A, Kaminski K, Kielkowicz I, Lachowicz T, Szczubialka K, Nowakowska M (2013) Self-organized thermo-responsive hydroxypropyl cellulose nanoparticles for curcumin delivery. Eur Polym J 49(9):2485–2494.  https://doi.org/10.1016/j.eurpolymj.2013.02.012 CrossRefGoogle Scholar
  8. Bohra A, Sanadhya D, Shukla A (2016) Synthesis, characterization of Mg(OH)2 nanoparticles and its effect on photosynthetic efficiency in two cultivars of Brassica juncea germinated under cadmium toxicity. In: International conference on recent advances in biotechnology & nanobiotechnology, pp 9–21Google Scholar
  9. Bose D, Chatterjee S (2016) Biogenic synthesis of silver nanoparticles using guava (Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa. Appl Nanosci 6(6):895–901.  https://doi.org/10.1007/s13204-015-0496-5 CrossRefGoogle Scholar
  10. Bradfield SJ, Kumar P, White JC, Ebbs SD (2017) Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: yield effects and projected dietary intake from consumption. Plant Physiol Biochem 110:128–137CrossRefGoogle Scholar
  11. Choi M-J, Soottitantawat A, Nuchuchua O, Min S-G, Ruktanonchai U (2009) Physical and light oxidative properties of eugenol encapsulated by molecular inclusion and emulsion–diffusion method. Food Res Int 42(1):148–156CrossRefGoogle Scholar
  12. Corradetti B, Ferrari M (2016) Nanotechnology for mesenchymal stem cell therapies. J Control Release 240:242–250CrossRefGoogle Scholar
  13. Cromwell WA, Yang J, Starr JL, Jo YK (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass. J Nematol 46(3):261–266PubMedPubMedCentralGoogle Scholar
  14. da Costa JT, Forim MR, Costa ES, De Souza JR, Mondego JM, Junior ALB (2014) Effects of different formulations of neem oil-based products on control Zabrotes subfasciatus (Boheman, 1833) (Coleoptera: Bruchidae) on beans. J Stored Prod Res 56:49–53CrossRefGoogle Scholar
  15. Davod T, Reza Z, Ali VA, Mehrdad C (2011) Effects of nanosilver and nitroxin bio-fertilizer on yield and yield components of potato minitubers. Int J Agric Biol 13(6):986–990Google Scholar
  16. Dhand V, Soumya L, Bharadwaj S, Chakra S, Bhatt D, Sreedhar B (2016) Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater Sci Eng C 58:36–43CrossRefGoogle Scholar
  17. Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212CrossRefGoogle Scholar
  18. Elemike EE, Onwudiwe DC, Ekennia AC, Ehiri RC, Nnaji NJ (2017) Phytosynthesis of silver nanoparticles using aqueous leaf extracts of Lippia citriodora: antimicrobial, larvicidal and photocatalytic evaluations. Mater Sci Eng C 75:980–989CrossRefGoogle Scholar
  19. Faraz M, Abbasia A, Naqvia FK, Khare N, Prasad R, Barman I, Pandey R (2018) Polyindole/CdS nanocomposite based turn-on, multi-ion fluorescence sensor for detection of Cr3+, Fe3+ and Sn2+ ions. Sensors Actuators B 269:195–202.  https://doi.org/10.1016/j.snb.2018.04.110 CrossRefGoogle Scholar
  20. Farnia A, Ghorbani A (2014) Effect of K nano-fertilizer and N bio-fertilizer on yield and yield components of red bean (Phaseolus vulgaris L.). Int J Biosci (IJB) 5(12):296–303CrossRefGoogle Scholar
  21. Farnia A, Omidi MM (2015) Effect of nano-zinc chelate and nano-biofertilizer on yield and yield components of maize (Zea mays L.), under water stress condition. Indian J Nat Sci 5(29):4614–4624Google Scholar
  22. Feng B-H, Peng L-F (2012) Synthesis and characterization of carboxymethyl chitosan carrying ricinoleic functions as an emulsifier for azadirachtin. Carbohydr Polym 88(2):576–582CrossRefGoogle Scholar
  23. Forim MR, Costa ES, da Silva MF, Fernandes JB, Mondego JM, Boiça Junior AL (2013) Development of a new method to prepare nano-/microparticles loaded with extracts of Azadirachta indica, their characterization and use in controlling Plutella xylostella. J Agric Food Chem 61(38):9131–9139CrossRefGoogle Scholar
  24. Garg A, Singh S (2011) Enhancement in antifungal activity of eugenol in immunosuppressed rats through lipid nanocarriers. Colloids Surf B Biointerfaces 87(2):280–288CrossRefGoogle Scholar
  25. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803CrossRefGoogle Scholar
  26. Gomez-Estaca J, Balaguer M, Gavara R, Hernandez-Munoz P (2012) Formation of zein nanoparticles by electrohydrodynamic atomization: effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocoll 28(1):82–91CrossRefGoogle Scholar
  27. Guarda A, Rubilar JF, Miltz J, Galotto MJ (2011) The antimicrobial activity of microencapsulated thymol and carvacrol. Int J Food Microbiol 146(2):144–150CrossRefGoogle Scholar
  28. Gupta M, Arias T, Williams N, Bos R, Tattje D (1985) Safrole, the main component of the essential oil from Piper auritum of Panama. J Nat Prod 48:330–343CrossRefGoogle Scholar
  29. Gupta N, Upadhyaya CP, Singh A, Abd-Elsalam KA, Prasad R (2018) Applications of silver nanoparticles in plant protection. In: Abd-Elsalam K, Prasad R (eds) Nanobiotechnology applications in plant protection. Springer International Publishing AG, pp 247–266Google Scholar
  30. Hae-Jun P, Sung-Ho K, Hwa-Jung K, Seong-Ho C (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302.  https://doi.org/10.5423/PPJ.2006.22.3.295 CrossRefGoogle Scholar
  31. He L, Wang M, Zhang G, Qiu G, Cai D, Wu Z, Zhang X (2015) Remediation of Cr (VI) contaminated soil using long-duration sodium thiosulfate supported by micro–nano networks. J Hazard Mater 294:64–69CrossRefGoogle Scholar
  32. Hernandez-Viezcas JA, Castillo-Michel H, Peralta-Videa JR, Gardea-Torresdey JL (2016) Interactions between CeO2 nanoparticles and the desert plant mesquite: a spectroscopy approach. ACS Sustain Chem Eng 4(3):1187–1192CrossRefGoogle Scholar
  33. Higueras L, López-Carballo G, Cerisuelo JP, Gavara R, Hernández-Muñoz P (2013) Preparation and characterization of chitosan/HP-β-cyclodextrins composites with high sorption capacity for carvacrol. Carbohydr Polym 97(2):262–268CrossRefGoogle Scholar
  34. Janmohammadi M, Navid A, Segherloo AE, Sabaghnia N (2016) Impact of nano-chelated micronutrients and biological fertilizers on growth performance and grain yield of maize under deficit irrigation condition. Biologija 62(2):134–147Google Scholar
  35. Jayaprakash N, Vijaya JJ, Kaviyarasu K, Kombaiah K, Kennedy LJ, Ramalingam RJ, Munusamy MA, Al-Lohedan HA (2017) Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies. J Photochem Photobiol B Biol 169:178–185CrossRefGoogle Scholar
  36. Jeeva K, Thiyagarajan M, Elangovan V, Geetha N, Venkatachalam P (2014) Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Ind Crop Prod 52:714–720CrossRefGoogle Scholar
  37. Jerobin J, Sureshkumar R, Anjali C, Mukherjee A, Chandrasekaran N (2012) Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A. Carbohydr Polym 90(4):1750–1756CrossRefGoogle Scholar
  38. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043CrossRefGoogle Scholar
  39. Jo YK, Cromwell W, Jeong HK, Thorkelson J, Roh JH, Shin DB (2015) Use of silver nanoparticles for managing Gibberella fujikuroi on rice seedlings. Crop Prot 74:65–69CrossRefGoogle Scholar
  40. Kalboush ZA, Hassan A, Gabr W (2016) Control of rice blast and brown spot diseases by synthesized zinc oxide nanoparticles. Egypt J Biol Pest Control 26(4):713–720Google Scholar
  41. Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17.  https://doi.org/10.1016/j.matlet.2013.10.011 CrossRefGoogle Scholar
  42. Keawchaoon L, Yoksan R (2011) Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf B Biointerfaces 84(1):163–171CrossRefGoogle Scholar
  43. Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13(3):214–231.  https://doi.org/10.3923/ppj.2014.214.231 CrossRefGoogle Scholar
  44. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRefGoogle Scholar
  45. Kiruba D, Vinothini G, Subramanian N, Nehru K, Sivakumar M (2013) Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. J Nanopart Res 15(1):1319CrossRefGoogle Scholar
  46. Kumar PV, Shameem U, Kollu P, Kalyani R, Pammi S (2015) Green synthesis of copper oxide nanoparticles using aloe vera leaf extract and its antibacterial activity against fish bacterial pathogens. Bio Nano Sci 5(3):135–139Google Scholar
  47. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39(3):194–199.  https://doi.org/10.5941/MYCO.2011.39.3.194 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lim G-O, Jang S-A, Song KB (2010) Physical and antimicrobial properties of Gelidium corneum/nano-clay composite film containing grapefruit seed extract or thymol. J Food Eng 98(4):415–420CrossRefGoogle Scholar
  49. López-Moreno ML, Avilés LL, Pérez NG, Irizarry BÁ, Perales O, Cedeno-Mattei Y, Román F (2016) Effect of cobalt ferrite (CoFe2 O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). Sci Total Environ 550:45–52CrossRefGoogle Scholar
  50. Mahanty A, Mishra S, Bosu R, Maurya U, Netam SP, Sarkar B (2013) Phytoextracts-synthesized silver nanoparticles inhibit bacterial fish pathogen Aeromonas hydrophila. Indian J Microbiol 53(4):438–446CrossRefGoogle Scholar
  51. Mardalipour M, Zahedi H, Sharghi Y (2014) Evaluation of nano biofertilizer efficiency on agronomic traits of spring wheat at different sowing date. In: Biological forum, vol 2. Research Trend, p 349Google Scholar
  52. Martin L, Liparoti S, Della Porta G, Adami R, Marqués J, Urieta J, Mainar A, Reverchon E (2013) Rotenone coprecipitation with biodegradable polymers by supercritical assisted atomization. J Supercrit Fluids 81:48–54CrossRefGoogle Scholar
  53. McSpadden G B, Fravel D (2002) Biological control of plant pathogens: research, commercialization and application in the USA. Plant Health Prog Online.  https://doi.org/10.1094/PHP-2002-0510-01-RV
  54. Medina N (2001) Uso de extractos botánicos en control de plagas y enfermedades. Avances en el fomento de productos fitosanitarios no sintéticos. Manejo Integrado de Plagas (Costa Rica) 59:76–77Google Scholar
  55. Mir S, Sirousmehr A, Shirmohammadi E (2015) Effect of nano and biological fertilizers on carbohydrate and chlorophyll content of forage sorghum (speedfeed hybrid). Int J Biosci (IJB) 6(4):157–164CrossRefGoogle Scholar
  56. MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M (2011) Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B Biointerfaces 85(2):360–365CrossRefGoogle Scholar
  57. Mustafa G, Komatsu S (2016) Toxicity of heavy metals and metal-containing nanoparticles on plants. Biochim Biophys Acta (BBA) Protein Proteomics 1864(8):932–944CrossRefGoogle Scholar
  58. Nandini B, Hariprasad P, Prakash HS, Shetty HS, Geetha N (2017) Trichogenic-selenium nanoparticles enhance disease suppressive ability of Trichoderma against downy mildew disease caused by Sclerospora graminicola in pearl millet. Sci Rep 7(1):2612.  https://doi.org/10.1038/s41598-017-02737-6 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Narayanan KB, Park HH (2014) Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur J Plant Pathol 140(2):185–192CrossRefGoogle Scholar
  60. Narendhran S, Sivaraj R (2016) Biogenic ZnO nanoparticles synthesized using L. aculeata leaf extract and their antifungal activity against plant fungal pathogens. Bull Mater Sci 39(1):1–5CrossRefGoogle Scholar
  61. Nigam S, Purohit R (1962) Chemical examination of the essential oil of the leaves of Piper betle. Riechstoffe Aromen 12:185–190Google Scholar
  62. Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7(10):8972–8980.  https://doi.org/10.1021/nn4034794 CrossRefPubMedGoogle Scholar
  63. Padalia H, Baluja S, Chanda S (2017) Effect of pH on size and antibacterial activity of Salvadora oleoides leaf extract-mediated synthesis of zinc oxide nanoparticles. Bio Nano Sci 7:1–10Google Scholar
  64. Patra JK, Baek KH (2017) Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Front Microbiol 8:167.  https://doi.org/10.3389/fmicb.2017.00167 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Patra A, Adhikari T, Bhardwaj A (2016) Enhancing crop productivity in salt-affected environments by stimulating soil biological processes and remediation using nanotechnology. In: Innovative saline agriculture. Springer, pp 83–103Google Scholar
  66. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart:963961.  https://doi.org/10.1155/2014/963961
  67. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  68. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330.  https://doi.org/10.1002/wnan.1363 CrossRefGoogle Scholar
  69. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014.  https://doi.org/10.3389/fmicb.2017.01014 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Prasad R, Jha A, Prasad K (2018) Exploring the realms of nature for nanosynthesis. Springer International Publishing. ISBN 978–3–319-99570-0 https://www.springer.com/978-3-319-99570-0
  71. Rajan R, Chandran K, Harper SL, Yun S-I, Kalaichelvan PT (2015) Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Ind Crop Prod 70:356–373CrossRefGoogle Scholar
  72. Rajiv P, Rajeshwari S, Venckatesh R (2013) Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta A 112:384–387.  https://doi.org/10.1016/j.saa.2013.04.072 CrossRefGoogle Scholar
  73. Ramos L, Da Silva M, Luz A, Zoghbi M, Maia J (1986) Essential oil of Piper marginatum. J. Nat Prod 49:712–713CrossRefGoogle Scholar
  74. Rao NH, Lakshmidevi N, Pammi S, Kollu P, Ganapaty S, Lakshmi P (2016) Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities. Mater Sci Eng C 62:553–557CrossRefGoogle Scholar
  75. Raskin I, Ribnicky D, Komarnytsky S, Ilic N, Poulev A, Borisjuk N, Brinker A, Moreno D, Ripoll C, Yakoby N, O’Neal J, Cornwell T, Pastor I, Fridlender B (2002) Plants and human health in the twenty-first century. Trends Biotechnol 20(12):522–531CrossRefGoogle Scholar
  76. Riyajan S-A, Sakdapipanich JT (2009) Development of a controlled release neem capsule with a sodium alginate matrix, crosslinked by glutaraldehyde and coated with natural rubber. Polym Bull 63(4):609–622CrossRefGoogle Scholar
  77. Robles-García MA, Rodríguez-Félix F, Márquez-Ríos E, Aguilar JA, Barrera-Rodríguez A, Aguilar J, Ruiz-Cruz S, Del-Toro-Sánchez CL (2016) Applications of nanotechnology in the agriculture, food, and pharmaceuticals. J Nanosci Nanotechnol 16(8):8188–8207CrossRefGoogle Scholar
  78. Sahayaraj K, Roobadevi M, Rajesh S, Azizi S (2015) Vernonia cinerea (L.) Less. silver nanocomposite and its antibacterial activity against a cotton pathogen. Res Chem Intermed 41(8):5495–5507CrossRefGoogle Scholar
  79. Sajomsang W, Nuchuchua O, Gonil P, Saesoo S, Sramala I, Soottitantawat A, Puttipipatkhachorn S, Ruktanonchai UR (2012) Water-soluble β-cyclodextrin grafted with chitosan and its inclusion complex as a mucoadhesive eugenol carrier. Carbohydr Polym 89(2):623–631CrossRefGoogle Scholar
  80. Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Manowade KR, Mujeeb MA, Mundaragi AC, Jogaiah S, David M, Thimmappa SC, Prasad R, Harish ER (2017) Production of bionanomaterials from agricultural wastes. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 33–58CrossRefGoogle Scholar
  81. Saratale RG, Shin H-S, Kumar G, Benelli G, Ghodake GS, Jiang YY, Kim DS, Saratale GD (2017) Exploiting fruit byproducts for eco-friendly nanosynthesis: citrus× clementina peel extract mediated fabrication of silver nanoparticles with high efficacy against microbial pathogens and rat glial tumor C6 cells. Environ Sci Pollut Res Int 1–14.  https://doi.org/10.1007/s11356-017-8724-z
  82. Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17(2):92.  https://doi.org/10.1007/s11051-015-2907-7 CrossRefGoogle Scholar
  83. Shanmugam N, Rajkamal P, Cholan S, Kannadasan N, Sathishkumar K, Viruthagiri G, Sundaramanickam A (2014) Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens. Appl Nanosci 4(7):881–888CrossRefGoogle Scholar
  84. Sharifi RS (2016) Application of biofertilizers and zinc increases yield, nodulation and unsaturated fatty acids of soybean. Žemdirbystė (Agriculture) 103(3):251–258CrossRefGoogle Scholar
  85. Singhal U, Khanuja M, Prasad R, Varma A (2017) Impact of synergistic association of ZnO-nanorods and symbiotic fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (broccoli). Front Microbiol 8:1909.  https://doi.org/10.3389/fmicb.2017.01909 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Singh A, Prasad S (2015) Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. Int J Environ Sci Technol 12(1):353–366CrossRefGoogle Scholar
  87. Sivaraj R, Rahman PK, Rajiv P, Narendhran S, Venckatesh R (2014) Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim Acta A Mol Biomol Spectrosc 129:255–258CrossRefGoogle Scholar
  88. Subramanian K, Muniraj I, Uthandi S (2016) Role of actinomycete-mediated nanosystem in agriculture. In: Plant growth promoting actinobacteria. Springer, pp 233–247Google Scholar
  89. Suresh G, Geetha G, Daniel W, Pradeep N, Malathi R, Rajan S (2002) Insect antifeedant activity of tetranortriterpenoids from the rutales. A perusal of structural relations. J Agric Food Chem 50(16):4484–4490CrossRefGoogle Scholar
  90. Thatoi P, Kerry RG, Gouda S, Das G, Pramanik K, Thatoi H, Patra JK (2016) Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J Photochem Photobiol B Biol 163:311–318CrossRefGoogle Scholar
  91. Valdés E, Aldana L, Gutiérrez O, Hernández R, Salinas S (2006) Evaluación de fitoextracto sobre larvas de Scyphophorus acupunctatus plaga de nardo y agave. Proc Interam Soc Trop Hortic 50:130–132Google Scholar
  92. Velmurugan P, Anbalagan K, Manosathyadevan M, Lee K-J, Cho M, Lee S-M, Park J-H, Oh S-G, Bang K-S, Oh B-T (2014) Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess Biosyst Eng 37(10):1935–1943CrossRefGoogle Scholar
  93. Wang L, Liu C-C, Wang Y-Y, Xu H, Su H, Cheng X (2016) Antibacterial activities of the novel silver nanoparticles biosynthesized using Cordyceps militaris extract. Curr Appl Phys 16(9):969–973CrossRefGoogle Scholar
  94. Xu C, Peng C, Sun L, Zhang S, Huang H, Chen Y, Shi J (2015) Distinctive effects of TiO 2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem 86:24–33CrossRefGoogle Scholar
  95. Zhang Y, Niu Y, Luo Y, Ge M, Yang T, Yu LL, Wang Q (2014) Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate–chitosan hydrochloride double layers. Food Chem 142:269–275CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Gerardo Rodríguez-Cutiño
    • 1
  • Juan J. Gaytán-Andrade
    • 1
  • Ariel García-Cruz
    • 1
  • Rodolfo Ramos-González
    • 2
  • Mónica L. Chávez-González
    • 1
  • Elda P. Segura-Ceniceros
    • 1
  • José L. Martínez-Hernández
    • 1
  • Mayela Govea-Salas
    • 1
  • Anna Ilyina
    • 1
  1. 1.Nanobioscience GroupChemistry School of the Autonomous University of CoahuilaCoahuilaMexico
  2. 2.CONACYT – Autonomous University of CoahuilaCoahuilaMexico

Personalised recommendations