Skip to main content

Simultaneous Structure and Parameter Learning of Convolutional Neural Network

  • Conference paper
  • First Online:
Computational Intelligence: Theories, Applications and Future Directions - Volume II

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 799))

Abstract

This paper provides a solution to select a suitable architecture of convolutional neural network (CNN). A hybrid evolutionary gradient descent (HyEGD) approach is proposed to automatically evolve the architecture of CNN. The evolution of the structure is done using compact genetic algorithm (cGA) by optimizing the number of filters in each layer, and simultaneously, the associated weight parameters are tuned by stochastic gradient descent (SGD). This brings forth an effective way to search the solution space seamlessly integrating both exploration, spearheaded by cGA, and the exploitation, naturally done by SGD. Moreover, using HyEGD approach, the user specified architecture can also be evolved trading-off between two objectives—network performance on one side and network size on the other side. Experiments to illustrate the salient features of the HyEGD approach are performed on two benchmark problems: COIL-20 dataset and MNIST dataset. The results clearly highlight the powerful capability of generating architectures based on the required performance and size of network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, A., Nath, B.: Evolutionary design of neuro-fuzzy systems—a generic framework. In: Proceedings of the 4th Japan-Australia Joint Workshop on Intelligent and Evolutionary Systems, pp. 106–113 (2000)

    Google Scholar 

  2. Ahn, C.W., Ramakrishna, R.S.: Elitism-based compact genetic algorithms. IEEE Trans. Evol. Comput. 7(4), 367–385 (2003)

    Article  Google Scholar 

  3. Cordón, O.: A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: designing interpretable genetic fuzzy systems. Int. J. Approx. Reason. 52(6), 894–913 (2011)

    Article  Google Scholar 

  4. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  5. Frenzel, J.F.: Genetic algorithm. IEEE Potentials 12(3), 21–24 (1993)

    Article  Google Scholar 

  6. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE Trans. Evol. Comput. 3(4), 287–297 (1999)

    Article  Google Scholar 

  7. Huang, P., Huang, Y., Wang, W., Wang, L.: Deep embedding network for clustering. In: 22nd International Conference on Pattern Recognition, Sweden, 24–28 Aug, pp. 1532–1537 (2014)

    Google Scholar 

  8. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  Google Scholar 

  9. LeCun, Y., Bengio, Y., Hinton, G.E.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Haykin, S., Kosko, B. (eds.) Intelligent Signal Processing, vol. 86, pp. 306–351. IEEE Press (2001)

    Google Scholar 

  11. LeCun, Y., Cortes, C., Burges, C.J.C.: The MNIST database for handwritten digits. http://yann.lecun.com/exdb/mnist/

  12. Li, F., Qiao, H., Zhang, B., Xi, X.: Discriminatively boosted image clustering with fully convolutional auto-encoders (2017) (Online). https://arxiv.org/abs/1703.07980

  13. Mininno, E., Cupertino, F., Naso, D.: Real-valued compact genetic algorithms for embedded microcontroller optimization. IEEE Trans. Evol. Comput. 12(2), 203–219 (2008)

    Article  Google Scholar 

  14. Mininno, E., Neri, F., Cupertino, F., Naso, D.: Compact differential evolution. IEEE Trans. Evol. Comput. 15(1), 32–54 (2011)

    Article  Google Scholar 

  15. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (Coil-20). Technical Report No. CUCS-006-96, Department of Computer Science, Columbia University, New York, NY, United States (1996)

    Google Scholar 

  16. Paul, S., Kumar, S., Singh, L.: Novel hybrid compact genetic algorithm for simultaneous structure and parameter learning of neural networks. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2012, Brisbane, Australia, 10–15 June, 2012. pp. 1–6 (2012)

    Google Scholar 

  17. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)

    Article  Google Scholar 

  18. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Le, Q.V., Kurakin, A.: Large-scale evolution of image classifiers (2017) (Online). https://arxiv.org/abs/1703.01041

  19. Rere, L.M.R., Fanany, M.I., Arymurthy, A.M.: Metaheuristic algorithms for convolution neural network (2016) (Online). https://arxiv.org/abs/1610.01925

  20. Salimans, T., Ho, J., Chen, X., Sutskever, I.: Evolution strategies as a scalable alternative to reinforcement learning (2017) (Online). https://arxiv.org/abs/1703.03864

  21. Singh, L., Kumar, S., Paul, S.: Automatic simultaneous architecture and parameter search in fuzzy neural network learning using novel variable length crossover differential evolution. In: Proceedings of FUZZ-IEEE 2008, IEEE International Conference on Fuzzy Systems, pp. 1795–1802 (2008)

    Google Scholar 

  22. Wang, Y., Xu, C., Qiu, J., Xu, C., Tao, D.: Towards evolutional compression (2017) (Online). https://arxiv.org/abs/1707.08005

  23. Xie, L., Yuille, A.: Genetic CNN (2017) (Online). https://arxiv.org/abs/1703.01513

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soniya, Paul, S., Singh, L. (2019). Simultaneous Structure and Parameter Learning of Convolutional Neural Network. In: Verma, N., Ghosh, A. (eds) Computational Intelligence: Theories, Applications and Future Directions - Volume II. Advances in Intelligent Systems and Computing, vol 799. Springer, Singapore. https://doi.org/10.1007/978-981-13-1135-2_8

Download citation

Publish with us

Policies and ethics