Strabismus pp 115-130 | Cite as

Planning Strabismus Surgery

  • Rolli Khurana
  • Neha Singh
  • Rajat M. Srivastava
  • Siddharth Agrawal


After a conclusive diagnosis has been made, meticulous surgical planning and its execution form the final steps in successful management of strabismus. This chapter will highlight the points to be considered while planning strabismus surgery.

While achieving a near perfect alignment of visual axes is the aim, ocular alignment in at least the primary and downgaze is most desirous (Table 7.1). This may be achieved by either “correcting the defect” or by “matching the defect” of the sound eye to the squinting eye. At the same time, all considerations must also be made to ensure sensory recovery as achieving good binocular functions is the ultimate goal of any strabismus surgery. Binocular function recovery depends on multiple factors like vision, age of onset, duration and stability of deviation along with preoperative binocular functions (Table 7.2). An adult with early-onset, long-standing, constant (no intermittency or variability) deviation with poor vision in deviating eye and poor binocular functions can be expected to have an unfavourable prognosis in terms of sensory recovery (Singh et al., J Pediatr Ophthalmol Strabismus 45:104–108, 2008).

The surgeon should also spend time to understand the expectations of the patient and see if they match with the expected surgical outcome. This would avoid disappointment and hours of postoperative counselling.


Arc of contact Prism adaptation test Forced duction test Force generation test Surgical dosage 


  1. 1.
    Singh V, Pandey M, Agrawal S. Binocular potential score: a novel concept. J Pediatr Ophthalmol Strabismus. 2008;45(2):104–8.CrossRefGoogle Scholar
  2. 2.
    Plager DA, Parks MM. Recognition and repair of the slipped rectus muscle. J Pediatr Ophthalmol Strabismus. 1988;25:270–4.PubMedGoogle Scholar
  3. 3.
    Chatzistefanou KI, Kushner BJ, Gentry LR. Magnetic resonance imaging of the arc of contact of extraocular muscles: implications regarding the incidence of slipped muscles. J AAPOS. 2000;4(2):84–93.CrossRefGoogle Scholar
  4. 4.
    Von Noorden GK, Campos EC. Chapter 4: Physiology of the ocular movements. In: Binocular vision and ocular motility. 6th ed. St. Louis: Mosby; 2002. p. 52–84.Google Scholar
  5. 5.
    Kuscher BJ, Fisher MR, Lucchese NJ, Morton GV. How far can medial rectus safely be recessed? J Pediatr Ophthalmol Strabismus. 1994;31:138.Google Scholar
  6. 6.
    Kuscher BJ, Fisher MR, Lucchese NJ, Morton GV. Factors influencing response to strabismus surgery. Arch Ophthalmol. 1993;111:75.CrossRefGoogle Scholar
  7. 7.
    Durnian JM, Noonan CP, Marsh IB. The psychosocial effects of adult strabismus: a review. Br J Ophthalmol. 2011;95:450–3.CrossRefGoogle Scholar
  8. 8.
    Olitsky SE, Sudesh S, Graziano A, Hamblen J, Brooks SE, Shaha SH. The negative psychosocial impact of strabismus in adults. J AAPOS. 1999;3(4):209–11.CrossRefGoogle Scholar
  9. 9.
    Mojon-Azzi SM, Kunz A, Mojon DS. Strabismus and discrimination in children: are children with strabismus invited to fewer birthday parties? Br J Ophthalmol. 2011;95:473–6.CrossRefGoogle Scholar
  10. 10.
    Wright KW, Spiegel PH, Thompson LS. Chapter 8: Exotropia. In: Handbook of pediatric strabismus and amblyopia. NY: Springer; 2006. p. 270–1.CrossRefGoogle Scholar
  11. 11.
    Herzau V, Schoser G. The value of the prism adaptation test in determining the degree of squint surgery. Ophthalmologe. 1993;90(1):11–6.PubMedGoogle Scholar
  12. 12.
    Repka MX, Connett JE, Scott WE. The one-year surgical outcome after prism adaptation for the management of acquired esotropia. Ophthalmology. 1996;103(6):922–8.CrossRefGoogle Scholar
  13. 13.
    Dadeya S, Kamlesh, Naniwal S. Usefulness of the preoperative prism adaptation test in patients with intermittent exotropia. J Pediatr Ophthalmol Strabismus. 2003;40(2):85–9.PubMedGoogle Scholar
  14. 14.
    Schildwächter-von Langenthal A, Kommerell G, Klein U, Simonsz HJ. Preoperative prism adaptation test in normosensoric strabismus. Graefes Arch Clin Exp Ophthalmol. 1989;227(3):206–8.CrossRefGoogle Scholar
  15. 15.
    Guyton D. Exaggerated traction test for oblique muscles. Ophthalmology. 1981;88:1035.CrossRefGoogle Scholar
  16. 16.
    Rosenbaum AL, Urrea PT. Investigation of limited ocular rotations: current status. Am Orthopt J. 1987;37:1.CrossRefGoogle Scholar
  17. 17.
    Rosenbaum AL, Santiago AP. Surgical dose tables. In: Clinical strabismus management principles and surgical techniques. Philadelphia, PA: WB Saunders Company; 2001. p. 553.Google Scholar
  18. 18.
    von Noorden GK, Campos EC. Principles of surgical treatment. In: Binocular vision and ocular motility: theory and management of strabismus. 6th ed. St. Louis, MO: CV Mosby; 2001. p. 571–3.Google Scholar
  19. 19.
    Kushner BJ. How do recessions and resections of extraocular muscles work? J AAPOS. 2006;10:291–2.CrossRefGoogle Scholar
  20. 20.
    Yurdakul NS, Bodur S, Koç F. Surgical results of symmetric and asymmetric surgeries and dose-response in patients with infantile esotropia. Turk J Ophthalmol. 2015;45(5):197–202.CrossRefGoogle Scholar
  21. 21.
    Abbasoglu OE, Sener EC, Sanac AS. Factors influencing the successful outcomeand response in strabismus surgery. Eye. 1996;10:315–20.CrossRefGoogle Scholar
  22. 22.
    Umazume F, Ohtsuki H, Hasebe S. Preoperative factors influencing effectiveness of surgery in adult strabismus. Jpn J Ophthalmol. 1997;41(2):89–97.CrossRefGoogle Scholar
  23. 23.
    Rosenbaum AL, Santiago AP. Factors influencing measurement and response to strabismus surgery. In: Clinical strabismus management principles and surgical techniques. Philadelphia, PA: WB Saunders Company; 2001. p. 77.Google Scholar
  24. 24.
    Agrawal S, Singh V, Gupta SK, Agrawal S. Evaluating a new surgical dosage calculation method for esotropia. Oman J Ophthalmol. 2013;6:165–9.CrossRefGoogle Scholar
  25. 25.
    Roper-Hall MJ. The extraocular muscles: strabismus and heterophoria. In: Stallard’s eye surgery. 7th ed. London: Wright; 1989. p. 169–70.Google Scholar
  26. 26.
    Kushner BJ, Preslan MW, Vrabec M. Artifacts of measuring during strabismus surgery. J Pediatr Ophthalmol Strabismus. 1987;24(4):159–64.PubMedGoogle Scholar
  27. 27.
    McNeer KW. Observations on the surgical overcorrection of childhood intermittent exotropia. Am Orthopt J. 1987;37:135–50.CrossRefGoogle Scholar
  28. 28.
    Raab EL, Parks MM. Recession of the lateral recti. Arch Ophthalmol. 1969;82:203–8.CrossRefGoogle Scholar
  29. 29.
    Scott WE, Keech R, Mash AJ. The post-operative results and stability of exodeviations. Arch Ophthalmol. 1981;99(10):1814–8.CrossRefGoogle Scholar
  30. 30.
    Souza-Dias C, Uesugi CF. Post-operative evolution of the planned initial over-correction in intermittent exotropia: 61 cases. Binocul Vis Eye Muscle Surg Q. 1993;1003:141–8.Google Scholar
  31. 31.
    Raab EC. Management of Intermittent exotropia : for surgery. Am Orthopt J. 1998;48:25–9.CrossRefGoogle Scholar
  32. 32.
    von Noorden GK, Campos EC. Chapter 16: Esodeviations. In: Binocular vision and ocular motility. 6th ed. St. Louis: Mosby; 2002. p. 311–49.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rolli Khurana
    • 1
  • Neha Singh
    • 2
  • Rajat M. Srivastava
    • 2
  • Siddharth Agrawal
    • 2
  1. 1.Dr Shroff’s Charity Eye HospitalDelhiIndia
  2. 2.Department of OphthalmologyKing George’s Medical UniversityLucknowIndia

Personalised recommendations