Advertisement

Turning the CPPS of the World’s Largest Automotive Research Factory ARENA2036 into a Data Gold Mine for Eco-Design

  • Daniel WehnerEmail author
  • Max Hossfeld
  • Michael Held
Chapter

Abstract

Manufacturing companies have started to capitalize on digitization by addressing individual customer wishes with personalized production. This goes along with increasing complexity in product design and manufacturing, which current eco-design methods and tools fail to address appropriately. The concept “Development-for-Life-Cycle-Sustainability in the age of data abundancy” tackles this disparity with a novel approach to eco-design, which integrates cyber-physical production systems as a high-quality data provider with advanced sustainability analytics to create high-value information services for deployment in decision support along the entire product development process. The involvement of key industrial players and the practical implementation in the world’s leading and largest automotive research factory ARENA2036 ensure a rapid transfer from research to industry application.

Keywords

Eco-design Cyber-physical production systems (CPPS) Advanced sustainability analytics Personalization Life cycle assessment 

References

  1. 1.
    Rommel S, Geiger R, Schneider R, Baumann M, Brandstetter P, Held M, Albrecht S, Creutzenberg O, Dasenbrock C. Leichtbau in Mobilität und Fertigung – Ökologische Aspekte. e-mobil BW GmbH - Landesagentur für Elektromobilität und Brennstoffzellentechnologie, Fraunhofer-Institut für Produktionstechnik und Automatisierung, Fraunhofer-Institut für Bauphysik, Fraunhofer-Institut für Toxikologie und Experimentelle Medizin, Ministerium für Finanzen und Wirtschaft Baden-Württemberg, Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg; 2012.Google Scholar
  2. 2.
    Ilg R, Wehner D. Process chain analysis of lightweight metal components – a case study. In: Ferreira T, editor. Green design, materials and manufacturing processes. Hardcover: CRC Press; 2013. p. 321–6.CrossRefGoogle Scholar
  3. 3.
    Beuth. DIN EN ISO 14040:2006. Umweltmanagement – Ökobilanz – Grundsätze und Rahmenbedingungen, Beuth; 2006a.Google Scholar
  4. 4.
    Beuth. DIN EN ISO 14044:2006. Umweltmanagement – Ökobilanz – Anforderung und Anleitung, Beuth; 2006b.Google Scholar
  5. 5.
    VDI. VDI 4800: resource efficiency – methodical principles and strategy. Verein Deutscher Ingenieure; 2015.Google Scholar
  6. 6.
    Swarr TE, Hunkeler D, Klöpffer W, Pesonen H-L, Ciroth A, Brent AC, Pagan R. Environmental life cycle costing: a code of practice. Int J Life Cycle Assess. 2011;16:389–91. Springer-VerlagCrossRefGoogle Scholar
  7. 7.
    Betten T. Big data analytics im Rahmen von Ökobilanzen. In: Neues aus der Bauphysikalischen Lehre und Forschung. Universität Stuttgart; 2016.Google Scholar
  8. 8.
    Thinkstep. GaBi product sustainability software. Thinkstep AG; 2016.Google Scholar
  9. 9.
    ifu Hamburg. Umberto – solution for your challenges in engineering sustainability. Ifu Hamburg. 2016. https://www.ifu.com/en/umberto/
  10. 10.
    PRé Consultants. Software to measure and improve the impact of your product life cycle. SimaPro; 2016.Google Scholar
  11. 11.
    Ilg R. Sustainability in aviation – the ENDAMI eco-design tool. aerodays2015 – Aviation in Europe – innovating for growth, London; 2015.Google Scholar
  12. 12.
    Ko N, Graf R, Buchert T, Kim M, Wehner D. Resource optimized product design – assessment of a product’s life cycle resource efficiency by combining LCA and PLM in the product development. In: 49th CIRP conference on manufacturing systems, Stuttgart, 25–27 May 2016, p 669–73.Google Scholar
  13. 13.
    Forschungsverbund ERMA. Forschungsprojekt ERMA – Energie- und ressourceneffiziente mobile Arbeitsmaschinen. Technische Universität Kaiserslautern. 2017. https://vpe.mv.uni-kl.de/forschung/forschungsprojekte/erma/.
  14. 14.
    Wolf MA, Pant R, Chomkhamsri K, Sala S, Pennington D. The International Reference Life Cycle Data System (ILCD) Handbook – towards more sustainable production and consumption for a resource-efficient Europe. Joint Research Centre, European Commission; 2012.Google Scholar
  15. 15.
    Hohmann A, Schwab B, Wehner D, Albrecht S, Ilg R, Schüppel D, Reden TV. MAI ENVIRO – Vorstudie zur Lebenszyklusanalyse mit ökobilanzieller Bewertung relevanter Fertigungsprozessketten für CFK-Strukturen. Fraunhofer-Institutsteil Funktionsintegrierter Leichtbau, Fraunhofer-Institut für Bauphysik Abteilung Ganzheitliche Bilanzierung, MAI Carbon Cluster Management GmbH; 2015.Google Scholar
  16. 16.
    Ilg R, Wehner D. Process chain analysis of lightweight metal components – a case study. In: Ferreira T, editor. Green design, materials and manufacturing processes. Hardcover: CRC Press; 2013. p. 321–6.CrossRefGoogle Scholar
  17. 17.
    Wehner D, Ilg R. Environmental relevance of metal processing for the eco-design of lightweight components (presentation). Guilin; 2013.Google Scholar
  18. 18.
    The IMDS. The international material data system. 2017. https://www.mdsystem.com/imdsnt/faces/login.
  19. 19.
    ASM International. ASM alloy Center DatabaseTM. 2017. http://www.asminternational.org/home/-/journal_content/56/10192/15468704/DATABASE
  20. 20.
    Gartner. IT Glossary. 2017. http://www.gartner.com/it-glossary/
  21. 21.
    Wehner D, Betten T, Held M, Ilg R. Towards industry 4.0 ready advanced sustainability analytics. In: Proceedings of the international conference on sustainable smart manufacturing (S2M): challenges for technology innovation – an agenda for the future, Lisbon, 20–22 October 2016, p. 167–71.Google Scholar
  22. 22.
    Chapman P, Clinton J, Kerber R, Khabaza T, Reinartz T, Shearer C, Wirth R. CRISP-DM 1.0 – Step-by-step data mining guide. SPSS Inc. The-Modeling-Agency; 2000.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University of StuttgartStuttgartGermany
  2. 2.ARENA2036StuttgartGermany
  3. 3.Fraunhofer IBPStuttgartGermany

Personalised recommendations